![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > General
This book explains the operating principles of atomic force microscopy and scanning tunneling microscopy. The aim of this book is to enable the reader to operate a scanning probe microscope successfully and understand the data obtained with the microscope. The chapters on the scanning probe techniques are complemented by the chapters on fundamentals and important technical aspects. This textbook is primarily aimed at graduate students from physics, materials science, chemistry, nanoscience and engineering, as well as researchers new to the field.
This textbook, now in its third edition, provides a formative introduction to the structure of matter that will serve as a sound basis for students proceeding to more complex courses, thus bridging the gap between elementary physics and topics pertaining to research activities. The focus is deliberately limited to key concepts of atoms, molecules and solids, examining the basic structural aspects without paying detailed attention to the related properties. For many topics the aim has been to start from the beginning and to guide the reader to the threshold of advanced research. This edition includes four new chapters dealing with relevant phases of solid matter (magnetic, electric and superconductive) and the related phase transitions. The book is based on a mixture of theory and solved problems that are integrated into the formal presentation of the arguments. Readers will find it invaluable in enabling them to acquire basic knowledge in the wide and wonderful field of condensed matter and to understand how phenomenological properties originate from the microscopic, quantum features of nature.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets. The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore diameters. "Dynamics in Confinement" sums up the present state-of-the-art and introduces to the analytical methods of choice for the study of dynamics in nanometer-scale confinement.
Synergetics is the quantitative study of multicomponent systems that exhibit nonlinear dynamics and cooperativity. This book specifically considers basic models of the nonlinear dynamics of molecular systems and discusses relevant applications in biological physics and the polymer sciences. Emphasis is placed on specific solutions to the dynamical equations that correspond to the coherent formation of spatial-temporal structures, such as solitons, kinks and breathers, in particular. The emergence of these patterns in molecular structures provides a variety of information on their structural properties and plays a significant part in energy transfer processes, topological defects, dislocations, and related structure transitions. Real media, in which solitons take the form of solitary waves, are also considered. In this context, the formation of nonlinear waves in a continuous medium described by nonlinear equations is associated with spontaneous breaking of the local symmetry of the homogeneous system, which produces a range of interesting phenomena. A particular feature of this text is its combination of analytic and computational strategies to tackle difficult nonlinear problems at the molecular level of matter.
Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.
This thesis explores the dispersion stability, microstructure and phase transitions involved in the nanoclay system. It describes the recently discovered formation of colloidal gels via two routes: the first is through phase separation and second is by equilibrium gelation and includes the first reported experimental observation of a system with high aspect ratio nanodiscs. The phase behavior of anisotropic nanodiscs of different aspect ratio in their individual and mixed states in aqueous and hydrophobic media is investigated. Distinct phase separation, equilibrium fluid and equilibrium gel phases are observed in nanoclay dispersions with extensive aging. The work then explores solution behavior, gelation kinetics, aging dynamics and temperature-induced ordering in the individual and mixed states of these discotic colloids. Anisotropic ordering dynamics induced by a water-air interface, waiting time and temperature in these dispersions were studied in great detail along with aggregation behavior of nanoplatelets in hydrophobic environment of alcohol solutions.
When close to a continuous phase transition, many physical systems can usefully be mapped to ensembles of fluctuating loops, which might represent for example polymer rings, or line defects in a lattice magnet, or worldlines of quantum particles. 'Loop models' provide a unifying geometric language for problems of this kind. This thesis aims to extend this language in two directions. The first part of the thesis tackles ensembles of loops in three dimensions, and relates them to the statistical properties of line defects in disordered media and to critical phenomena in two-dimensional quantum magnets. The second part concerns two-dimensional loop models that lie outside the standard paradigms: new types of critical point are found, and new results given for the universal properties of polymer collapse transitions in two dimensions. All of these problems are shown to be related to sigma models on complex or real projective space, CP^{n−1} or RP^{n−1} -- in some cases in a 'replica' limit -- and this thesis is also an in-depth investigation of critical behaviour in these field theories.
This thesis offers novel insights into the time-dependent structural evolution of polymers under deformation. In-situ tensile experiments at high-brilliance synchrotron sources allowed to characterize the material with unrivaled resolution in time and space. The strain-induced crystallization in natural rubber was studied by wide-angle X-ray diffraction. Special emphasis was put on the establishment of new structure-property relationships to give a more in-depth understanding of the mechanical performance of rubber parts, e.g. in tear fatigue loading. To this end, the kinetics of strain-induced crystallization were investigated, subjecting the material to high strain rates. The local structure around a crack tip was observed by scanning wide-angle X-ray diffraction. Ultra-small angle X-ray scattering served to study filled elastomers under deformation, from specially prepared model filler systems to industrially relevant carbon black filled rubbers. Other methods include electron microscopy coupled with in-situ tensile testing and optical dilatometry to examine cavitation in rubbers. The underlying theory as well as a literature review are covered by an extensive introductory chapter, followed by a description of the experimental techniques. The results are presented in more detail than in the original journal publications.
This thesis presents studies on the interaction of soft materials like surfactants and proteins with hard silica nanomaterials. Due to its interdisciplinary nature it combines concepts from the fields of physical chemistry, nanoscience and materials science, yielding to fundamental insights into the structure-directing forces operating at the nano-scale. It is shown that the morphology of surfactant micellar aggregates adsorbed at the surface of nanoparticles and inside tubular nanopores can be tuned on demand by the co-adsorption of a surface modifier. The interaction of globular proteins with silica nanoparticles is dominated by electrostatic interactions and can be controlled by pH and ionic strength, while the bridging of nanoparticles by adsorbed protein molecules leads to large-scale hybrid aggregates of protein with the nanoparticles. Concepts emerging from the role of electrostatic interactions in the hetero-aggregation of nanoparticles with protein molecules are used for the co-assembly of charged microbeads into linear clusters and chains of controllable length.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
This book focuses on the assembly, organization and resultant collective dynamics of soft matter systems maintained away from equilibrium by an energy flux. Living matter is the ultimate example of such systems, which are comprised of different constituents on very different scales (ions, nucleic acids, proteins, cells). The result of their diverse interactions, maintained using the energy from physiological processes, is a fantastically well-organized and dynamic whole. This work describes results from minimal, biomimetic systems and primarily investigates membranes and active emulsions, as well as key aspects of both soft matter and non-equilibrium phenomena. It is shown that these minimal reconstitutions are already capable of a range of complex behaviour such as nonlinear electric responses, chemical communication and locomotion. These studies will bring us closer to a fundamental understanding of complex systems by reconstituting key aspects of their form and function in simple model systems. Further, they may also serve as the first technological steps towards artificial soft functional matter.
This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT for a wide array of systems. The proposed formalism in fact applies to periodic and random systems in the discrete and the continuum. After a short introduction describing the structure of the book, its aim and motivation, the basic elements of the theory are presented in chapter 2. The mathematical framework of the theory is outlined in chapters 3-5: the relevant von Neumann algebras, noncommutative $L^p$- and Sobolev spaces are introduced; their construction is then made explicit for common physical systems; the notion of isopectral perturbations and the associated dynamics are studied. Chapter 6 is dedicated to the main results, proofs of the Kubo and Kubo-Streda formulas. The book closes with a chapter about possible future developments and applications of the theory to periodic light conductors. The book addresses a wide audience of mathematical physicists, focusing on the conceptual aspects rather than technical details and making algebraic methods accessible to analysts.
Ultrafast science has long been limited to the investigation of molecular processes. Over the past 10 years investigation of ultrafast processes has expanded to material science, including aspects relevant to the solid-state such as excitation of electrons in band structures and collective phonon excitation. Specific probes for electronic and structural reorganization, such as X-ray diffraction and ARPES, have been advanced. Furthermore, experimental techniques including XFEL science, THz science and various pump-probe methods, as well as the theoretical understanding of ultrafast, out-of-equilibrium and multiscale processes driven by light or THz excitation, have seen rapid development. This volume brings together a complementarity of internationally-leading experimental material scientists and theoreticians in this field to explore and exchange their ideas about the key aspects of ultrafast science, designing new ways to control materials and understanding transformation processes. The topics covered include: Material science: ultrafast transformation, electron-phonon coupling, multi-scale aspects Theory of out of equilibrium light-induced phenomena Optical excitation processes THz and laser field excitation processes
This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.
This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, and of their predictive power will accompany the exposition of experimental ones. This book is a must read for postgraduate students, for post-docs, and for researchers who are interested in understanding the structural properties of ILs.
Mechanical Properties of Single Molecules and Polymer Aggregates Rudiger Berger, Kurt Binder, Gregor Diezemann, Jurgen Gauss, Mark Helm, Katharina Landfester, Wolfgang Paul (Halle), Peter Virnau. Optical Properties of Individual Molecular Aggregates and Nano Particles Thomas Basche, Hans-Jurgen Butt, Gregor Diezemann, Jurgen Gauss, Klaus Mullen, Harald Paulsen, Carsten Soennichsen, Rudolf Zentel. Structure Formation of Polymeric Building Blocks I: Self-assembly of Copolymers Kurt Binder, Holger Frey, Andreas Kilbinger (Univ. Fribourg), Ute Kolb, Michael Maskos (IMM Mainz), Wolfgang Paul (Univ. Halle), Hans Wolfgang Spiess. Structure Formation of Polymeric Building Blocks II: Complex Polymer Architectures Kurt Binder, Hans Jurgen Butt, Angelika Kuhnle, Klaus Mullen, Wolfgang Paul (Univ. Halle), Erwin Schmidt, Manfred Schmidt, Hans Wolfgang Spiess, Thomas Vilgis. Structure Formation of Polymeric Building Blocks III: Polymer Complexes in Biological Applications Kurt Kremer, Heiko Luhmann, Christine Peter, Friederike Schmid, Erwin Schmidt, Manfred Schmidt, Eva Sinner (Univ. of Natural Resources, Vienna), Tanja Weil (Univ. Ulm).
The physics of condensed matter, in contrast to quantum physics or cosmology, is not traditionally associated with deep philosophical questions. However, as science - largely thanks to more powerful computers - becomes capable of analysing and modelling ever more complex many-body systems, basic questions of philosophical relevance arise. Questions about the emergence of structure, the nature of cooperative behaviour, the implications of the second law, the quantum-classical transition and many other issues. This book is a collection of essays by leading physicists and philosophers. Each investigates one or more of these issues, making use of examples from modern condensed matter research. Physicists and philosophers alike will find surprising and stimulating ideas in these pages.
This thesis presents an in-depth study on the effect of colloidal particle shape and formation mechanism on self-organization and the final crystal symmetries that can be achieved. It demonstrates how state-of-the-art X-ray diffraction techniques can be used to produce detailed characterizations of colloidal crystal structures prepared using different self-assembly techniques, and how smart systems can be used to investigate defect formation and diffusion in-situ. One of the most remarkable phenomena exhibited by concentrated suspensions of colloidal particles is the spontaneous self-organization into structures with long-range spatial and/or orientational orders. The study also reveals the subtle structural variations that arise by changing the particle shape from spherical to that of a rounded cube. In particular, the roundness of the cube corners, when combined with the self-organization pathway, convective assembly or sedimentation, was shown to influence the final crystal symmetries.
This thesis presents experimental and theoretical investigations of the connection between the time asymmetry in the short-time evolution of particle clusters and the intrinsic irreversibility of turbulent flows due to the energy cascade. The term turbulence describes a special state of a continuous medium in which many interacting degrees of freedom are excited. One of the interesting phenomena observed in turbulent flows is their time irreversibility. When milk is stirred into coffee, for example, highly complex and interwoven structures are produced, making the mixing process irreversible. This behavior can be analyzed in more detail by studying the dispersion of particle clusters. Previous experimental and numerical studies on the time asymmetry in two-particle dispersion indicate that particles separate faster backwards than forwards in time, but no conclusive explanation has yet been provided. In this thesis, an experimental study on the short-time behavior of two- and four-particle dispersion in a turbulent water flow between two counter-rotating propellers is presented. A brief but rigorous theoretical analysis reveals that the observed time irreversibility is closely linked to the turbulence energy cascade. Additionally, it is demonstrated experimentally that the addition of minute amounts of polymers to the flow has a significant impact on multi-particle dispersion due to an alteration of the energy cascade.
This work presents a computational program based on the principles of non-commutative geometry and showcases several applications to topological insulators. Noncommutative geometry has been originally proposed by Jean Bellissard as a theoretical framework for the investigation of homogeneous condensed matter systems. Recently, this approach has been successfully applied to topological insulators, where it facilitated many rigorous results concerning the stability of the topological invariants against disorder.In the first part of the book the notion of a homogeneous material is introduced and the class of disordered crystals defined together with the classification table, which conjectures all topological phases from this class. The manuscript continues with a discussion of electrons' dynamics in disordered crystals and the theory of topological invariants in the presence of strong disorder is briefly reviewed. It is shown how all this can be captured in the language of noncommutative geometry using the concept of non-commutative Brillouin torus, and a list of known formulas for various physical response functions is presented. In the second part, auxiliary algebras are introduced and a canonical finite-volume approximation of the non-commutative Brillouin torus is developed. Explicit numerical algorithms for computing generic correlation functions are discussed. In the third part upper bounds on the numerical errors are derived and it is proved that the canonical-finite volume approximation converges extremely fast to the thermodynamic limit. Convergence tests and various applications concludes the presentation.The book is intended for graduate students and researchers in numerical and mathematical physics.
Smart Hydrogel Functional Materials comprehensively and systematically describes our current understanding of smart or intelligent hydrogel functional materials with environmental stimuli-responsive functions. The contents range from hydrogels (including hydrogel-functionalized membranes) to microgels (including hydrogel-functionalized microcapsules) with various response properties, such as thermo-response, pH-response, pH-/thermo-dual-response, glucose-response, ethanol-response, ion-recognition, molecular-recognition, and so on. Most of the contents in this book represent the fresh achievements of the authors’ group on smart hydrogel functional materials. While all chapters can be read as stand-alone papers, together they clearly describe the design concepts, fabrication strategies and methods, microstructures and performances of smart hydrogel functional materials. Vivid schematics and illustrations throughout the book enhance the accessibility of the theory and technologies involved. This is an ideal reference book for a broad general readership including chemists, materials researchers, chemical engineers, pharmaceutical scientists and biomedical researchers, who are interested in designing and fabricating smart hydrogel functional materials for various application purposes. Dr. Liang-Yin Chu is a professor at the School of Chemical Engineering, Sichuan University, China. He is a Distinguished Young Scholar of the National Natural Science Foundation of China and a Distinguished Professor of the “Chang Jiang Scholars Program” of the Ministry of Education of China.
This textbook presents the physical principles pertinent to the mathematical modeling of soft materials used in engineering practice, including both man-made materials and biological tissues. It is intended for seniors and masters-level graduate students in engineering, physics or applied mathematics. It will also be a valuable resource for researchers working in mechanics, biomechanics and other fields where the mechanical response of soft solids is relevant. Soft Solids: A Primer to the Theoretical Mechanics of Materials is divided into two parts. Part I introduces the basic concepts needed to give both Eulerian and Lagrangian descriptions of the mechanical response of soft solids. Part II presents two distinct theories of elasticity and their associated theories of viscoelasticity. Seven boundary-value problems are studied over the course of the book, each pertaining to an experiment used to characterize materials. These problems are discussed at the end of each chapter, giving students the opportunity to apply what they learned in the current chapter and to build upon the material in prior chapters.
Particulate products make up around 80% of chemical products, from all industry sectors. Examples given in this book include the construction materials, fine ceramics and concrete; the delicacies, chocolate and ice cream; pharmaceutical, powders, medical inhalers and sun screen; liquid and powder paints. Size distribution and the shape of the particles provide for different functionalities in these products. Some functions are general, others specific. General functions are powder flow and require - at the typical particulate concentrations of these products - that the particles cause adequate rheological behavior during processing and/or for product performance. Therefore, this book addresses particle packing as well as its relation to powder flow and rheological behavior. Moreover, general relationships to particle size are discussed for e.g. color and sensorial aspects of particulate products. Product-specific functionalities are often relevant for comparable product groups. Particle size distribution and shape provide, for example, the following functionalities: - dense particle packing in relation to sufficient strength is required in concrete construction, ceramic objects and pharmaceutical tablets - good sensorial properties (mouthfeel) to chocolate and ice cream - effective dissolution, flow and compression properties for pharmaceutical powders - adequate hiding power and effective coloring of paints for protection and the desired esthetical appeal of the objects - adequate protection of our body against sun light by sunscreen - effective particle transport and deposition to desired locations for medical inhalers and powder paints. Adequate particle size distribution, shape and porosity of particulate products have to be achieved in order to reach optimum product performance. This requires adequate management of design and development as well as sufficient knowledge of the underlying principles of physics and chemistry. Moreover, flammability, explosivity and other health hazards from powders, during handling, are taken into account. This is necessary, since great risks may be involved. In all aspects, the most relevant parameters of the size distribution (and particle shape) have to be selected. In this book, experts in the different product fields have contributed to the product chapters. This provides optimum information on what particulate aspects are most relevant for behavior and performance within specified industrial products and how optimum results can be obtained. It differs from other books in the way that the critical aspects of different products are reported, so that similarities and differences can be identified. We trust that this approach will lead to improved optimization in design, development and quality of many particulate products.
Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of infinite volume dynamics of non-relativistic quantum particles with short-range, possibly time-dependent interactions.In particular, the existence of fundamental solutions is shown for those (non-autonomous) C*-dynamical systems for which the usual conditions found in standard theories of (parabolic or hyperbolic) non-autonomous evolution equations are not given. In mathematical physics, bounds on multi-commutators of an order higher than two can be used to study linear and non-linear responses of interacting particles to external perturbations. These bounds are derived for lattice fermions, in view of applications to microscopic quantum theory of electrical conduction discussed in this book. All results also apply to quantum spin systems, with obvious modifications. In order to make the results accessible to a wide audience, in particular to students in mathematics with little Physics background, basics of Quantum Mechanics are presented, keeping in mind its algebraic formulation. The C*-algebraic setting for lattice fermions, as well as the celebrated Lieb-Robinson bounds for commutators, are explained in detail, for completeness. |
You may like...
A Minimal Libertarianism - Free Will and…
Christopher Evan Franklin
Hardcover
R2,837
Discovery Miles 28 370
Metaphysics in Contemporary Physics
Tomasz Bigaj, Christian Wuthrich
Hardcover
R4,345
Discovery Miles 43 450
Full-Duplex Wireless Communications…
Tho Le-Ngoc, Ahmed Masmoudi
Hardcover
R3,731
Discovery Miles 37 310
Foundation Models for Natural Language…
Gerhard Paaß, Sven Giesselbach
Hardcover
R884
Discovery Miles 8 840
Towards Adaptive Spoken Dialog Systems
Alexander Schmitt, Wolfgang Minker
Paperback
R3,314
Discovery Miles 33 140
|