![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > General
The need to predict, understand, and optimize complex physical and c- mical processes occurring in and around the earth, such as groundwater c- tamination, oil reservoir production, discovering new oil reserves, and ocean hydrodynamics, has been increasingly recognized. Despite their seemingly disparate natures, these geoscience problems have many common mathe- tical and computational characteristics. The techniques used to describe and study them are applicable across a broad range of areas. The study of the above problems through physical experiments, mat- matical theory, and computational techniques requires interdisciplinary col- boration between engineers, mathematicians, computational scientists, and other researchers working in industry, government laboratories, and univ- sities. By bringing together such researchers, meaningful progress can be made in predicting, understanding, and optimizing physical and chemical processes. The International Workshop on Fluid Flow and Transport in Porous - dia was successfully held in Beijing, China, August 2{6, 1999. The aim of this workshop was to bring together applied mathematicians, computational scientists, and engineers working actively in the mathematical and nume- cal treatment of ?uid ?ow and transport in porous media. A broad range of researchers presented papers and discussed both problems and current, state-of-the-art techniques.
A revolution is occurring in science and technology, based on the recently developed ability to measure, manipulate and organize matter on the nanoscale - 1 to 100 billionths of a meter. At the nanoscale, physics, chemistry, biology, materials science, and engineering converge toward the same principles and tools. As a result, progress in nanoscience will have very far-reaching impact. The nanoscale is not just another step toward miniaturization, but a qualitatively new scale. The new behavior is dominated by quantum mechanics, material confinement in small structures, large interfacial volume fraction, and other unique properties, phenomena and processes. Many current theories of matter at the microscale have critical lengths of nanometer dimensions. These theories will be inadequate to describe the new phenomena at the nanoscale. As knowledge in nanoscience increases worldwide, there will likely be fundamental scientific advances. In tum, this will lead to dramatic changes in the ways materials, devices, and systems are understood and created. Innovative nanoscale properties and functions will be achieved through the control of matter at its building blocks: atom-by-atom, molecule-by molecule, and nanostructure-by-nanostructure. Nanotechnology will include the integration of these nanoscale structures into larger material components, systems, and architectures. However, within these larger scale systems the control and construction will remain at the nanoscale."
Preface by Sir Harold W. Kroto, FRS Although the discovery of C60 is now almost 15 years old and the extraction occurred 60 nearly ten years ago it is amazing that the range of spin-off research still seems to expand without limits. The birth of the Fullerenes has spawned fascinating research programmes in almost every area of chemistry and physics and this monograph explores a particularly interesting and important area - the behaviour of these pure carbon cages in the presence of high-energy radiation. The C molecules must also be in the space 60 between the stars (albeit in quantities too small to detect at this time) as the conditions in the atmospheres of some carbon stars appear to be almost identical to the plasmas generated in the Kratschmer-Huffman system for making C60. The conditions in space 60 are very varied as it is pervaded by a plethora of high-energy particles (photons, cosmic rays, etc.) and the chapters in this book discuss, among other things, the response of C60 and various derivatives to probing by a range of high-energy particles. Various fullerenes and fullerene salts have been examined by positron annihilation techniques, revealing details of their electronic and structural properties as well as phase transition behaviour. Muons have been implanted to enable mSR techniques to probe with high sensitivity the endohedral electronic structures of fullerenes including those in superconducting systems. Mossbauer spectroscopy can give valuable information about the interactions in certain types of organometallic complexes and in particular it can reveal the degree of charge transfer in endohedral species. Nuclear irradiation/radiochemical analytical techniques have been applied resulting in information ranging widely from the stability of the fullerene cage containing endohedral metal atoms in various oxidation states to pharmaceutical studies of the distribution of fullerenes in the internal organs of animals. Time resolved pulsed radio lysis provides information at high sensitivity enabling micromolar concentrations to be probed e.g. C60 in water in which it is almost insoluble! Redox and rate constant measurements have given useful information on photolytically generated radical ion pairs involving a variety of fullerenes. Interesting accounts of observations involving the production of rare gas endohedral species by nuclear recoil have revealed information about the recoil mechanism. From the first moment of its discovery the unique cage structure of C60 initiated thoughts about the interesting possibility of encapsulation of atoms and molecules. One possibility that immediately suggested itself was the isolation of chemically toxic radionuclides by encapsulation in the (supposedly chemically innocuous) cage for pharmaceutical purposes. The possibility of creating cages carrying a radioactive atom inside the cage and moieties outside with molecular recognition capabilities is a most exciting prospect and discussion is included of some important first steps aimed at achieving this fascinating breakthrough. Another problem dealt with in this monograph is the effect of elemental impurities which has, as our studies progress, become more and more a matter of concern and interest. Impurities can have important effects on the observed physical and chemical behaviour of fullerenes, especially when very sensitive probe techniques are applied. This valuable book reviews some detailed studies of fundamental properties of fullerenes, which are leading to a deeper understanding of their behaviour in the presence of high energy radiation. The information obtained already and that which will be garnered in future studies of the kind described here is an absolutely necessary prerequisite for success in applications.
Granular materials are an integral part of our everyday life. They are also the base material for most industrial processing techniques. The highly dissipative nature of the particle collisions means energy input is needed in order to mobilize the grains. This interplay of dissipation and excitation leads to a wide variety of pattern formation processes, which are addressed in this book. The reader is introduced to this wide field by, first, a description of the material properties of granular materials under different experimental conditions that are important in connection with the pattern formation dynamics and, second, by further details given later on in the description of the specific system.
Experiments with rubber balloons and rubber sheets have led to surprising observations, some of them hitherto unknown or not previously described in the literature. In balloons, these phenomena are due to the non-monotonic pressure-radius characteristic which makes balloons a subject of interest to physicists engaged in stability studies. Here is a situation in which symmetry breaking and hysteresis may be studied analytically, because the stress-stretch relations of rubber - and its non-convex free energy - can be determined explicitly from the kinetic theory of rubber and from non-linear elasticity. Since rubber elasticity and the elasticity of gases are both entropy-induced, a rubber balloon represents a compromise between the entropic tendency of a gas to expand and the entropic tendency of rubber to contract. Thus rubber and rubber balloons furnish instructive paradigms of thermodynamics. This monograph treats the subject at a level appropriate for post-graduate studies.
In Statistical Physics one of the ambitious goals is to derive rigorously, from statistical mechanics, the thermodynamic properties of models with realistic forces. Elliott Lieb is a mathematical physicist who meets the challenge of statistical mechanics head on, taking nothing for granted and not being content until the purported consequences have been shown, by rigorous analysis, to follow from the premises. The present volume contains a selection of his contributions to the field, in particular papers dealing with general properties of Coulomb systems, phase transitions in systems with a continuous symmetry, lattice crystals, and entropy inequalities. It also includes work on classical thermodynamics, a discipline that, despite many claims to the contrary, is logically independent of statistical mechanics and deserves a rigorous and unambiguous foundation of its own. The articles in this volume have been carefully annotated by the editors.
A knowledge of the mechanical behaviour of both naturally occurring materials, such as soils and rocks, and artificial materials such as concrete and industrial granular matter, is of fundamental importance to their proper use in engineering and scientific applications. This volume contains selected lectures by international experts on current developments and problems in the numerical modelling of cohesive-frictional materials which provide a deeper understanding of the microscopic and macroscopic description of such materials. This book fills a gap by emphasizing the cross-fertilization of ideas between engineers and scientists engaged in this exciting field of research.
The almost universal presence of water in our everyday lives and the very common' nature of its presence and properties possibly deflects attention from the fact that it has a number of very unusual characteristics which, furthermore, are found to be extremely sensitive to physical parameters, chemical environment and other influences. Hydrogen-bonding effects, too, are not restricted to water, so it is necessary to investigate other systems as well, in order to understand the characteristics in a wider context. Hydrogen Bond Networks reflects the diversity and relevance of water in subjects ranging from the fundamentals of condensed matter physics, through aspects of chemical reactivity to structure and function in biological systems.
Springer-Verlag 2003 This issue is dedicated to Doctor Shuji Saito on the occasion of the 50th anniversary of his ?rst paper published in the Journal of German Colloid Society. The paper entitled ''Die Solubilisation von Polyvinylazetat'' by N. Sata and S. Saito appeared in the Kolloid Zeitschrift (1952) 128: 154. According to the title, the paper dealt with the solubilization of poly(vinyl acetate) (PVAc) in aqueous sodium dodecyl sulfate (SDS) solutions. The authors observed that PVAc, a water-insoluble polymer, is c- pletely dissolved by micellar SDS solutions, a result that mostly intrigued them. One has to recall that at that time, the micellar solubilization was the only available theory to explain the dissolution of hydrophobic compounds in micellar systems. The theory worked well in the case of low molecular weight compounds like hydrocarbons, oleophilic dyes, etc., which are solubilized in the inner core of the micelle, but how can a small micelle accommodate a giant polymer molecule? To solve this problem Sata and Saito originally proposed a model consisting of surfactant aggregates formed along the polymer backbone. The model based on simple viscometric measurements was later in the eighties con?rmed by the advent of the more sophisticated neutron scattering technique and is nowadays called the ''necklace model''. During his career, Dr.
It has been more than 80 years since Valasek first recognized the existence of a dielectric analogue to ferromagnetism, ferroelectricity, in Rochelle salt. Much as with semiconductor research, the initial studies of ferroelectric materials focused on homogeneous materials. Unlike semiconductor research, however, which rapidly expanded into n- homogeneous structures and devices, investigations of compositionally graded and layered ferroelectrics have been relatively recent endeavors. Indeed, many of the most significant results and analysis pertaining to polarization-graded ferroelectrics have only appeared in publication within the last ten years. Further extensions of these concepts to the general class of order-parameter graded ferroic materials, as depicted on the cover of this book, have (with one exception) been totally lacking. It was thus with a great deal of excitement that we assembled the manuscript for this book. The primary focus of this study is directed toward polarization-graded ferroelectrics and their active components, transpacitors; however, the findings presented here are quite general. The theory of graded 2 and 5; whereas, much of the ferroics is put on a solid foundation in chapters introductory material relies more heavily upon analogy. This was done so as to provide the reader with an intuitive approach to graded ferroics, thereby enabling them to see heterogeneous ferroics as clearly logical extensions of passive semiconductor junction devices such as p-n and n-p diodes and their active manifestations, transistors, to: transpacitors, transductors, translastics, and ultimately to the general active ferroic elements, transponents.
Segregation is a pervasive phenomenon whereby a flowing granular mass consisting of particles with diverse physical properties becomes spatially inhomogeneous. In the industrial sector that deals with the handling and processing of bulk solids, this non-uniformity is highly undesirable since blend homogeneity is generally a stringent requirement of most products. In the arena of geophysical flows, segregation can enhance the destructive capabilities of natural events such as avalanches and landslides. During the last 15 years, these issues have provided motivation and fostered collaborations between the communities of mathematicians, engineers, industrial researchers, and physicists to develop predictive models of segregation by integrating the perspectives and approaches of each. The collection of unique papers brings to light many of the perplexing scientific and technical issues in our current understanding of this complex phenomenon. It addresses advances in experiment, computational modeling and theory. This volume is one of the very few books devoted entirely to problems of segregation of particulate solids.
The rapidly-developing field of confined polymers is reviewed in this volume. Special emphasis is given to polymer aspects of this interdisciplinary problem. Taken together, the contributions offer ample evidence of how the field of polymer science continues to evolve with the passage of time. The topics revolve around the tendency of surfaces to impede chain relaxation and to stimulate new sorts of chain organization. These have been implicated in a variety of spectacular phenomena. Here is a listing of authors and affiliations: K. Binder (Johannes Gutenberg-Universit t Mainz, Germany); P.-G. de Gennes (College de France, France); E.P. Giannelis, R. Krishnamoorti, and E. Manias (Cornell University and University of Houston, USA); G.S. Grest (Exxon Research and Engineering Co., USA); L. Leger, E. Raphael, and H. Hervet (College de France, France); S.-Q. Wang (Case Western Reserve University, USA).
A totally new concept for clean surface processing of Si wafers is introduced in this book. Some fifty distinguished researchers and engineers from the leading Japanese semiconductor companies, such as NEC, Hitachi, Toshiba, Sony and Panasonic as well as from several universities reveal to us for the first time the secrets of these highly productive institutions. They describe the techniques and equipment necessary for the preparation of clean high-quality semiconductor surfaces as a first step in high-yield/high-quality device production. This book thus opens the door to the manufacturing of reliable nanoscale devices and will be extremely useful for every engineer, physicist and technician involved in the production of silicon semiconductor devices.
here, Herbert Baur provides a simple description of the theory of thermophysics of polymers. In order to illustrate the theoretical skeleton, he only treats the simple, easily comprehensible problems of polymer physics, yet, in detail. The main points covered are: thermally excited conformation isomery of polymers; phonon gas of ideal polymer crystals; the dissipative thermo-mechanical behaviour of polymers, new aspects of viscoelastic behavior, glass transistion, and crystallization.
This volume is devoted to the topic of "Monolayer and Sub monolayer Helium Films," which was the subject of a symposium held at Stevens Institute of Technology, June 7th and 8th, 1973. All the papers in this volume were presented at this symposium. The symposium was sponsored by Stevens Institute of Technology with support from the National Science Foundation and the Office of Naval Research, and had as Organizing Committee: Professor D. F. Brewer (University of Sussex), Professor J. G. Dash (University of Washington), Professor J. G. 'Daunt (Stevens Institute of Technology), Doctor V. J. Emery (Brookhaven National Laboratory), Professor E. Lerner (Stevens Institute of Technology), Doctor F. J. Milford (Battelle Memorial Institute), Doctor A. D. Novaco (Brookhaven National Laboratory), Professor F. Pollock (Stevens Institute of Technology), and Professor W. A. Steele (Pennsylvania State University). The symposium was largely devoted to papers on the topic of thin (unsaturated) helium films at low temperatures, many of which were of a review character. In addition some papers of a more general character were included in order to review some powerful techniques used for investigating surfaces at higher temperatures. The Editors wish to thank all the authors of these papers for their enthusiastic cooperation in the preparation of this volume."
Structural organization or disorganization in macromolecular systems has been an important subject of polymer physical chemistry during the last one or two decades. This volume summarizes the main lectures presented at the Osaka University Macromolecular Symposium OUMS '98 on Molecular Interactions and Time-Space Organization in Macromolecular Systems, where the following topics were discussed:crystallization kinetics, liquid crystals, phase separation, gelation, adhesion, complex formation, and self-organization, with emphasis on molecular interactions. Both these topics are hot issues at present and frequently are taken up as a main theme at a particular symposium. The present symposium invited leading theorists and experimentalists in these fields as guest speakers and is expected to attract the interest of a significant range of readers.
In recent years, with the advent of ?ne line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum con?nement in one, two and three dimensions (such as inversion layers, ultrathin ?lms, nipi's, quantum well superlattices, quantum wires, quantum wire superlattices, and quantum dots together with quantum con?ned structures aided by various other ?elds) have attracted much attention, not only for their potential in uncovering new phenomena in nanoscience, but also for their interesting applications in the realm of quantum e?ect devices. In ultrathin ?lms, due to the reduction of symmetry in the wave-vector space, the motion of the carriers in the direction normal to the ?lm becomes quantized leading to the quantum size e?ect. Such systems ?nd extensive applications in quantum well lasers, ?eld e?ect transistors, high speed digital networks and also in other low dimensional systems. In quantum wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed. The transport properties of charge carriers in quantum wires, which may be studied by utilizing the similarities with optical and microwave waveguides, are currently being investigated. Knowledge regarding these quantized structures may be gained from original research contributions in scienti?c journals, proceedings of international conferences and various - view articles.
This introductory level text addresses the broad range of nonequilibrium phenomena observed at short time scales. It focuses on the important questions of correlations and memory effects in dense interacting systems. Experiments on very short time scales are characterized, in particular, by strong correlations far from equilibrium, by nonlinear dynamics, and by the related phenomena of turbulence and chaos. The impressive successes of experiments using pulsed lasers to study the properties of matter and of the new methods of analysis of the early phases of heavy ion reactions have necessitated a review of the available many-body theoretical methods. The aim of this book is thus to provide an introduction to the experimental and theoretical methods that help us to understand the behaviour of such systems when disturbed on very short time scales.
"Nanotechnology" isa broad term that includes aspects of materials science, mesoscopicphysics, organicandinorganicchemistry, na- electronics, atmosphericchemistry, airpollution, and other?elds. The technology is very muchincurrent focus-at the beginning of the Third Millennium-and raises hopes for environmentally benign, resource-lean manufacturing of products of manykinds. One precursor to present-day nanotechnology used porous coatings, comprised of "ultra?ne" particles withdimensions inthe nanometer range, for absorption of thermal radiation on thermocouples, bolometers, and the like. These particles were prepared by gas-phase syntheses, speci?cally using species formed by nucleation andgrowth from a metalvapor - dergoing coolingby collisions withinert gas molecules. Such "inert gas evaporation" was explored inthe 1920s and 1930s see, for example, A.H. Pfund, Phys. Rev. 35 (1930) 1434]andwas investigated in moredetail in the 1960s and 1970s see, for example, K. Kimoto et al., Jpn. J. Appl. Phys. 2 (1963) 702; C.G. Granqvist and R.A. Buhrman, J. Appl. Phys.47 (1976) 2200]. Improved analytical capabilities(electron microscopy)as well as new applications (selective absorption of solar energy) were twoofthe r- sons for the renewed interest. Today, gas-phase synthesis of nanoparticles constitutesthe foundation for a pro?table butstill small industry. Aerosols, i.e., dispersions or suspensions of particles ina gas, form the background ?eld for contemporaryefforts in gas-phase nanotechnology. Interest inaerosol researchhistorically arose from the issues of atmospheric chemistry and physics, human health protection, and airpollution. Today, aerosol researchengagesa vast array of efforts inthese and related ?elds, andelsewherein work identi?ed as nanotechnology.
Critical phenomena arise in a wide variety of physical systems. Classi cal examples are the liquid-vapour critical point or the paramagnetic ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur bulence and may even extend to the quark-gluon plasma and the early uni verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal ing, provided only that angles remain unchanged."
This is an approachable introduction to the important topics and recent developments in the field of condensed matter physics. First, the general language of quantum field theory is developed in a way appropriate for dealing with systems having a large number of degrees of freedom. This paves the way for a description of the basic processes in such systems. Applications include various aspects of superfluidity and superconductivity, as well as a detailed description of the fractional quantum Hall liquid.
Biomaterials repair, reinforce or replace damaged functional parts of the (human) body. All mechanical and biological interactions between an implant and the body occur across the interface, which has to correspond as nearly as possible to its particular function. Much of the progress in adapting polymer materials for use in a biological environment has been obtained through irradiation techniques. For this reason the most recent developments in four key areas are reviewed in this special volume: (1) the analysis of the topology and the elemental composition of a functional surface, (2) the chemical modification of the surface which results in highly pure, sterile and versatile surfaces, (3) the sterilisation of implantable devices via ionising radiation and its possible effects on the structural mechanical properties of polymers, and (4) the radiation effects on living cells and tissues which are of particular importance for radiation protection and radiotherapy.
The application to Biology of the methodologies developed in Physics is attracting an increasing interest from the scientific community. It has led to the emergence of a new interdisciplinary field, called Physical Biology, with the aim of reaching a better understanding of the biological mechanisms at molecular and cellular levels. Statistical Mechanics in particular plays an important role in the development of this new field. For this reason, the XXth session of the famous Sitges Conference on Statistical Physics was dedicated to "Physical Biology: from Molecular Interactions to Cellular Behavior." As is by now tradition, a number of lectures were subsequently selected, expanded and updated for publication as lecture notes, so as to provide both a state-of-the-art introduction and overview to a number of subjects of broader interest and to favor the interchange and cross-fertilization of ideas between biologists and physicists. The present volume focuses on three main subtopics (biological water, protein solutions as well as transport and replication), presenting for each of them the on-going debates on recent results. The role of water in biological processes, the mechanisms of protein folding, the phases and cooperative effects in biological solutions, the thermodynamic description of replication, transport and neural activity, all are subjects that are revised in this volume, based on new experiments and new theoretical interpretations.
Timely information on scientific and engineering developments occurring in laboratories around the world provides critical input to maintaining the economic and technological strength of the United States. Moreover, sharing this information quickly with other countries can greatly enhance the productivity of scientists and engineers. These are some of the reasons why the National Science Foundation (NSF) has been involved in funding science and technology assessments comparing the United States and foreign countries since the early 1980s. A substantial number of these studies have been conducted by the World Technology Evaluation Center (WTEC) managed by Loyola College through a cooperative agreement with NSF. The National Science and Technology Council (NSTC), Committee on Technology's Interagency Working Group on NanoScience, Engineering and Technology (CT/IWGN) worked with WTEC to develop the scope of this Nanostucture Science and Technology report in an effort to develop a baseline of understanding for how to strategically make Federal nanoscale R&D investments in the coming years. The purpose of the NSTC/WTEC activity is to assess R&D efforts in other countries in specific areas of technology, to compare these efforts and their results to U. S. research in the same areas, and to identify opportunities for international collaboration in precompetitive research. Many U. S. organizations support substantial data gathering and analysis efforts focusing on nations such as Japan. But often the results of these studies are not widely available. At the same time, government and privately sponsored studies that are in the public domain tend to be "input" studies.
This book, featuring the most comprehensive treatment of Josephson junctions ever published, describes superconductor/two-dimensional-electron-gas (2DEG) structures, providing a better understanding of their transport properties. It also discusses the control of junctions using gate electrodes or injection currents, and the physical effects observed in these junctions. |
You may like...
The Science and Function of…
Amanda S. Harper-Leatherman, Camille M. Solbrig
Hardcover
R5,464
Discovery Miles 54 640
Handbook on the Physics and Chemistry of…
J-.C.G. Bunzli, Vitalij K Pecharsky
Hardcover
Fiber Materials - Design, Fabrication…
Jeenat Aslam, Chandrabhan Verma
Hardcover
R4,985
Discovery Miles 49 850
Carbon Allotropes - Nanostructured…
Jeenat Aslam, Chandrabhan Verma, …
Hardcover
R4,368
Discovery Miles 43 680
Linear and Nonlinear Optical Responses…
Miguel Ãngel Sánchez MartÃnez
Hardcover
R4,224
Discovery Miles 42 240
Complex Fluid-Flows in Microfluidics
Francisco Jose Galindo-Rosales
Hardcover
R2,653
Discovery Miles 26 530
|