![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > General
th Superconductivity occ upies as pecial, unique place in the 20 century physics. Just think ofi t: its microscopic mechanism was understood only in 1957-46years after the discovery of superconductivity in 1911. In contrast, thetheory ofnormal metals behavior (or, to be more precise, the theory of metals in normal state) wasformed as early as the twenties, immediately f ollowing the creation of quantum mechanics. Moreover, when I took up the theory of superconductivity in 1943, not only microscopic theory was non existent, but even macroscopic superconductivity theory was quiteincomplete. The problem is that the Londons equations, introduced in 1935, allow only aquantitative description ofsuperconductors in magneticf ields weak in comparison with the critical field. Also, even in weakfields, theLondons theory is strictly applicableonly to Type II superconductors-although the division ofsuperconductors into Type I and Type II materials was notsuggested until much later, in early 1950's. Asf ar as nonequilibrium phenomena are conc erned, then until 1943 the most remarkable, yet proved to be fault afterwards, implication was that ofa complete absence ofa ll thermoelectric effects in superconducting state.
With an emphasis on aircraft materials, this book describes techniques for the material characterization to detect and quantify degradation processes such as corrosion and fatigue. It introduces readers to these techniques based on x-ray, ultrasonic, optical and thermal principles and demonstrates the potential of the techniques for a wide variety of applications concerning aircraft materials, especially aluminum and titanium alloys. The advantages and disadvantages of various techniques are evaluated.
The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unified approach to field theories for elastic solids, viscous fluids, and heat-conducting electromagnetic solids and fluids that include nonlocal effects in both space and time (memory effects). The solutions to the field equations agree remarkably well with atomic theories and experimental observations.
Research in the field of shock physics and ballistic impact has always been intimately tied to progress in development of facilities for accelerating projectiles to high velocity and instrumentation for recording impact phenomena. The chapters of this book, written by leading US and European experts, cover a broad range of topics and address researchers concerned with questions of material behaviour under impulsive loading and the equations of state of matter, as well as the design of suitable instrumentation such as gas guns and high-speed diagnostics. Applications include high-speed impact dynamics, the inner composition of planets, syntheses of new materials and materials processing. Among the more technologically oriented applications treated is the testing of the flight characteristics of aeroballistic models and the assessment of impacts in the aerospace industry.
This book is devoted to one of the most interesting and rapidly developing areas of modern nonlinear physics and mathematics - theoretical, analytical andnumerical, studyofthestructureanddynamicsofone-dimensionalaswell as two- and three-dimensional solitons and nonlinear wave packets described by the Korteweg-de Vries (KdV), Kadomtsev-Petviashvili (KP), nonlinear Schr] odinger (NLS) and derivative nonlinear Schr] odinger (DNLS) classes of equations. Special attention is paid to generalizations (relevant to various complex physical media) of these equations, accounting for higher-order d- persion corrections, in?uence of dissipation, instabilities, and stochastic ?- tuations of the wave ?elds. We present here a coordinated approach to the theory, simulations, and applications of the nonlinear one-, two-, and three-dimensional solitary wave solutions. Overall, the content of the book is a systematic account of results notonlyalreadyknownintheliterature, butalsothoseofneworiginalstudies related to the theory of models allowing soliton solutions, and analyses of the stability and asymptotics of these solutions. We give signi?cant consideration to numerical methods and results of numerical simulations of the structure and dynamics of solitons and nonlinear wave packets. Together with deep insights into the theory, applications to various branches of modern physics are considered, especially to plasma physics (such as space plasmas including ionospheric and magnetospheric processes), hydrodynamics, and atmosphere dynamics. Presently, thetheoryofone-dimensionalnonlinearequationsoftheclasses consideredbytheauthorsiswelldeveloped, andtheprogressinstudiesofthe structure and evolution of one-dimensional solitons and wave packets is ob- ous. This progress was especially fast after the discovery of hidden algebraic symmetries of the KdV, NLS, and other (integrable by the inverse scatt- ing transform (IST) method) classes of one-dimensional evolution equations
The reader is holding the second volume of a three-volume textbook on sol- state physics. This book is the outgrowth of the courses I have taught for many years at Eoetvoes University, Budapest, for undergraduate and graduate students under the titles Solid-State Physics and Modern Solid-State Physics. The main motivation for the publication of my lecture notes as a book was that none of the truly numerous textbooks covered all those areas that I felt should be included in a multi-semester course. Especially, if the course strives to present solid-state physics in a uni?ed structure, and aims at d- cussing not only classic chapters of the subject matter but also (in more or less detail) problems that are of great interest for today's researcher as well. Besides, the book presents a much larger material than what can be covered in a two- or three-semester course. In the ?rst part of the ?rst volume the analysis of crystal symmetries and structure goes into details that certainly cannot be included in a usual course on solid-state physics. The same applies, among others, to the discussion of the methods used in the determination of band structure, the properties of Fermi liquids and non-Fermi liquids, and the theory of unconventional superconductors in the present and third volumes. These parts can be assigned as supplementary reading for interested students, or can be discussed in advanced courses.
Addressing graduate students and researchers, this book gives a very detailed theoretical and computational description of multiple scattering in solid matter. Particular emphasis is placed on solids with reduced dimensions, on full potential approaches and on relativistic treatments. For the first time approaches such as the screened Korringa-Kohn-Rostoker method are reviewed, considering all formal steps such as single-site scattering, structure constants and screening transformations, and also the numerical point of view. Furthermore, a very general approach is presented for solving the Poisson equation, needed within density functional theory in order to achieve self-consistency. Special chapters are devoted to the Coherent Potential Approximation and to the Embedded Cluster Method, used, for example, for describing nanostructured matter in real space. In a final chapter, physical properties related to the (single-particle) Green's function, such as magnetic anisotropies, interlayer exchange coupling, electric and magneto-optical transport and spin-waves, serve to illustrate the usefulness of the methods described.
A. Radulescu, L.J. Fetters, D. Richter: Polymer Driven Wax Crystal Control Using Partially Crystalline Polymeric Materials.- F.R. Costa, M. Saphiannikova, U. Wagenknecht, G. Heinrich: Layered Double Hydroxide Based Polymer Nanocomposites.- S. Aoshima, S. Kanaoka: Synthesis of Stimuli-Responsive Polymers by Living Polymerization: Poly(N-Isopropylacrylamide) and Poly(Vinyl Ether)s.-
I ?rst heard of k.p in a course on semiconductor physics taught by my thesis adviser William Paul at Harvard in the fall of 1956. He presented the k.p Hamiltonian as a semiempirical theoretical tool which had become rather useful for the interpre- tion of the cyclotron resonance experiments, as reported by Dresselhaus, Kip and Kittel. This perturbation technique had already been succinctly discussed by Sho- ley in a now almost forgotten 1950 Physical Review publication. In 1958 Harvey Brooks, who had returned to Harvard as Dean of the Division of Engineering and Applied Physics in which I was enrolled, gave a lecture on the capabilities of the k.p technique to predict and 't non-parabolicities of band extrema in semiconductors. He had just visited the General Electric Labs in Schenectady and had discussed with Evan Kane the latter's recent work on the non-parabolicity of band extrema in semiconductors, in particular InSb. I was very impressed by Dean Brooks's talk as an application of quantum mechanics to current real world problems. During my thesis work I had performed a number of optical measurements which were asking for theoretical interpretation, among them the dependence of effective masses of semiconductors on temperature and carrier concentration. Although my theoretical ability was rather limited, with the help of Paul and Brooks I was able to realize the capabilities of the k.p method for interpreting my data in a simple way."
Quantum size effects are becoming increasingly important in microelectronics, as the dimensions of the structures shrink laterally towards 100 nm and vertically towards 10 nm. Advanced device concepts will exploit these effects for integrated circuits with novel or improved properties. Keeping in mind the trend towards systems on chip, this book deals with silicon-based quantum devices and focuses on room-temperature operation. The basic physical principles, materials, technological aspects, and fundamental device operation are discussed in an interdisciplinary manner. It is shown that silicon-germanium (SiGe) heterostructure devices will play a key role in realizing silicon-based quantum electronics.
Binary Rare Earth Oxides is the first book in the field of rare earth oxides that provides coverage from the basic science through to recent advances. This book introduces the unique characteristics of the binary rare earth oxides with their chemistry, physics and applications. It provides a comprehensive review of all the characteristics of rare earth oxides, essential for scientists and engineers involved with rare earths, oxides, inorganic materials, ceramics, and structures. The binary rare earth oxides bring us a variety of interesting characteristics. Understanding their fundamental mechanisms builds a bridge between solid-state chemistry and materials science. The book begins with a brief introduction to binary rare earth
oxides, their physical and chemical stabilities, polymorphism,
crystal structures and phase transformation and the association
with current applications. The book goes on to present the band
structure of the oxides using several quantum chemical
calculations, which belong to a newly developed area in the binary
rare earth oxides. Central to this chapter are the
characterizations of electrical, magnetic and optical properties,
as well as details of single crystal growth and particle
preparation methods that have progressed in recent years. Later
chapters concentrate on thermo-chemical properties and trace
determination techniques. The final chapter contains a variety of
useful applications in various fields such as phosphors, glass
abrasives, automotive catalysts, fuel cells, solid electrolytes,
sunscreens, iron steels, and biological materials.
The present monograph represents itself as a tutorial to the ?eld of optical properties of thin solid ?lms. It is neither a handbook for the thin ?lm prac- tioner, noranintroductiontointerferencecoatingsdesign, norareviewonthe latest developments in the ?eld. Instead, it is a textbook which shall bridge the gap between ground level knowledge on optics, electrodynamics, qu- tummechanics, andsolidstatephysicsononehand, andthemorespecialized level of knowledge presumed in typical thin ?lm optical research papers on the other hand. In writing this preface, I feel it makes sense to comment on three points, which all seem to me equally important. They arise from the following (- tually interconnected) three questions: 1. Who can bene't from reading this book? 2. What is the origin of the particular material selection in this book? 3. Who encouraged and supported me in writing this book? Let me start with the ?rst question, the intended readership of this book. It should be of use for anybody, who is involved into the analysis of - tical spectra of a thin ?lm sample, no matter whether the sample has been prepared for optical or other applications. Thin ?lm spectroscopy may be r- evant in semiconductor physics, solar cell development, physical chemistry, optoelectronics, and optical coatings development, to give just a few ex- ples. The book supplies the reader with the necessary theoretical apparatus for understanding and modelling the features of the recorded transmission and re?ection spec
An overview of the basic concepts, methods and applications of nonlinear low-dimensional solid state physics based on the Frenkel--Kontorova model and its generalizations. The book covers many important topics such as the nonlinear dynamics of discrete systems, the dynamics of solitons and their interaction, commensurate and incommensurate systems, statistical mechanics of nonlinear systems, and nonequilibrium dynamics of interacting many-body systems.
The purpose of this book is to review the current state of this quickly developing field. Up until now, there has been no concise review available of the rather diverse aspects of this field. This book gives a basic introduction to the concepts behind Bloch oscillations. It describes how the physics of high field transport has been investigated through a broad range of experimental techniques such as interband and intraband optical spectroscopy and transport experiments. Possible applications and further trends are also discussed.
Heterostructures consist of combinations of different materials, which are in contact through at least one interface. Magnetic heterostructures combine different physical properties which do not exist in nature. This book provides the first comprehensive overview of an exciting and fast developing field of research, which has already resulted in numerous applications and is the basis for future spintronic devices.
The aim of this book is to review recent achievements in the
theoretical investigations of the electronic structure, optical,
magneto-optical (MO), and x-ray magnetic circular dichroism (XMCD)
properties of compounds and Multilayered structures.
The present issue of Structure and Bonding is dedicated to applied group 13 chemistry, particularly for the elements boron and aluminum, and to a lesser degree gallium and indium. Although boron is a trace element (0.01 g kg 1) in the earth's crust, it has been concentrated in a few locations by geochemical processes and is relatively easy to mine as borax. Aluminum, on the other hand, is the most abundant metal in the earth's crust (82 g kg 1) and dispersed widely throughout the globe. Thus, boron and aluminum are readily available and their associated products or compounds are usually inexpensive and thereby easy to commercialize. The chapters were chosen to encompass both applied and fundamental aspects of their subiects. The first chapter 'Borates in Industrial Use' provides a complete, and perhaps, quintessential, coverage of compounds containing boron oxygen bonds. In the chapter Schubert explains the close relationship between the basic properties of the boron compounds and their associated uses. The remaining four chapters focus, to some degree, on aluminum. Since a great deal of literature exists in this area, these chapters are more focused on areas of emerging utility, and contain a great deal of fundamental information. Uhl's contribution in Chapter 2 provides basic synthesis and structural information for aluminum and gallium hydrazides. These types of compounds are being explored as potential molecular precursors to metal nitrides such as the important blue green laser material gallium nitride.
This book addresses the most important aspects of solid state physics, reviewing basic properties, related experimental techniques, and summarizing research over six decades. In addition, Micro- and Macro-Properties of Solids provides data on new materials such as rare-earth metals, semiconductors, ferroelectrics, mixed-valence compounds, superionic conductors, optical and optoelectronic materials and biomaterials.
Hard spheres and related objects (hard disks and mixtures of hard systems) are paradigmatic systems: indeed, they have served as a basis for the theoretical and numerical development of a number of fields, such as general liquids and fluids, amorphous solids, liquid crystals, colloids and granular matter, to name but a few. The present volume introduces and reviews some important basics and progress in the study of such systems. Their structure, thermodynamic properties, equations of state, as well as kinetic and transport properties are considered from different and complementary points of view. This book addresses graduate students, lecturers as well as researchers in statistical mechanics, physics of liquids, physical chemistry and chemical engineering.
The study of sliding friction is one of the oldest problems in physics, and certainly one of the most important from a practical point of view. Low-friction surfaces are in increasingly high demand for high-tech components such as computer storage systems, miniature motors, and aerospace devices. It has been estimated that about 5% of the gross national product in the developed countries is "wasted" on friction and the related wear. In spite of this, remarkable little is understood about the fundamental, microscopic processes responsible for friction and wear. The topic of interfacial sliding has experienced a major burst of in terest and activity since 1987, much of which has developed quite independently and spontaneously. This volume contains contributions from leading scientists on fundamental aspects of sliding friction. Some problems considered are: What is the origin of stick-and-slip motion? What is the origin of the rapid processes taking place within a lub at low sliding velocities? On a metallic surface, is the rication layer electronic or phononic friction the dominating energy dissipation pro cess? What is the role (if any) of self-organized criticality in sliding friction? How thick is the water layer during sliding on ice and snow? These and other questions raised in this book are of course only part ly answered: the topic of sliding friction is still in an early state of development."
From the reviews: ..".useful for experts in mathematical physics...this is a very interesting book, which deserves to be found in any physical library." (OPTICS & PHOTONICS NEWS, July/August 2005).
The main part of the book describes the behaviour of a charged particle in an electromagnetic field, and the electrodynamics of plasmas, liquid crystals and superconductors. These very different subjects have an important common feature, namely the fundamental role played by the magnetic field. Plasmas, liquid crystals and superconductors can be considered as magnetoactive media, because their electromagnetic characteristics are strongly affected by an external magnetic field.
Zeolites occur in nature and have been known for almost 250 years as alumino silicate minerals. Examples are clinoptilolite, mordenite, offretite, ferrierite, erionite and chabazite. Today, most of these and many other zeolites are of great interest in heterogeneous catalysis, yet their naturally occurring forms are of limited value as catalysts because nature has not optimized their properties for catalytic applications and the naturally occurring zeolites almost always contain undesired impurity phases. It was only with the advent of synthetic zeolites in the period from about 1948 to 1959 (thanks to the pioneering work of R. M. Barrer and R. M. Milton) that this class of porous materials began to playa role in catalysis. A landmark event was the introduction of synthetic faujasites (zeolite X at first, zeolite Y slightly later) as catalysts in fluid catalytic cracking (FCC) of heavy petroleum distillates in 1962, one of the most important chemical processes with a worldwide capacity of the order of 500 million t/a. Compared to the previously used amorphous silica-alumina catalysts, the zeolites were not only orders of magnitude more active, which enabled drastic process engineering improvements to be made, but they also brought about a significant increase in the yield of the target product, viz. motor gasoline. With the huge FCC capacity worldwide, the added value of this yield enhancement is of the order of 10 billion US $ per year."
This Volume is based on the Lectures presented at the Meeting "Chemistry at the Beginning of the Third Millennium," wh ich was held in Pavia, Italy, during the period 7-10 October, 1999. The Meeting involved the participation of scientists from German and ltalian Universities of the 'Coimbra Group'. The 'Coimbra Group', wh ich was founded in 1987, gathers the most ancient and prestigious European Universities, with the aim to promote initiatives in both research and teaching and to provide guidelines for the progress and development of the University system. German and Italian Universities within the Coimbra Group propose every year a theme for scientific discussion, which originates a Meeting to be held in a German or Italian University. The Meeting in Pavia was the fifth of the series and followed those of Bologna (1995), Jena (1996), Siena (1997), Heidelberg (1998). Each Meeting is centred on a topic from either humanistic or natural sciences and consists in aseries of lectures presented by distinguished scientists from the six participanting Universities. For the Pavia Meeting, the Steering Committee chose Chemistry as the topic and gathered researchers with experience in almost all fields of chemistry. In particular, during the Meeting, lectures were presented on many up-to-date subjects of chemistry, including: materials science, superconductors, supramolecular chemistry, bioinorganic chemistry, fullerenes, liquid crystals, photoinduced electron transfer, etc. The different topics were covered by distinguished and renown researchers of the various fields. |
![]() ![]() You may like...
Reliability Modelling and Optimization…
Rui Peng, Qingqing Zhai, …
Hardcover
R3,020
Discovery Miles 30 200
Hardware Accelerators in Data Centers
Christoforos Kachris, Babak Falsafi, …
Hardcover
R4,328
Discovery Miles 43 280
More than Moore Technologies for Next…
Rasit O. Topaloglu
Hardcover
Languages, Design Methods, and Tools for…
Rolf Drechsler, Robert Wille
Hardcover
Mathematical Elasticity, Volume III…
Philippe G. Ciarlet
Paperback
|