![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > General
Quantum size effects are becoming increasingly important in microelectronics, as the dimensions of the structures shrink laterally towards 100 nm and vertically towards 10 nm. Advanced device concepts will exploit these effects for integrated circuits with novel or improved properties. Keeping in mind the trend towards systems on chip, this book deals with silicon-based quantum devices and focuses on room-temperature operation. The basic physical principles, materials, technological aspects, and fundamental device operation are discussed in an interdisciplinary manner. It is shown that silicon-germanium (SiGe) heterostructure devices will play a key role in realizing silicon-based quantum electronics.
The main part of the book describes the behaviour of a charged particle in an electromagnetic field, and the electrodynamics of plasmas, liquid crystals and superconductors. These very different subjects have an important common feature, namely the fundamental role played by the magnetic field. Plasmas, liquid crystals and superconductors can be considered as magnetoactive media, because their electromagnetic characteristics are strongly affected by an external magnetic field.
Most of the specialists working in this interdisciplinary field of physics, biology, biophysics and medicine are associated with "The International Institute of Biophysics" (IIB), in Neuss, Germany, where basic research and possibilities for applications are coordinated. The growth in this field is indicated by the increase in financial support, interest from the scientific community and frequency of publications. Audience: The scientists of IIB have presented the most essential background and applications of biophotonics in these lecture notes in biophysics, based on the summer school lectures by this group. This book is devoted to questions of elementary biophysics, as well as current developments and applications. It will be of interest to graduate and postgraduate students, life scientists, and the responsible officials of industries and governments looking for non-invasive methods of investigating biological tissues.
Hard spheres and related objects (hard disks and mixtures of hard systems) are paradigmatic systems: indeed, they have served as a basis for the theoretical and numerical development of a number of fields, such as general liquids and fluids, amorphous solids, liquid crystals, colloids and granular matter, to name but a few. The present volume introduces and reviews some important basics and progress in the study of such systems. Their structure, thermodynamic properties, equations of state, as well as kinetic and transport properties are considered from different and complementary points of view. This book addresses graduate students, lecturers as well as researchers in statistical mechanics, physics of liquids, physical chemistry and chemical engineering.
The study of sliding friction is one of the oldest problems in physics, and certainly one of the most important from a practical point of view. Low-friction surfaces are in increasingly high demand for high-tech components such as computer storage systems, miniature motors, and aerospace devices. It has been estimated that about 5% of the gross national product in the developed countries is "wasted" on friction and the related wear. In spite of this, remarkable little is understood about the fundamental, microscopic processes responsible for friction and wear. The topic of interfacial sliding has experienced a major burst of in terest and activity since 1987, much of which has developed quite independently and spontaneously. This volume contains contributions from leading scientists on fundamental aspects of sliding friction. Some problems considered are: What is the origin of stick-and-slip motion? What is the origin of the rapid processes taking place within a lub at low sliding velocities? On a metallic surface, is the rication layer electronic or phononic friction the dominating energy dissipation pro cess? What is the role (if any) of self-organized criticality in sliding friction? How thick is the water layer during sliding on ice and snow? These and other questions raised in this book are of course only part ly answered: the topic of sliding friction is still in an early state of development."
Most descriptions of polymers start at room temperature and end at the melting point. This textbook starts at very low temperatures and ends at room temperature. At low temperatures, may processes and relaxations are frozen which allows singular processes or separate relaxations to be studied. At room temperatures, or at the main glass transitions, many processes overlap and the properties are determined by relaxations. At low temperatures, there are temperature ranges with negligible influences by glass transitions. They can be used for investigating so-called basic properties which arise from principles of solid state physics. The chain structure of polymers, however, requires stringent modifications for establishing solid state physics of polymers. Several processes which are specific of polymers, occur only at low temperatures. There are also technological aspects for considering polymers at low temperatures. More and more applications of polymeric materials in low temperature technology appear. Some examples are thermal and electrical insulations, support elements for cryogenic devices, low-loss materials for high frequency equipments. It is hoped that, in addition to the scientific part, a data collection in the appendix may help to apply polymers more intensively in low temperature technology. The author greatly appreciates the contributions by his coworkers of the Kernforschungszentrum Karlsruhe in measurement and discussion of many data presented in the textbook and its appendix. Fruitful disccussions with the colleagues Prof. H. Baur, Prof. S. Hunklinger, Prof. D. Munz and Prof. R."
This book is devoted to one of the most interesting and rapidly developing areas of modern nonlinear physics and mathematics - theoretical, analytical andnumerical, studyofthestructureanddynamicsofone-dimensionalaswell as two- and three-dimensional solitons and nonlinear wave packets described by the Korteweg-de Vries (KdV), Kadomtsev-Petviashvili (KP), nonlinear Schr] odinger (NLS) and derivative nonlinear Schr] odinger (DNLS) classes of equations. Special attention is paid to generalizations (relevant to various complex physical media) of these equations, accounting for higher-order d- persion corrections, in?uence of dissipation, instabilities, and stochastic ?- tuations of the wave ?elds. We present here a coordinated approach to the theory, simulations, and applications of the nonlinear one-, two-, and three-dimensional solitary wave solutions. Overall, the content of the book is a systematic account of results notonlyalreadyknownintheliterature, butalsothoseofneworiginalstudies related to the theory of models allowing soliton solutions, and analyses of the stability and asymptotics of these solutions. We give signi?cant consideration to numerical methods and results of numerical simulations of the structure and dynamics of solitons and nonlinear wave packets. Together with deep insights into the theory, applications to various branches of modern physics are considered, especially to plasma physics (such as space plasmas including ionospheric and magnetospheric processes), hydrodynamics, and atmosphere dynamics. Presently, thetheoryofone-dimensionalnonlinearequationsoftheclasses consideredbytheauthorsiswelldeveloped, andtheprogressinstudiesofthe structure and evolution of one-dimensional solitons and wave packets is ob- ous. This progress was especially fast after the discovery of hidden algebraic symmetries of the KdV, NLS, and other (integrable by the inverse scatt- ing transform (IST) method) classes of one-dimensional evolution equations
The reader is holding the second volume of a three-volume textbook on sol- state physics. This book is the outgrowth of the courses I have taught for many years at Eoetvoes University, Budapest, for undergraduate and graduate students under the titles Solid-State Physics and Modern Solid-State Physics. The main motivation for the publication of my lecture notes as a book was that none of the truly numerous textbooks covered all those areas that I felt should be included in a multi-semester course. Especially, if the course strives to present solid-state physics in a uni?ed structure, and aims at d- cussing not only classic chapters of the subject matter but also (in more or less detail) problems that are of great interest for today's researcher as well. Besides, the book presents a much larger material than what can be covered in a two- or three-semester course. In the ?rst part of the ?rst volume the analysis of crystal symmetries and structure goes into details that certainly cannot be included in a usual course on solid-state physics. The same applies, among others, to the discussion of the methods used in the determination of band structure, the properties of Fermi liquids and non-Fermi liquids, and the theory of unconventional superconductors in the present and third volumes. These parts can be assigned as supplementary reading for interested students, or can be discussed in advanced courses.
Addressing graduate students and researchers, this book gives a very detailed theoretical and computational description of multiple scattering in solid matter. Particular emphasis is placed on solids with reduced dimensions, on full potential approaches and on relativistic treatments. For the first time approaches such as the screened Korringa-Kohn-Rostoker method are reviewed, considering all formal steps such as single-site scattering, structure constants and screening transformations, and also the numerical point of view. Furthermore, a very general approach is presented for solving the Poisson equation, needed within density functional theory in order to achieve self-consistency. Special chapters are devoted to the Coherent Potential Approximation and to the Embedded Cluster Method, used, for example, for describing nanostructured matter in real space. In a final chapter, physical properties related to the (single-particle) Green's function, such as magnetic anisotropies, interlayer exchange coupling, electric and magneto-optical transport and spin-waves, serve to illustrate the usefulness of the methods described.
I ?rst heard of k.p in a course on semiconductor physics taught by my thesis adviser William Paul at Harvard in the fall of 1956. He presented the k.p Hamiltonian as a semiempirical theoretical tool which had become rather useful for the interpre- tion of the cyclotron resonance experiments, as reported by Dresselhaus, Kip and Kittel. This perturbation technique had already been succinctly discussed by Sho- ley in a now almost forgotten 1950 Physical Review publication. In 1958 Harvey Brooks, who had returned to Harvard as Dean of the Division of Engineering and Applied Physics in which I was enrolled, gave a lecture on the capabilities of the k.p technique to predict and 't non-parabolicities of band extrema in semiconductors. He had just visited the General Electric Labs in Schenectady and had discussed with Evan Kane the latter's recent work on the non-parabolicity of band extrema in semiconductors, in particular InSb. I was very impressed by Dean Brooks's talk as an application of quantum mechanics to current real world problems. During my thesis work I had performed a number of optical measurements which were asking for theoretical interpretation, among them the dependence of effective masses of semiconductors on temperature and carrier concentration. Although my theoretical ability was rather limited, with the help of Paul and Brooks I was able to realize the capabilities of the k.p method for interpreting my data in a simple way."
Binary Rare Earth Oxides is the first book in the field of rare earth oxides that provides coverage from the basic science through to recent advances. This book introduces the unique characteristics of the binary rare earth oxides with their chemistry, physics and applications. It provides a comprehensive review of all the characteristics of rare earth oxides, essential for scientists and engineers involved with rare earths, oxides, inorganic materials, ceramics, and structures. The binary rare earth oxides bring us a variety of interesting characteristics. Understanding their fundamental mechanisms builds a bridge between solid-state chemistry and materials science. The book begins with a brief introduction to binary rare earth
oxides, their physical and chemical stabilities, polymorphism,
crystal structures and phase transformation and the association
with current applications. The book goes on to present the band
structure of the oxides using several quantum chemical
calculations, which belong to a newly developed area in the binary
rare earth oxides. Central to this chapter are the
characterizations of electrical, magnetic and optical properties,
as well as details of single crystal growth and particle
preparation methods that have progressed in recent years. Later
chapters concentrate on thermo-chemical properties and trace
determination techniques. The final chapter contains a variety of
useful applications in various fields such as phosphors, glass
abrasives, automotive catalysts, fuel cells, solid electrolytes,
sunscreens, iron steels, and biological materials.
The present monograph represents itself as a tutorial to the ?eld of optical properties of thin solid ?lms. It is neither a handbook for the thin ?lm prac- tioner, noranintroductiontointerferencecoatingsdesign, norareviewonthe latest developments in the ?eld. Instead, it is a textbook which shall bridge the gap between ground level knowledge on optics, electrodynamics, qu- tummechanics, andsolidstatephysicsononehand, andthemorespecialized level of knowledge presumed in typical thin ?lm optical research papers on the other hand. In writing this preface, I feel it makes sense to comment on three points, which all seem to me equally important. They arise from the following (- tually interconnected) three questions: 1. Who can bene't from reading this book? 2. What is the origin of the particular material selection in this book? 3. Who encouraged and supported me in writing this book? Let me start with the ?rst question, the intended readership of this book. It should be of use for anybody, who is involved into the analysis of - tical spectra of a thin ?lm sample, no matter whether the sample has been prepared for optical or other applications. Thin ?lm spectroscopy may be r- evant in semiconductor physics, solar cell development, physical chemistry, optoelectronics, and optical coatings development, to give just a few ex- ples. The book supplies the reader with the necessary theoretical apparatus for understanding and modelling the features of the recorded transmission and re?ection spec
An overview of the basic concepts, methods and applications of nonlinear low-dimensional solid state physics based on the Frenkel--Kontorova model and its generalizations. The book covers many important topics such as the nonlinear dynamics of discrete systems, the dynamics of solitons and their interaction, commensurate and incommensurate systems, statistical mechanics of nonlinear systems, and nonequilibrium dynamics of interacting many-body systems.
This Volume is based on the Lectures presented at the Meeting "Chemistry at the Beginning of the Third Millennium," wh ich was held in Pavia, Italy, during the period 7-10 October, 1999. The Meeting involved the participation of scientists from German and ltalian Universities of the 'Coimbra Group'. The 'Coimbra Group', wh ich was founded in 1987, gathers the most ancient and prestigious European Universities, with the aim to promote initiatives in both research and teaching and to provide guidelines for the progress and development of the University system. German and Italian Universities within the Coimbra Group propose every year a theme for scientific discussion, which originates a Meeting to be held in a German or Italian University. The Meeting in Pavia was the fifth of the series and followed those of Bologna (1995), Jena (1996), Siena (1997), Heidelberg (1998). Each Meeting is centred on a topic from either humanistic or natural sciences and consists in aseries of lectures presented by distinguished scientists from the six participanting Universities. For the Pavia Meeting, the Steering Committee chose Chemistry as the topic and gathered researchers with experience in almost all fields of chemistry. In particular, during the Meeting, lectures were presented on many up-to-date subjects of chemistry, including: materials science, superconductors, supramolecular chemistry, bioinorganic chemistry, fullerenes, liquid crystals, photoinduced electron transfer, etc. The different topics were covered by distinguished and renown researchers of the various fields.
The aim of this book is to review recent achievements in the
theoretical investigations of the electronic structure, optical,
magneto-optical (MO), and x-ray magnetic circular dichroism (XMCD)
properties of compounds and Multilayered structures.
The present issue of Structure and Bonding is dedicated to applied group 13 chemistry, particularly for the elements boron and aluminum, and to a lesser degree gallium and indium. Although boron is a trace element (0.01 g kg 1) in the earth's crust, it has been concentrated in a few locations by geochemical processes and is relatively easy to mine as borax. Aluminum, on the other hand, is the most abundant metal in the earth's crust (82 g kg 1) and dispersed widely throughout the globe. Thus, boron and aluminum are readily available and their associated products or compounds are usually inexpensive and thereby easy to commercialize. The chapters were chosen to encompass both applied and fundamental aspects of their subiects. The first chapter 'Borates in Industrial Use' provides a complete, and perhaps, quintessential, coverage of compounds containing boron oxygen bonds. In the chapter Schubert explains the close relationship between the basic properties of the boron compounds and their associated uses. The remaining four chapters focus, to some degree, on aluminum. Since a great deal of literature exists in this area, these chapters are more focused on areas of emerging utility, and contain a great deal of fundamental information. Uhl's contribution in Chapter 2 provides basic synthesis and structural information for aluminum and gallium hydrazides. These types of compounds are being explored as potential molecular precursors to metal nitrides such as the important blue green laser material gallium nitride.
This book addresses the most important aspects of solid state physics, reviewing basic properties, related experimental techniques, and summarizing research over six decades. In addition, Micro- and Macro-Properties of Solids provides data on new materials such as rare-earth metals, semiconductors, ferroelectrics, mixed-valence compounds, superionic conductors, optical and optoelectronic materials and biomaterials.
In the 1980s, a group of theoretical physicists introduced several models for certain disordered systems, called "spin glasses." This rigorous book introduces this exciting new area to the mathematically minded reader. It requires no knowledge whatsoever of any physics, and contains proofs in complete detail of much of what is rigorously known on spin glasses at the time of writing.
The 2007 Spring Meeting of the Arbeitskreis Festkorperphysik was held in Regensburg, Germany, March 2007, in conjunction with the Deutsche Physikalische Gesellschaft. It was one of the largest physics meetings in Europe. The present volume 47 of the Advances in Solid State Physics contains written versions of a large number of the invited talks and gives an overview of the present status of solid state physics where low-dimensional systems are dominating."
This book deals with a selection of research topics in theoretical physics that have (almost) been proven to be a dead-end or continue at least to be highly controversial. Nevertheless, small but dedicated research communities continue to work on these issues. In a series of essays this book describes their work and struggle as well as the chances of any breakthrough in these areas. It is written as both an entertainment and serious study.
Presents experiment, theory and technology in a unified manner. Contains numerous illustrations, tables and references as well as carefully selected problems for students. Surveys the fascinating historical development of the field.
This practice-oriented book deals with the modelling of steady state and non-steady state basic processes of fibre formation and fibre processing. Focal points are melt spinning processes, spun yarn spinning processes and the description of the dynamics in different process steps during the fibre processing. A special chapter deals with dynamics of tensile force and its importance for the process stability. All examples are based on industrial practice.
This volume contains the notes of lectures given at the school on "Nonlinear Dy namics in Solids" held at the Physikzentrum Bad Honnef, 2-6 October 1989 under the patronage of the Deutsche Physikalische Gesellschaft. Nonlinear dynamics has become a highly active research area, owing to many interesting developments during the last three decades in the theoretical analysis of dynamical processes in both Hamiltonian and dissipative systems. Research has been focused on a variety of problems, such as the characteristics of regular and chaotic motion in Hamiltonian dynamics, the problem of quantum chaos, the forma tion and properties of solitary spatio-temporal structures, the occurrence of strange attractors in dissipative systems, and the bifurcation scenarios leading to complex time behaviour. Until recently, predictions of the theory have been tested predominantly on insta bilities in hydrodynamic systems, where many interesting experiments have provided valuable input and have led to a fruitful interaction between experiment and theory. Fluid systems are certainly good candidates for performing clean experiments free from disturbing influences: with fluids, compared to solids, it is simpler to prepare good samples, the relevant length and time scales are in easily accessible ranges, and it is possible to do measurements "inside" the fluid, because it can be filled in after the construction of the apparatus. Further, the theory describing the macroscopic dynamics of fluids is well established and contains only very few parameters, all of which have well-known values."
Over the last decade our view of chemistry has evolved substantially. Whereas individual researchers previously focused on specific areas of chemistry, such as inorganic, organic, etc. we now take a more holistic approach. Effective and efficient research projects now incorporate whatever aspects of the chemistry subdisciplines that are needed to complete the intended work. The main group elements have always been used in this manner. Depending on the use of the elements, the resulting work can be described under any heading of chemistry. The group 13 elements have been special in this regard due to the very unique characters of the constituent elements. Thus, there is a dramatic change in the properties of the elements when proceeding through the series, B, A1, Ga, In, T1. This difference is one of the main reasons why these elements have seen, and continue to see, such widespread usage in such disparate applications as organic synthesis, electronic and structural materials, and catalysis, to name but a few.
This book delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of wave-function-based, density-based (DFT) and hybrid hamiltonians. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties. |
You may like...
Environmental Protection and the Common…
John Lowry, Rod Edmunds
Hardcover
R3,191
Discovery Miles 31 910
Data-Driven Solutions to Transportation…
Yinhai Wang, Ziqiang Zeng
Paperback
R2,058
Discovery Miles 20 580
Routing Algorithms in Networks-on-Chip
Maurizio Palesi, Masoud Daneshtalab
Hardcover
R4,882
Discovery Miles 48 820
Fundamental Problems in Computing…
Sekharipuram S. Ravi, Sandeep Kumar Shukla
Hardcover
R2,942
Discovery Miles 29 420
|