![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > General
"The Frontiers of Knowhledge (to coin a phrase) are always on the move. - day's discovery will tomorrow be part of the mental furniture of every research worker. By the end of next week it will be in every course of graduate lectures. Within the month there will be a clamour to have it in the undergraduate c- riculum. Next year, I do believe, it will seem so commonplace that it may be assumed to be known by every schoolboy. "The process of advancing the line of settlements, and cultivating and c- ilizing the new territory, takes place in stages. The original papers are p- lished, to the delight of their authors, and to the critical eyes of their readers. Review articles then provide crude sketch plans, elementary guides through the forests of the literature. Then come the monographs, exact surveys, mapping out the ground that has been won, adjusting claims for priority, putting each fact or theory into its place" (J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1972) p.v). The main purpose of the book is to present the mechanism of - perconductivity discovered in 1986 by J. G. Bednorz and K. A. Muller, and to discuss the physics of superconductors. The last chapter of the book presents analysis of tunneling measurements in cuprates. The book is - dressed to researchers and graduate students in all branches of exact sciences."
Molecular Theory of Solvation presents the recent progress in the statistical mechanics of molecular liquids applied to the most intriguing problems in chemistry today, including chemical reactions, conformational stability of biomolecules, ion hydration, and electrode-solution interface. The continuum model of "solvation" has played a dominant role in describing chemical processes in solution during the last century. This book discards and replaces it completely with molecular theory taking proper account of chemical specificity of solvent. The main machinery employed here is the reference-interaction-site-model (RISM) theory, which is combined with other tools in theoretical chemistry and physics: the ab initio and density functional theories in quantum chemistry, the generalized Langevin theory, and the molecular simulation techniques. This book will be of benefit to graduate students and industrial scientists who are struggling to find a better way of accounting and/or predicting "solvation" properties.
This book presents a theory for unconventional superconductivity
driven by spin excitations. Using the Hubbard Hamiltonian and a
self-consistent treatment of the spin excitations, the interplay
between magnetism and superconductivity in various unconventional
superconductors is discussed. In particular, the monograph applies
this theory for Cooper-pairing due to the exchange of spin
fluctuations to the case of singlet pairing in hole- and
electron-doped high-Tc superconductors, and to triplet pairing
in
The 2007 Spring Meeting of the Arbeitskreis Festkorperphysik was held in Regensburg, Germany, March 2007, in conjunction with the Deutsche Physikalische Gesellschaft. It was one of the largest physics meetings in Europe. The present volume 47 of the Advances in Solid State Physics contains written versions of a large number of the invited talks and gives an overview of the present status of solid state physics where low-dimensional systems are dominating."
Plasticity and Geotechnics is the first attempt to summarize and present in a single volume the major achievements in the field of plasticity theory for geotechnical materials and its applications to geotechnical analysis and design. The book emerges from the author's belief that there is an urgent need for the geotechnical and solid mechanics community to have a unified presentation of plasticity theory and its application to geotechnical engineering.
This book gives a fascinating picture of the state of the art in silicon photonics and a perspective on what can be expected in the near future. It is composed of a selected number of reviews authored by world leaders in the field and is written from both academic and industrial viewpoints. An in-depth discussion of the route towards fully integrated silicon photonics is presented. This book will be useful not only to physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in the fields of microphotonics and optoelectronics.
Gives a comprehensive and coherent account of the basic methods to characterize a solid through its interaction with an electromagnetic field.
Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.
This volume presents a coherent and detailed description of the field, and brings together leaders in theoretical research. The book discusses today's state-of-the-art, as well as tomorrow 's tools: the supercell-pseudopotential method, the GW formalism, Quantum Monte Carlo, learn-on-the-fly molecular dynamics, finite-temperature treatments and more. A wealth of applications are included, from point defects to wafer bonding or the propagation of dislocation.
Modern fracture mechanics considers phenomena at many levels, macro and micro; it is therefore inextricably linked to methods of theoretical and mathematical physics. This book introduces these sophisticated methods in a straightforward manner. The methods are applied to several important phenomena of solid state physics which impinge on fracture mechanics: adhesion, defect nucleation and growth, dislocation emission, sintering, the electron beam effect and fractal cracks. The book shows how the mathematical models for such processes may be set up, and how the equations so formulated may be solved and interpreted. The many open problems which are encountered will provide topics for MSc and PhD theses in fracture mechanics, and in theoretical and experimental physics. As a supplementary text, the book can be used in graduate level courses on fracture mechanics, solid matter physics, and mechanics of solids, or in a special course on the application of fracture mechanics methods in solid matter physics.
The book consists of 5 parts: (1) ferroelectric thin films, (2) deposition and characterization methods, (3) fabrication process and circuit design, (4) advanced-type memories, and (5) applications and future prospects; each part is further divided into several chapters. Because of the wide range of topics discussed, each chapter in this book was written by one of the best authors knowing the specific topic very well.
A general and introductory survey of foams, emulsions and cellular materials. Foams and emulsions are illustrations of some fundamental concepts in statistical thermodynamics, rheology, elasticity and the physics and chemistry of divided media and interfaces. They also give rise to some of the most beautiful geometrical shapes and tilings, ordered or disordered. The chapters are grouped into sections having fairly loose boundaries. Each chapter is intelligible alone, but cross referencing means that the few concepts that may not be familiar to the reader can be found in other chapters in the book. Audience: Research students, researchers and teachers in physics, physical chemistry, materials science, mechanical engineering and geometry.
The aim of this NATO ASI has been to present an up-to-date overview of current areas of interest in amorphous materials. In order to limit the material to a manageable amount, the meeting was concerned exclusively with insulating and semiconducting materials. The lectures and seminars fill the gap between graduate courses and research seminars. The lecturers and seminar speakers were chosen as experts in their respective areas and the lectures and seminars that were given are presented in this volume. During the first week of the meeting. an emphasis was placed on introductory lectures, mainly associated with questions relating to the glass-formation and the structure of glasses. The second week focused more on research seminars. Each day of the meeting. about four posters were presented during the coffee breaks, and these formed an important focus for discussions. The posters are not reproduced in this volume as the editors wanted to have only larger contributions to make this volume more coherent. This volume is organized into four sections, starting with general considerations of the glass forming ability and techniques for the preparation of different kinds of glasses.
This book contains most of the contributions presented at the NATO Advanced Research Workshop on Nanowires, held at La Cristalera Residence Hall, Miraflores, Spain, from 23 through September 27, 1996. The workshop was co-directed by P. A. Serena and U. Landman. More than forty scientists from ten countries of Europe, the United States, and Japan attended this meeting and contributed with brilliant talks and stimulating discusions about their recent works. A total of thirty-three oral communications were given, covering the main part of topics related with the subject of the workshop. On one hand, a set of talks presented the theoretical basis of the conductance mechanisms in low dimensional systems, elaborated caIculations on the electronic structure and mechanical behavior of metallic nanowires, the role of defects and geometry in conductance, etc. On the other hand, from the experimental perspective, the contributions included the deeply study of the conductance quantization phenomenom, the analysis of conductance histograms, the study of the origin of the residual resistance, the presentation of different techniques of fabrication and manipulation of nanowires, the study of forces appearing in nanowires and their relation with the electronic conduction, etc. The motivation of the present workshop was to gather together scientists with differents ideas on these topics, to exchange points of view, establish the future lines in their research, and devise the role of nanowires in the future incoming nanoscale technologies. We hope that most of these points were successfully achieved.
New manufacturing technologies have made possible the integration of entire systems on a single chip. This new design paradigm, termed system-on-chip (SOC), together with its associated manufacturing problems, represents a real challenge for designers. SOC is also reshaping approaches to test and validation activities. These are beginning to migrate from the traditional register-transfer or gate levels of abstraction to the system level. Until now, test and validation have not been supported by system-level design tools so designers have lacked the infrastructure to exploit all the benefits stemming from the adoption of the system level of abstraction. Research efforts are already addressing this issue. This monograph provides a state-of-the-art overview of the current validation and test techniques by covering all aspects of the subject including:
This book delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of wave-function-based, density-based (DFT) and hybrid hamiltonians. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties.
Most of the interesting and difficult problems in statistical mechanics arise when the constituent particles of the system interact with each other with pair or multipartiele energies. The types of behaviour which occur in systems because of these interactions are referred to as cooperative phenomena giving rise in many cases to phase transitions. This book and its companion volume (Lavis and Bell 1999, referred to in the text simply as Volume 1) are princi pally concerned with phase transitions in lattice systems. Due mainly to the insights gained from scaling theory and renormalization group methods, this subject has developed very rapidly over the last thirty years. ' In our choice of topics we have tried to present a good range of fundamental theory and of applications, some of which reflect our own interests. A broad division of material can be made between exact results and ap proximation methods. We have found it appropriate to inelude some of our discussion of exact results in this volume and some in Volume 1. Apart from this much of the discussion in Volume 1 is concerned with mean-field theory. Although this is known not to give reliable results elose to a critical region, it often provides a good qualitative picture for phase diagrams as a whole. For complicated systems some kind of mean-field method is often the only tractable method available. In this volume our main concern is with scaling theory, algebraic methods and the renormalization group."
Selected modern aspects of artificially layered structures and bulk materials involving antiferromagnetic long-range order are the main themes of this book. Special emphasis is laid on the prototypical behavior of Ising-type model systems. They play a crucial role in the field of statistical physics and, in addition, contribute to the basic understanding of the exchange bias phenomenon in MBE-grown magnetic heterosystems. Throughout the book, particular attention is given to the interplay between experimental results and their theoretical description, ranging from the famous Lee-Yang theory of phase transitions to novel mechanisms of exchange bias.
The state-of-the-art of quantum transport and quantum kinetics in semiconductors, plus the latest applications, are covered in this monograph. Since the publishing of the first edition in 1996, the nonequilibrium Green function technique has been applied to a large number of new research topics, and the revised edition introduces the reader to many of these areas. This book is both a reference work for researchers and a self-tutorial for graduate students.
During thelastthreedecadesmanynewaswellasextendedclassesoforganic andinorganicmaterials, someofwhichbeingofhybridtype, havebeensynthe sized. Amongthemarethosethecontributorsofthisbookaredealingwith. In parallel to this, new technologies have been developed such as active matrix addressed liquid crystal displays (TFT-LCD), new types of sensors like ther mographic sheets employed in science, industry and medicine, organic light emitting diodes (OLEDs), SQUIDs etc. At the same time the techniques for characterizing both the materials and technological products have become very fast and highly precise. For example, today measuring a dielectric spec trum over a broadfrequency rangewith a high density of experimentalpoints per decade requires a few minutes time, sometimes just a few seconds, but before it would have taken weeks or even months. Nowadays one is able to create an enormous amount of data points but there is a real problem how to reach the real message, the truth? Toanswersuchquestions, aftersomeyearsofaverye?cientandsuccessful bilateral co-operation between our two research groups in Darmstadt and in Cracow, in the early 1990s an idea appeared to discuss all such intriguing problems with our colleagues and friends from many countries in the friendly atmosphere of the nice vacation resort of Zakopane in the Tatra Mountains. Therefore our ?rst workshop was organized there in 1993 and repeated at the same place in 1995 and 2000, interchanged with Darmstadt in 1998 and ?nally again in 2002. These kinds of meetings were well received as shown by the participation of the leading scientists in the ?eld of materials science and by graduate students and postdoctoral fellows from all over the world."
Advanced composite materials or high performance polymer composites are an unusual class of materials that possess a combination of high strength and modulus and are substantially superior to structural metals and alloys on an equal weight basis. The book provides an overview of the key components that are considered in the design of a composite, of surface chemistry, of analyses/testing, of structure/property relationships with emphasis on compressive strength and damage tolerance. Newly emerging tests, particularly open hole compression tests are expected to provide greater assurance of composite performance. This publication is an "up-to-date" treatment of leading edge areas of composite technology with literature reviewed until recently and includes thermoplastic prepregs/composites and major application areas.
The intent of this book is to report on the electrical, optical, and structural properties of silver and gold films in dependence on substrate material, annealing treatment, and gas adsorption. A main point is the calculation of the scattering cross section of the conduction electrons. All results are substantiated by extended experimental data, as well as numerous illustrations and tables.
This book addresses Lab-on-a-Chip devices. It focuses on microfluidic technologies that have emerged in the past decade. Coverage presents a comprehensive listing of the most promising microfluidic technologies in the Lab-on-a-Chip field. It also details technologies that can be viewed as toolboxes needed to set up complex Lab-on-a-Chip systems.
This volume offers an overview of the growth of shaped crystals (oxides, fluorides, etc.) by the micro-pulling-down technique. Both melt and solution (flux) growth are considered. The advantages and disadvantages of the method are discussed in detail and compared with related crystal-growth processes. The authors attempt to give a practical introduction to this technique, thereby also explaining how its application can help to solve problems commonly encountered in other melt-growth methods.
The IFIP World Computer Congress (WCC) is one of the most important conferences in the area of computer science and a number of related Human and Social Science disciplines at the worldwide level and it has a federated structure, which takes into account the rapidly growing and expanding interests in this area. Human-Computer Interaction is now a mature and still dynamically evolving part of this area, which is represented in IFIP by the Technical Committee 13 on HCI. We are convinced that in this edition of WCC, which takes place for the first time in Italy, it will be interesting and useful to have a Symposium on Human- Computer Interaction in order to present and discuss a number of contributions in this field. There has been increasing awareness among designers of interactive systems of the importance of designing for usability, but we are still far from having products that are really usable, and usability can mean different things depending on the application domain. We are all aware that too many users of current technology feel often frustrated because computer systems are not compatible with their abilities and needs with existing work practices. As designers of tomorrow technology, we have the responsibility of creating computer artefacts that would permit better user experience with the various computing devices, so that users may enjoy more satisfying experiences with information and communications technologies. |
![]() ![]() You may like...
Building the Foundation: Whole Numbers…
Maria G. Bartolini Bussi, Xuhua Sun
Hardcover
R1,631
Discovery Miles 16 310
In Search of More Effective Mathematics…
Ian Westbury, Corinna A. Ethington, …
Hardcover
R2,800
Discovery Miles 28 000
Mathematics Teaching and Learning…
Rina Kim, Lillie R Albert
Hardcover
R1,521
Discovery Miles 15 210
Amplify Student Voices - Equitable…
Annmarie Baines, Diana Medina, …
Paperback
Arithmetic Ninja for Ages 7-8 - Maths…
Andrew Jennings, Sarah Farrell
Paperback
Mathematics Education in the Early Years…
Christiane Benz, Anna S. Steinweg, …
Hardcover
R4,567
Discovery Miles 45 670
|