![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > General
This book provides the first comprehensive description of time crystals which have a repeating structure in time. It introduces the fundamental concepts behind time crystals and explores the many different branches of this new research area. The book starts with the original idea of the time crystallization in quantum systems as introduced by Wilczek and follows the development of the field up to the present day. Both spontaneous formation of crystalline structures in time and concepts of the condensed matter physics in the time domain, ranging from Anderson localization in time to many-body systems with exotic interactions, are described. The prospect of creation of novel objects by means of time engineering is also presented. The book assumes knowledge of quantum mechanics to the graduate level. It serves as a valuable reference with pointers to future research directions for graduate students and senior scientists alike.
Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.
This book, provides a general introduction to the ideas and methods of statistical mechanics with the principal aim of meeting the needs of Master's students in chemical, mechanical, and materials science engineering. Extensive introductory information is presented on many general physics topics in which students in engineering are inadequately trained, ranging from the Hamiltonian formulation of classical mechanics to basic quantum mechanics, electromagnetic fields in matter, intermolecular forces, and transport phenomena. Since engineers should be able to apply physical concepts, the book also focuses on the practical applications of statistical physics to material science and to cutting-edge technologies, with brief but informative sections on, for example, interfacial properties, disperse systems, nucleation, magnetic materials, superfluidity, and ultralow temperature technologies. The book adopts a graded approach to learning, the opening four basic-level chapters being followed by advanced "starred" sections in which special topics are discussed. Its relatively informal style, including the use of musical metaphors to guide the reader through the text, will aid self-learning.
The concept to utilize an ion-conducting polymer membrane as a solid po- mer electrolyte offers several advantages regarding the design and operation of an electrochemical cell, as outlined in Volume 215, Chapter 1 (L. Gubler, G.G. Scherer). Essentially, the solvent and/or transport medium, e.g., H O, 2 + for the mobile ionic species, e.g., H for a cation exchange membrane, is taken up by and con?ned into the nano-dimensional morphology of the i- containingdomainsofthepolymer.Asaconsequence, aphaseseparationinto a hydrophilic ion-containing solvent phase and a hydrophobic polymer ba- bone phase establishes. Because of the narrow solid electrolyte gap in these cells, low ohmic losses reducing the overall cell voltage can be achieved, even at highcurrent densities. This concept was applied to fuel cell technology at a very early stage; h- ever, performance and reliability of the cells were low due to the dissatisfying membrane properties at that time. The development of per?uoro sulfonate and carboxylate-type membranes, in particular for the chlor-alkali process, directly fostered the further development of proton-conducting membranes and, as a consequence, also the progress in this type of fuel cell technology (polymer electrolyte fuel cell, PEFC)
This book presents a comprehensive review of various aspects of the novel and rapidly developing field of active matter, which encompasses a wide variety of self-organized self-driven energy-consuming media or agents. Most naturally occurring examples are of biological origin, spanning all scales from intracellular structures to swimming and crawling cells and microorganisms, to living tissues, bacterial colonies and flocks of birds. But the field also encompasses artificial systems, from colloids to soft robots. Intrinsically out of equilibrium and free of constraints of time-reversal symmetry, such systems display a range of surprising and unusual behaviors. In this book, the author emphasizes connections between fluid-mechanical, material, biological and technological aspects of active matter. He employs a minimum of mathematical tools, ensuring that the presentation is accessible to a wider scientific community. Richly illustrated, it gives the reader a clear picture of this fascinating field, its diverse phenomena and its open questions.
The book summarizes recent international research and experimental developments regarding fatigue crack growth investigations of rubber materials. It shows the progress in fundamental as well as advanced research of fracture investigation of rubber material under fatigue loading conditions, especially from the experimental point of view. However, some chapters will describe the progress in numerical modeling and physical description of fracture mechanics and cavitation phenomena in rubbers. Initiation and propagation of cracks in rubber materials are dominant phenomena which determine the lifetime of these soft rubber materials and, as a consequence, the lifetime of the corresponding final rubber parts in various fields of application. Recently, these phenomena became of great scientific interest due to the development of new experimental methods, concepts and models. Furthermore, crack phenomena have an extraordinary impact on rubber wear and abrasion of automotive tires; and understanding of crack initiation and growth in rubbers will help to support the growthing number of activities and worldwide efforts of reduction of tire wear losses and abrasion based emissions.
Time-resolved optical stimulation of luminescence has become established as an important method for measurement of optically stimulated luminescence. Its enduring appeal is easy to see with the number of materials studied growing from the initial focus on natural minerals such as quartz and feldspar to synthetic dosimeters such as i !-Al2O3:C, BeO and YAlO3:Mn2+. The aim of time-resolved optical stimulation is to separate in time the stimulation and emission of luminescence. The luminescence is stimulated from a sample using a brief light pulse. The ensuing luminescence can be monitored either during stimulation in the presence of scattered stimulating light or after the light-pulse. The time-resolved luminescence spectrum measured in this way can be resolved into components each with a distinct lifetime. The lifetimes are linked to physical processes of luminescence and thus provide a means to study dynamics involving charge transfer between point-defects in materials. This book is devoted to time-resolved optically stimulated luminescence and is suitable for researchers with an interest in the study of point-defects using luminescence methods. The book first sets the method within the context of luminescence field at large and then provides an overview of the instrumentation used. There is much attention on models for time-resolved optically stimulated luminescence, two of which are analytical and the third of which is based on computational simulation of experimental results. To bring relevance to the discussion, the book draws on examples from studies on quartz and a-Al2O3:C, two materials widely investigated using this method. The book shows how kinetic analysis for various thermal effects such as thermal quenching and thermal assistance can be investigated using time-resolved luminescence. Although use of light sums is an obvious choice for this, contemporary work is discussed to show the versatility of using other alternative methods such the dynamic throughput.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
Written by an experimentalist famous for his discovery of stishovite, with vast experience in phase transition studies, this book is devoted to a description of the continuous and discontinuous phase transitions. It includes chapters outlining the Van der Waals model, hard sphere and soft sphere models of melting, scaling phenomena, renormgroup approach to phase transitions, and experimental examples to illustrate various phase transitions.Unlike conventional books covering the same topic, this is meant for undergraduate students and experimentalists to understand basic concepts in the physics of phase transitions.
Motivates students by challenging them with real-life applications of the somtimes esoteric aspects of quantum mechanics that they are learning. Offers completely original excerices developed at teh Ecole Polytechnique in France, which is know for its innovative and original teaching methods. Problems from modern physics to help the student apply just-learnt theory to fields such as molecular physics, condensed matter physics or laser physics.
The concept to utilize an ion-conducting polymer membrane as a solid po- mer electrolyte offers several advantages regarding the design and operation of an electrochemical cell, as outlined in Volume 215, Chapter 1 (L. Gubler, G.G. Scherer). Essentially, the solvent and/or transport medium, e.g., H O, 2 + for the mobile ionic species, e.g., H for a cation exchange membrane, is taken up by and con?ned into the nano-dimensional morphology of the i- containingdomainsofthepolymer.Asaconsequence, aphaseseparationinto a hydrophilic ion-containing solvent phase and a hydrophobic polymer ba- bone phase establishes. Because of the narrow solid electrolyte gap in these cells, low ohmic losses reducing the overall cell voltage can be achieved, even at highcurrent densities. This concept was applied to fuel cell technology at a very early stage; h- ever, performance and reliability of the cells were low due to the dissatisfying membrane properties at that time. The development of per?uoro sulfonate and carboxylate-type membranes, in particular for the chlor-alkali process, directly fostered the further development of proton-conducting membranes and, as a consequence, also the progress in this type of fuel cell technology (polymer electrolyte fuel cell, PEFC)
This book is a comprehensive summary of 50 years of research from theoretical predictions to experimental confirmation of the manifestation of spin exchange in EPR spectroscopy. The author unfolds the details of comprehensive state of the art of theoretical calculations, which have been proven to become the core of the paradigm shift in spin exchange and set the direction for the future of spin exchange research. The book refers to important experimental data that confirms the theory. It describes the modern protocol for determining the bi-molecular spin exchange rate from the EPR spectra, which will be especially interesting for experimentalists. Given its scope, the book will benefit all researchers engaged in theory and experiments in the area of spin exchange and its manifestations in EPR spectroscopy, where many remarkable applications of the spin probe have been developed.
This book aims to introduce the reader to basic concepts concerning matter physics, describing how fundamental properties of atoms, molecules and condensed matter are affected by properties of electrons and by their interaction with electromagnetic waves.As an introductory text on basic properties of matter, the contents are designed for undergraduate students in electrical engineering. It is based on the lectures given by the author for over a decade on Matter Physics and Solid State Physics. It focuses on electronic properties to discuss the structure, electrical and optical properties of matter, and is organized into six chapters.The first chapter is a short review of the basic properties of electromagnetic waves, giving the basic concepts related to wave propagation to be handled easily to understand the subsequent topics. The next chapter on quantum mechanics helps to understand the quantum properties of matter using the simplest formalizations. Chapter 3 introduces the core of the book by using quantum mechanics to describe the electronic properties of the atom. Then, after atomic bonding, molecules and condensed matter are discussed before approaching the structural properties of crystal and soft matter. The following chapters (4 and 5) are then devoted to electrical properties and optical properties and address the main topics related to solid state and semiconductor physics as well as light-matter interaction. The final chapter 6, deals with the basic properties of lasers, due to the relevance of light sources in everyday life, and their widespread use in all branches of engineering.
Understanding the structural organization of materials at the atomic scale is a lo- standing challenge of condensed matter physics and chemistry. By reducing the size of synthesized systems down to the nanometer, or by constructing them as collection of nanoscale size constitutive units, researchers are faced with the task of going beyond models and interpretations based on bulk behavior. Among the wealth of new materials having in common a "nanoscale" ngerprint, one can encounter systems intrinsically extending to a few nanometers (clusters of various compo- tions), systems featuring at least one spatial dimension not repeated periodically in space and assemblies of nanoscale grains forming extended compounds. For all these cases, there is a compelling need of an atomic-scale information combining knowledge of the topology of the system and of its bonding behavior, based on the electronic structure and its interplay with the atomic con gurations. Recent dev- opments in computer architectures and progresses in available computational power have made possible the practical realization of a paradygma that appeared totally unrealistic at the outset of computer simulations in materials science. This consists inbeing able to parallel (at least inprinciple) any experimental effort by asimulation counterpart, this occurring at the scale most appropriate to complement and enrich the experiment.
This thesis focuses on the exploration of nontrivial spin dynamics in graphene-based devices and topological materials, using realistic theoretical models and state-of-the-art quantum transport methodologies. The main outcomes of this work are: (i) the analysis of the crossover from diffusive to ballistic spin transport regimes in ultraclean graphene nonlocal devices, and (ii) investigation of spin transport and spin dynamics phenomena (such as the (quantum) spin Hall effect) in novel topological materials, such as monolayer Weyl semimetals WeTe2 and MoTe2. Indeed, the ballistic spin transport results are key for further interpretation of ultraclean spintronic devices, and will enable extracting precise values of spin diffusion lengths in diffusive transport and guide experiments in the (quasi)ballistic regime. Furthermore, the thesis provides an in-depth theoretical interpretation of puzzling huge measured efficiencies of the spin Hall effect in MoTe2, as well as a prediction of a novel canted quantum spin Hall effect in WTe2 with spins pointing in the yz plane.
Liquid crystals, polymers and polymer liquid crystals are soft condensed matter systems of major technological and scientific interest. An understanding of the macroscopic properties of these complex systems and of their many and interesting peculiarities at the molecular level can nowadays only be attained using computer simulations and statistical mechanical theories. Both in the Liquid Crystal and Polymer fields a considerable amount of simulation work has been done in the last few years with various classes of models at different special resolutions, ranging from atomistic to molecular and coarse-grained lattice models. Each of the two fields has developed its own set of tools and specialized procedures and the book aims to provide a state of the art review of the computer simulation studies of polymers and liquid crystals. This is of great importance in view of a potential cross-fertilization between these connected areas which is particularly apparent for a number of experimental systems like, e.g. polymer liquid crystals and anisotropic gels where the different fields necessarily merge. An effort has been made to assess the possibilities of a coherent description of the themes that have developed independently, and to compare and extend the theoretical and computational techniques put forward in the different areas.
This book provides a relatively complete introduction to the methods used in computational condensed matter. A wide range of electronic structure theories are introduced, including traditional quantum chemistry methods, density functional theory, many-body perturbation theory, and more. Molecular dynamics simulations are also discussed, with extensions to enhanced sampling and free-energy calculation techniques including umbrella sampling, meta-dynamics, integrated tempering sampling, etc. As a further extension beyond the standard Born-Oppenheimer molecular dynamics, some simulation techniques for the description of quantum nuclear effects are also covered, based on Feynman's path-integral representation of quantum mechanics. The book aims to help beginning graduate students to set up a framework of the concepts they should know before tackling the physical/chemical problems they will face in their research.
Complex liquids constitute a basic element in modern materials science; their significant features include self-assembly, mesoscale structures, complex dynamics, unusual phases and enormous sensitivity to perturbations. Understanding their nature and properties are a great challenge to modern materials science that demands novel approaches. This book focuses on nonlinear dielectric phenomena, particularly on nonlinear dielectric spectroscopy (NDS), which may be considered a possible successor to broadband dielectric spectroscopy (BDS). NDS phenomena directly coupled to mesoscale heterogeneity fluctuations, so information obtained in this way is basically complementary to BDS tests. The book also discusses the application of NDS in a set of complex liquid systems: glassy liquids, liquid crystals, liquids with critical point phenomena, and bio-relevant liquids. The complementary application of NDS and BDS may allow the discovery of universal patterns for the whole category of complex liquids. Written by specialists in the field of nonlinear dielectric studies, theoreticians and experimentalists, ranging from solid state physics to biophysics, the book is organized so that it can serve as a basic textbook for a non-experienced reader.
Schlieren and shadowgraph techniques are basic and valuable tools in various scientific and engineering disciplines. They allow us to see the invisible: the optical inhomogeneities in transparent media like air, water, and glass that otherwise cause only ghostly distortions of our normal vision.These techniques are discussed briefly in many books and papers, but there is no up-to-date complete treatment of the subject before now. The book is intended as a practical guide for those who want to use these methods, as well as a resource for a broad range of disciplines where scientific visualization is important. The colorful 400-year history of these methods is covered in an extensive introductory chapter accessible to all readers.
This unique publication summarizes fifty years of Russian research on shock compression of condensed matter using chemical and nuclear explosions. This research has important applications in physics, materials science and engineering. The book places the importance of Russian experiments in a global context. It then describes the experimental devices used, summarizing the results of experiments on pure metals, metal alloys and compounds, minerals, rocks, organic solids and liquids. The book emphasizes theoretical aspects, experimental problems, and data analysis. Since large scale underground nuclear tests have stopped, it will be some time before similar pressures can be generated by alternative means. This book will be of interest to condensed matter physicists, materials scientists, earth scientists and astrophysicists.
This book presents an overview of the science of superconducting materials. It covers the fundamentals and theories of superconductivity. Subjects of special interest involving mechanisms of high temperature superconductors, tunneling, transport properties, magnetic properties, critical states, vortex dynamics, etc. are present in the book. It assists as a fundamental resource on the developed methodologies and techniques involved in the synthesis, processing, and characterization of superconducting materials. The book covers numerous classes of superconducting materials including fullerenes, borides, pnictides or iron-based chalcogen superconductors ides, alloys and cuprate oxides. Their crystal structures and properties are described. Thereafter, the book focuses on the progress of the applications of superconducting materials into superconducting magnets, fusion reactors, and accelerators and other superconducting magnets. The applications also cover recent progress in superconducting wires, power generators, powerful energy storage devices, sensitive magnetometers, RF and microwave filters, fast fault current limiters, fast digital circuits, transport vehicles, and medical applications.
Considered one of the major fields of photonics of the beginning 21st century, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. Offering both a comprehensive introduction to the field and an extensive overview of the current state of the art, Plasmonics - Fundamentals and Applications should be of great value to the newcomer and to the experienced researcher. The topics covered include plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.
This book consists of chapters written by international experts on various aspects of single molecule toroics (SMTs).The chapters cover a broad range of relevant topics and highlight the latest advances performed in the field. An up-to-date overview of the emerging SMT architectures is presented while particular attention is given to not only the magnetism and relaxation effects involved but also to the respective applications in advanced electronics and memory devices. The role that lanthanides play -especially that of dysprosium- is discussed, while a thorough analysis using theoretical/ab initio calculations is provided. Since SMTs have grown out of single molecule magnetism (SMM), it is an expanding and topical subject and the present book will engender excitement and interest amongst chemists, physicists, theoreticians and materials scientists. The volume will be of great interest to researchers and graduates working on this topic and particularly those involved in lanthanide chemistry, magnetism and theory.
On August 20, 2015, a symposium at Lawrence Livermore National Laboratory was held in honor of Berni J. Alder's 90th birthday. Many of Berni's scientific colleagues and collaborators, former students, and post-doctoral fellows came to celebrate and honor Berni and the ground-breaking scientific impact of his many discoveries. This proceedings volume includes contributions from Berni's collaborators and covers a range of topics, including the melting transition in the 2D hard disk system, non-equilibrium fluid relaxation, the role of fluctuations in hydrodynamics, glass transitions, molecular dynamics of dense fluids, shock-wave and finite-strain equation of state relationships, and applications of quantum mechanics in pattern recognition. |
You may like...
Magnonics - Interface Transmission…
Abdellatif Akjouj, Leonard Dobrzynski, …
Paperback
R2,620
Discovery Miles 26 200
Mesoscale Models - From Micro-Physics to…
Sinisa Mesarovic, Samuel Forest, …
Hardcover
R4,055
Discovery Miles 40 550
Understanding Viscoelasticity - An…
Nhan Phan-Thien, Nam Mai-Duy
Hardcover
R3,105
Discovery Miles 31 050
Gibbs' Entropic Paradox and Problems of…
Eugene Barsky
Paperback
Analytical Imaging Techniques for Soft…
Vikas Mittal, Nadejda B. Matsko
Hardcover
R2,659
Discovery Miles 26 590
The Science and Function of…
Amanda S. Harper-Leatherman, Camille M. Solbrig
Hardcover
R5,464
Discovery Miles 54 640
Magnetism of Surfaces, Interfaces, and…
Robert E Camley, Zbigniew Celinski, …
Hardcover
R4,150
Discovery Miles 41 500
Linear and Nonlinear Optical Responses…
Miguel Ãngel Sánchez MartÃnez
Hardcover
R4,224
Discovery Miles 42 240
|