![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > General
This scarce antiquarian book is included in our special Legacy Reprint Series. In the interest of creating a more extensive selection of rare historical book reprints, we have chosen to reproduce this title even though it may possibly have occasional imperfections such as missing and blurred pages, missing text, poor pictures, markings, dark backgrounds and other reproduction issues beyond our control. Because this work is culturally important, we have made it available as a part of our commitment to protecting, preserving and promoting the world's literature.
This scarce antiquarian book is a selection from Kessinger Publishing's Legacy Reprint Series. Due to its age, it may contain imperfections such as marks, notations, marginalia and flawed pages. Because we believe this work is culturally important, we have made it available as part of our commitment to protecting, preserving, and promoting the world's literature. Kessinger Publishing is the place to find hundreds of thousands of rare and hard-to-find books with something of interest for everyone!
Understanding Calculus with ClassPad illustrates the basic concepts of calculus in a series of worked examples using the ClassPad Calculator. By following the examples in this book, the reader will gain an appreciation of how to use ClassPad to enhance his knowledge of the mathematics, rather than to use a calculator just to do the mathematics for him.
Teachers know the difficulties in motivating many students to develop the habits of mind and critical thinking skills necessary to thoroughly understand the concepts of calculus. The purpose of this book is to use Geometry Expressions software in order to facilitate and enhance the calculus syllabus by allowing students to ground calculus concepts in a geometric way. The 29 student explorations in this book cover the major topics of a standard course of calculus, and are completed with the help of the constraint-based dynamic software package, Geometry Expressions. Using Geometry Expressions in learning calculus, students have the opportunity to develop general investigation skills, make connections between geometric and algebraic representations of major calculus ideas, interpret analytic problems visually and geometric problems algebraically, and develop facility with using a computer to prove general mathematics statements. Geometry Expressions enables more extensive calculus investigation than is possible in a traditional course of calculus. Open-ended explorations and investigations reinforce students' intellectual development. Students appreciate challenges and enjoy taking ownership in the problem solving process. This book, together with Geometry Expressions enables the student to do just that.
This classic monograph is the work of a prominent contributor to
the field of harmonic analysis. Geared toward advanced
undergraduates and graduate students, it focuses on methods related
to Gelfand's theory of Banach algebra. Prerequisites include a
knowledge of the concepts of elementary modern algebra and of
metric space topology.
Calculus III is the third and final volume of the three-volume calculus sequence by Tunc Geveci. The series is designed for the usual three-semester calculus sequence that the majority of science and engineering majors in the United States are required to take. The distinguishing features of the book are the focus on the concepts, essential functions and formulas of calculus and the effective use of graphics as an integral part of the exposition. Formulas that are not significant and exercises that involve artificial algebraic difficulties are avoided. The three-volume calculus sequence is organized as follows: Calculus I covers the usual topics of the first semester: limits, continuity, the derivative, the integral and special functions such as exponential functions, logarithms and inverse trigonometric functions. Calculus II covers techniques and applications of integration, improper integrals, infinite series, linear and separable first-order differential equations, parametrized curves and polar coordinates. Calculus III covers vectors, the differential calculus of functions of several variables, multiple integrals, line integrals, surface integrals, Green's Theorem, Stokes' Theorem and Gauss' Theorem.
Assuming no further prerequisites than a first undergraduate course
in real analysis, this concise introduction covers general
elementary theory related to orthogonal polynomials. It includes
necessary background material of the type not usually found in the
standard mathematics curriculum. Suitable for advanced
undergraduate and graduate courses, it is also appropriate for
independent study.
This book takes no prior knowledge of mathematics for granted as it takes the student slowly and surely from addition all the way to a basic understanding of the calculus in the least painful and most efficient path possible. The calculus is not a hard subject, and this book proves this through an easy to read, obvious approach spanning only 100 pages. This book is written with the following type of student in mind; the non-traditional student returning to college after a long break, a notoriously weak student in math who just needs to get past calculus to obtain a degree, and the garage tinkerer who wishes to understand a little more about the technical subjects. This book is meant to address the many fundamental thought-blocks that keep the average 'mathaphobe' (or just an interested person who doesn't have the time to enroll in a course) from excelling in mathematics in a clear and concise manner. It is my sincerest hope that this book helps you with your needs.
The ideal review for your tensor calculus course More than 40 million students have trusted Schaum's Outlines for their expert knowledge and helpful solved problems. Written by renowned experts in their respective fields, Schaum's Outlines cover everything from math to science, nursing to language. The main feature for all these books is the solved problems. Step-by-step, authors walk readers through coming up with solutions to exercises in their topic of choice. 300 solved problems Coverage of all course fundamentals Effective problem-solving techniques Complements or supplements the major logic textbooks Supports all the major textbooks for tensor calculus courses
Calculus And Graphs: Simplified For A First Brief Course
Calculus II is the second volume of the three-volume calculus sequence by Tunc Geveci. The series is designed for the usual three-semester calculus sequence that the majority of science and engineering majors in the United States are required to take. The distinguishing features of the book are the focus on the concepts, essential functions and formulas of calculus and the effective use of graphics as an integral part of the exposition. Formulas that are not significant and exercises that involve artificial algebraic difficulties are avoided. The three-volume calculus sequence is organized as follows: Calculus I covers the usual topics of the first semester: limits, continuity, the derivative, the integral and special functions such as exponential functions, logarithms and inverse trigonometric functions. Calculus II covers techniques and applications of integration, improper integrals, infinite series, linear and separable first-order differential equations, parametrized curves and polar coordinates. Calculus III covers vectors, the differential calculus of functions of several variables, multiple integrals, line integrals, surface integrals, Green's Theorem, Stokes' Theorem and Gauss' Theorem.
This 1860 classic, written by one of the great mathematicians of the 19th century, was designed as a sequel to his Treatise on Differential Equations (1859). Divided into two sections ("Difference- and Sum-Calculus" and "Difference- and Functional Equations"), and containing more than 200 exercises (complete with answers), Boole discusses: . nature of the calculus of finite differences . direct theorems of finite differences . finite integration, and the summation of series . Bernoulli's number, and factorial coefficients . convergency and divergency of series . difference-equations of the first order . linear difference-equations with constant coefficients . mixed and partial difference-equations . and much more. No serious mathematician's library is complete without A Treatise on the Calculus of Finite Differences. English mathematician and logician GEORGE BOOLE (1814-1864) is best known as the founder of modern symbolic logic, and as the inventor of Boolean algebra, the foundation of the modern field of computer science. His other books include An Investigation of the Laws of Thought (1854).
Weyl combined function theory and geometry in this high-level landmark work, forming a new branch of mathematics and the basis of the modern approach to analysis, geometry, and topology.
For students who need to polish their calculus skills for class or for a critical exam, this no-nonsense practical guide provides concise summaries, clear model examples, and plenty of practice, practice, practice. About the Book With more than 1,000,000 copies sold, Practice Makes Perfect has established itself as a reliable practical workbook series in the language-learning category. Now, with Practice Makes Perfect: Calculus, students will enjoy the same clear, concise approach and extensive exercises to key fields they've come to expect from the series--but now within mathematics. Practice Makes Perfect: Calculus is not focused on any particular test or exam, but complementary to most calculus curricula. Because of this approach, the book can be used by struggling students needing extra help, readers who need to firm up skills for an exam, or those who are returning to the subject years after they first studied it. Its all-encompassing approach will appeal to both U.S. and international students. Features More than 500 exercises and answers covering all aspects of calculus.Successful series: "Practice Makes Perfect" has sales of 1,000,000 copies in the language category--now applied to mathematics.Large trim allows clear presentation of worked problems, exercises, and explained answers.
This book Mathematics Calculus has been written primarily for undergraduate Science and Engineering students in Colleges and Universities universally and more than cover the freshman calculus and part of the sophomore level. Students in Senior High at their penultimate and final years will find the introductory of each chapter practically informative, emphasis being more on the practical aspect of the subject matter. Each chapter is planned to encourage rather than to discourage students, thus assisting to remove what a growing number of new students now perceive as an unfriendly doorkeeper at the entrance to the study of Calculus in Mathematics.
The non-Newtonian calculi provide a wide variety of mathematical tools for use in science, engineering, and mathematics. They appear to have considerable potential for use as alternatives to the classical calculus of Newton and Leibniz. It may well be that these calculi can be used to define new concepts, to yield new or simpler laws, or to formulate or solve problems.
Calculus I is the first volume of the three-volume calculus sequence by Tunc Geveci. The series is designed for the usual three-semester calculus sequence that the majority of science and engineering majors in the United States are required to take.The distinguishing features of the book are the focus on the concepts, essential functions and formulas of calculus and the effective use of graphics as an integral part of the exposition. Formulas that are not significant and exercises that involve artificial algebraic difficulties are avoided. The three-volume calculus sequence is organized as follows: Calculus I covers the usual topics of the first semester: limits, continuity, the derivative, the integral and special functions such as exponential functions, logarithms and inverse trigonometric functions. Calculus II covers techniques and applications of integration, improper integrals, infinite series, linear and separable first-order differential equations, parametrized curves and polar coordinates. Calculus III covers vectors, the differential calculus of functions of several variables, multiple integrals, line integrals, surface integrals, Green's Theorem, Stokes' Theorem and Gauss' Theorem.
Named Essential Calculus for a reason, this book presents the basics of calculus in an easy to understand way. It exposes the careful reader to an overview of calculus with enough depth to provide an appreciation of the power of calculus and the ability to solve real world problems Included are several Motivational Problems which illustrate the scope of calculus. Learning calculus presents the student with several "AHA " moments. This book will share several such insights with its readers.
This 1860 classic, written by one of the great mathematicians of the 19th century, was designed as a sequel to his Treatise on Differential Equations (1859). Divided into two sections ("Difference- and Sum-Calculus" and "Difference- and Functional Equations"), and containing more than 200 exercises (complete with answers), Boole discusses: . nature of the calculus of finite differences . direct theorems of finite differences . finite integration, and the summation of series . Bernoulli's number, and factorial coefficients . convergency and divergency of series . difference-equations of the first order . linear difference-equations with constant coefficients . mixed and partial difference-equations . and much more. No serious mathematician's library is complete without A Treatise on the Calculus of Finite Differences. English mathematician and logician GEORGE BOOLE (1814-1864) is best known as the founder of modern symbolic logic, and as the inventor of Boolean algebra, the foundation of the modern field of computer science. His other books include An Investigation of the Laws of Thought (1854).
Volume Two of an award-winning professor's introduction to essential concepts of calculus and mathematical modeling for students in the biosciences This is the second of a two-part series exploring essential concepts of calculus in the context of biological systems. Building on the essential ideas and theories of basic calculus taught in Mathematical Models in the Biosciences I, this book focuses on epidemiological models, mathematical foundations of virus and antiviral dynamics, ion channel models and cardiac arrhythmias, vector calculus and applications, and evolutionary models of disease. It also develops differential equations and stochastic models of many biomedical processes, as well as virus dynamics, the Clancy-Rudy model to determine the genetic basis of cardiac arrhythmias, and a sketch of some systems biology. Based on the author's calculus class at Yale, the book makes concepts of calculus less abstract and more relatable for science majors and premedical students.
This book is a facsimile reprint and may contain imperfections such as marks, notations, marginalia and flawed pages.
Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you: Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores Schaum's Outlines-Problem Solved.
An Unabridged, Digitally Enlarged Printing To Include: Complex Numbers - Theorems On Roots Of Equations - Constructions With Ruler And Compasses - Cubic And Quartic Equations - The Graph Of An Equation - Isolation Of Real Roots - Solution Of Numerical Equations - Determinants; Systems Of Linear Equations - Symmetric Functions - Elimination, Resultants And Discriminants - Fundamental Theorem Of Algebra - Answers To Questions - Index |
You may like...
First Semester Calculus for Students of…
Michael Dougherty, John Gieringer
Paperback
Precalculus: Mathematics for Calculus…
Lothar Redlin, Saleem Watson, …
Paperback
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Calculus - A Complete Course
Robert Adams, Christopher Essex
Hardcover
R1,999
Discovery Miles 19 990
|