![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
"The binomial theorem is usually quite rightly considered as one of the most important theorems in the whole of analysis." Thus wrote Bernard Bolzano in 1816 in introducing the first correct proof of Newton's generalisation of a century and a half earlier of a result familiar to us all from elementary algebra. Bolzano's appraisal may surprise the modern reader familiar only with the finite algebraic version of the Binomial Theorem involving positive integral exponents, and may also appear incongruous to one familiar with Newton's series for rational exponents. Yet his statement was a sound judgment back in the day. Here the story of the Binomial Theorem is presented in all its glory, from the early days in India, the Moslem world, and China as an essential tool for root extraction, through Newton's generalisation and its central role in infinite series expansions in the 17th and 18th centuries, and to its rigorous foundation in the 19th. The exposition is well-organised and fairly complete with all the necessary details, yet still readable and understandable for those with a limited mathematical background, say at the Calculus level or just below that. The present book, with its many citations from the literature, will be of interest to anyone concerned with the history or foundations of mathematics.
2013 Reprint of 1949 Edition. Exact facsimile of the original edition, not reproduced with Optical Recognition Software. Francis Begnaud Hildebrand (1915-2002) was an American mathematician. He was a Professor of mathematics at the Massachusetts Institute of Technology (MIT) from 1940 until 1984. Hildebrand was known for his many influential textbooks in mathematics and numerical analysis. The big green textbook from these classes (originally "Advanced Calculus for Engineers," later "Advanced Calculus for Applications") was a fixture in engineers' offices for decades.
Don't be perplexed by precalculus. Master this math with practice, practice, practice! "Practice Makes Perfect: Precalculus" is a comprehensive guide and workbook that covers all the basics of precalculus that you need to understand this subject. Each chapter focuses on one major topic, with thorough explanations and many illustrative examples, so you can learn at your own pace and really absorb the information. You get to apply your knowledge and practice what you've learned through a variety of exercises, with an answer key for instant feedback. Offering a winning solution for getting a handle on math right away, "Practice Makes Perfect: Precalculus" is your ultimate resource for building a solid understanding of precalculus fundamentals.
This book is based on Professor Williamson's twenty-six years of teaching calculus at the University of California, San Diego. It is a revised and updated version of a "tutors' guide" that he handed out to students wanting to tutor for his classes in integral calculus. Mostly, these tutors were a great help. But when they made mistakes in explaining technique or concept, these mistakes were hard to detect and rectify before the final exam. Tutoring Integral Calculus covers and hopefully rectifies the most common sources of tutoring difficulties.
This book is intended for those who are familiar with first year calculus, written by an author with four decades of teaching experience. It presents some very unique problem situations not available in ordinary textbooks. Many are original contributions among which are the articles on the Weight Watcher Function, collection of rooftop solar energy, measuring very hot temperatures, highway speed surveillance, and determining the rotational speeds of galaxies. Other articles deal with material not easy to find which is made readily understandable for the reader. A few examples include the one on the rotating mercury reflector, a pursuit curve, cooling tea, and the curious fountain problem whose diagram is pictured on the cover.
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This book introduces elementary probability through its history, eschewing the usual drill in favour of a discussion of the problems that shaped the field's development. Numerous excerpts from the literature, both from the pioneers in the field and its commentators, some given new English translations, pepper the exposition. First, for the reader without a background in the Calculus, it offers a brief intuitive explanation of some of the concepts behind the notation occasionally used in the text, and, for those with a stronger background, it gives more detailed presentations of some of the more technical results discussed in the text. Special features include two appendices on the graphing calculator and on mathematical topics. The former begins with a short course on the use of the calculator to raise the reader up from the beginner to a more advanced level, and then finishes with some simulations of probabilistic experiments on the the calculator. The mathematical appendix likewise serves a dual purpose. The book should be accessible to anyone taking or about to take a course in the Calculus, and certainly is accessible to anyone who has already had such a course. It should be of special interest to teachers, statisticians, or anyone who uses probability or is interested in the history of mathematics or science in general.
Transitioning to Calculus is a comprehensive compilation of the mathematical concepts and formulas that are required of students entering their first class in calculus. The essentials of arithmetic, algebra, geometry, analytic geometry, trigonometry, and complex variables are organized into separate chapters. The purpose of this book is to provide a succinct but comprehensive list of the topics required of students entering calculus.Over 100 figures highlight the intuitive and geometric aspects of the formulas and concepts. Each chapter ends with a series of exercises (with space provided for working out a solution) that are designed to reinforce the application of the concepts and formulas. Complete solutions to the problems are included.
Twenty Key Ideas in Beginning Calculus is a b & w 174 page book written by a high school mathematics teacher who learned how to sequence and present ideas over a 30-year career of teaching grade school mathematics. It is intended to serve as a bridge for beginning calculus students to study independently in preparation for a traditional calculus curriculum or as supplemental material for students who are currently in a calculus class. It is highly visual with 40 supportive images, 100+ cartoons and other illustrations, 110 graphs, and 40+ data tables spread throughout its 174 pages. Comprehension and understanding of ideas is emphasized over symbol manipulation although the latter is covered. The main text, Chapters 1-14, teaches "intuitive calculus," while the appendices contain "traditional calculus" proofs allowing the reader to customize their learning experience according to their ability and interest for rigor. When appropriate, the reader is referred to correlative interactive applets that can be used to supplement the text.
This scarce antiquarian book is a selection from Kessinger Publishing's Legacy Reprint Series. Due to its age, it may contain imperfections such as marks, notations, marginalia and flawed pages. Because we believe this work is culturally important, we have made it available as part of our commitment to protecting, preserving, and promoting the world's literature. Kessinger Publishing is the place to find hundreds of thousands of rare and hard-to-find books with something of interest for everyone!
Calculus III is the third and final volume of the three-volume calculus sequence by Tunc Geveci. The series is designed for the usual three-semester calculus sequence that the majority of science and engineering majors in the United States are required to take. The distinguishing features of the book are the focus on the concepts, essential functions and formulas of calculus and the effective use of graphics as an integral part of the exposition. Formulas that are not significant and exercises that involve artificial algebraic difficulties are avoided. The three-volume calculus sequence is organized as follows: Calculus I covers the usual topics of the first semester: limits, continuity, the derivative, the integral and special functions such as exponential functions, logarithms and inverse trigonometric functions. Calculus II covers techniques and applications of integration, improper integrals, infinite series, linear and separable first-order differential equations, parametrized curves and polar coordinates. Calculus III covers vectors, the differential calculus of functions of several variables, multiple integrals, line integrals, surface integrals, Green's Theorem, Stokes' Theorem and Gauss' Theorem.
Assuming no further prerequisites than a first undergraduate course
in real analysis, this concise introduction covers general
elementary theory related to orthogonal polynomials. It includes
necessary background material of the type not usually found in the
standard mathematics curriculum. Suitable for advanced
undergraduate and graduate courses, it is also appropriate for
independent study.
The ideal review for your tensor calculus course More than 40 million students have trusted Schaum's Outlines for their expert knowledge and helpful solved problems. Written by renowned experts in their respective fields, Schaum's Outlines cover everything from math to science, nursing to language. The main feature for all these books is the solved problems. Step-by-step, authors walk readers through coming up with solutions to exercises in their topic of choice. 300 solved problems Coverage of all course fundamentals Effective problem-solving techniques Complements or supplements the major logic textbooks Supports all the major textbooks for tensor calculus courses
This book takes no prior knowledge of mathematics for granted as it takes the student slowly and surely from addition all the way to a basic understanding of the calculus in the least painful and most efficient path possible. The calculus is not a hard subject, and this book proves this through an easy to read, obvious approach spanning only 100 pages. This book is written with the following type of student in mind; the non-traditional student returning to college after a long break, a notoriously weak student in math who just needs to get past calculus to obtain a degree, and the garage tinkerer who wishes to understand a little more about the technical subjects. This book is meant to address the many fundamental thought-blocks that keep the average 'mathaphobe' (or just an interested person who doesn't have the time to enroll in a course) from excelling in mathematics in a clear and concise manner. It is my sincerest hope that this book helps you with your needs.
Teachers know the difficulties in motivating many students to develop the habits of mind and critical thinking skills necessary to thoroughly understand the concepts of calculus. The purpose of this book is to use Geometry Expressions software in order to facilitate and enhance the calculus syllabus by allowing students to ground calculus concepts in a geometric way. The 29 student explorations in this book cover the major topics of a standard course of calculus, and are completed with the help of the constraint-based dynamic software package, Geometry Expressions. Using Geometry Expressions in learning calculus, students have the opportunity to develop general investigation skills, make connections between geometric and algebraic representations of major calculus ideas, interpret analytic problems visually and geometric problems algebraically, and develop facility with using a computer to prove general mathematics statements. Geometry Expressions enables more extensive calculus investigation than is possible in a traditional course of calculus. Open-ended explorations and investigations reinforce students' intellectual development. Students appreciate challenges and enjoy taking ownership in the problem solving process. This book, together with Geometry Expressions enables the student to do just that.
Calculus Made Easy is the answer to anyone who has been baffled, frustrated and simply irritated by the traditional academic approach to applying differentiation and integration problems. First published over a century ago, the methods, "tricks of the trade" and shortcuts Silvanus Thompson reveals are as applicable today in solving real-world 21st century problems. Whether you are a student, an established professional, or simply curious, this easy-to-follow book will give you the confidence to attack even the most daunting problems in engineering, science or mathematics.
Calculus II is the second volume of the three-volume calculus sequence by Tunc Geveci. The series is designed for the usual three-semester calculus sequence that the majority of science and engineering majors in the United States are required to take. The distinguishing features of the book are the focus on the concepts, essential functions and formulas of calculus and the effective use of graphics as an integral part of the exposition. Formulas that are not significant and exercises that involve artificial algebraic difficulties are avoided. The three-volume calculus sequence is organized as follows: Calculus I covers the usual topics of the first semester: limits, continuity, the derivative, the integral and special functions such as exponential functions, logarithms and inverse trigonometric functions. Calculus II covers techniques and applications of integration, improper integrals, infinite series, linear and separable first-order differential equations, parametrized curves and polar coordinates. Calculus III covers vectors, the differential calculus of functions of several variables, multiple integrals, line integrals, surface integrals, Green's Theorem, Stokes' Theorem and Gauss' Theorem.
This 1860 classic, written by one of the great mathematicians of the 19th century, was designed as a sequel to his Treatise on Differential Equations (1859). Divided into two sections ("Difference- and Sum-Calculus" and "Difference- and Functional Equations"), and containing more than 200 exercises (complete with answers), Boole discusses: . nature of the calculus of finite differences . direct theorems of finite differences . finite integration, and the summation of series . Bernoulli's number, and factorial coefficients . convergency and divergency of series . difference-equations of the first order . linear difference-equations with constant coefficients . mixed and partial difference-equations . and much more. No serious mathematician's library is complete without A Treatise on the Calculus of Finite Differences. English mathematician and logician GEORGE BOOLE (1814-1864) is best known as the founder of modern symbolic logic, and as the inventor of Boolean algebra, the foundation of the modern field of computer science. His other books include An Investigation of the Laws of Thought (1854).
Weyl combined function theory and geometry in this high-level landmark work, forming a new branch of mathematics and the basis of the modern approach to analysis, geometry, and topology.
For students who need to polish their calculus skills for class or for a critical exam, this no-nonsense practical guide provides concise summaries, clear model examples, and plenty of practice, practice, practice. About the Book With more than 1,000,000 copies sold, Practice Makes Perfect has established itself as a reliable practical workbook series in the language-learning category. Now, with Practice Makes Perfect: Calculus, students will enjoy the same clear, concise approach and extensive exercises to key fields they've come to expect from the series--but now within mathematics. Practice Makes Perfect: Calculus is not focused on any particular test or exam, but complementary to most calculus curricula. Because of this approach, the book can be used by struggling students needing extra help, readers who need to firm up skills for an exam, or those who are returning to the subject years after they first studied it. Its all-encompassing approach will appeal to both U.S. and international students. Features More than 500 exercises and answers covering all aspects of calculus.Successful series: "Practice Makes Perfect" has sales of 1,000,000 copies in the language category--now applied to mathematics.Large trim allows clear presentation of worked problems, exercises, and explained answers.
This book Mathematics Calculus has been written primarily for undergraduate Science and Engineering students in Colleges and Universities universally and more than cover the freshman calculus and part of the sophomore level. Students in Senior High at their penultimate and final years will find the introductory of each chapter practically informative, emphasis being more on the practical aspect of the subject matter. Each chapter is planned to encourage rather than to discourage students, thus assisting to remove what a growing number of new students now perceive as an unfriendly doorkeeper at the entrance to the study of Calculus in Mathematics.
The non-Newtonian calculi provide a wide variety of mathematical tools for use in science, engineering, and mathematics. They appear to have considerable potential for use as alternatives to the classical calculus of Newton and Leibniz. It may well be that these calculi can be used to define new concepts, to yield new or simpler laws, or to formulate or solve problems.
Calculus I is the first volume of the three-volume calculus sequence by Tunc Geveci. The series is designed for the usual three-semester calculus sequence that the majority of science and engineering majors in the United States are required to take.The distinguishing features of the book are the focus on the concepts, essential functions and formulas of calculus and the effective use of graphics as an integral part of the exposition. Formulas that are not significant and exercises that involve artificial algebraic difficulties are avoided. The three-volume calculus sequence is organized as follows: Calculus I covers the usual topics of the first semester: limits, continuity, the derivative, the integral and special functions such as exponential functions, logarithms and inverse trigonometric functions. Calculus II covers techniques and applications of integration, improper integrals, infinite series, linear and separable first-order differential equations, parametrized curves and polar coordinates. Calculus III covers vectors, the differential calculus of functions of several variables, multiple integrals, line integrals, surface integrals, Green's Theorem, Stokes' Theorem and Gauss' Theorem. |
You may like...
Student Solutions Manual for Calculus…
Robert Adams, Christopher Essex
Paperback
R717
Discovery Miles 7 170
First Semester Calculus for Students of…
Michael Dougherty, John Gieringer
Paperback
Student Solutions Manual for Thomas…
Joel Hass, Christopher Heil, …
Paperback
R2,152
Discovery Miles 21 520
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
R1,999
Discovery Miles 19 990
|