![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > General
This book covers polarization, alignment, and orientation effects in atomic collisions induced by electron, heavy particle, or photon impact. The first part of the book presents introductory chapters on light and particle polarization, experimental and computational methods, and the density matrix and state multipole formalism. Examples and exercises are included. The second part of the book deals with case studies of electron impact and heavy particle excitation, electron transfer, impact ionization, and autoionization. A separate chapter on photo-induced processes by new-generation light sources has been added. The last chapter discusses related topics and applications. Part III includes examples of charge clouds and introductory summaries of selected seminal papers of tutorial value from the early history of the field (1925 - 1975). The book is a significant update to the previous (first) edition, particularly in experimental and computational methods, the inclusion of key results obtained during the past 15 years, and the extended coverage of photo-induced processes. It is intended as an introductory text for both experimental and theoretical students and researchers. It can be used as a textbook for graduate courses, as a primary source for special topics and seminar courses, and as a standard reference. The book is accompanied by electronically available copies of the full text of the key papers in Part III, as well as animations of theoretically predicted electron charge clouds and currents for some of the cases discussed in Part II.
This thesis presents the first systematic electron transport investigation of rhombohedral graphite (RG) films and thus lies at the interface of graphene physics, vdW heterostructure devices and topological matter. Electron transport investigation into the rhombohedral phase of graphite was limited to a few layers of graphene due to the competing hexagonal phase being more abundant. This work reports that in exfoliated natural graphite films, rhombohedral domains of up to 50 layers can be found. In the low energy limit, these domains behave as an N-layer generalisation of graphene. Moreover, being a potential alternative to twisted bilayer graphene systems, RG films show a spontaneous metal-insulator transition, with characteristic symmetry properties that could be described by mean-field theory where superconductivity is also predicted in these low energy bands. A nodal-line semimetal in the bulk limit, RG thin films are a 3D generalisation of the simplest topological insulator model: the Su-Schrieffer-Heeger chain. Similar to the more usual topological insulators, RG films exhibit parallel conduction of bulk states, which undergo three-dimensional quantum transport that reflects bulk topology.
This book traces the history of ideas about the nature of matter and also the way that mankind has used material resources that the world offers. Starting with the ideas of ancient civilizations that air, earth, fire and water were the basic ingredients of all matter, it traces the development of the science of chemistry beginning within the ranks of the alchemists. First, the idea of elements grew and then the atomic nature of matter was verified. Physicists had entered the scene, showing the nature of atoms in terms of fundamental particles and then introducing the concept of wave-particle duality that altered the basic concepts of what matter was. Finally the physicists discovered a panoply of fundamental particles, some observed within atom-smashing machines and the existence of others merely postulated. In parallel with the above there is a description of various kinds of matter as it affects everyday life including the nature of matter associated with life itself. The way that early man used the materials directly given by nature, such as stone, wood and animal skins, is followed by the use of materials requiring some process to be employed, e.g. metals which include bronze and also concrete. Some important modern materials are discussed, such as synthetic fibres and plastics and semiconductors, and potentially important future products from new developments in nanotechnology.
This book traces the history of ideas about the nature of matter and also the way that mankind has used material resources that the world offers. Starting with the ideas of ancient civilizations that air, earth, fire and water were the basic ingredients of all matter, it traces the development of the science of chemistry beginning within the ranks of the alchemists. First, the idea of elements grew and then the atomic nature of matter was verified. Physicists had entered the scene, showing the nature of atoms in terms of fundamental particles and then introducing the concept of wave-particle duality that altered the basic concepts of what matter was. Finally the physicists discovered a panoply of fundamental particles, some observed within atom-smashing machines and the existence of others merely postulated. In parallel with the above there is a description of various kinds of matter as it affects everyday life, including the nature of matter associated with life itself. The way that early man used the materials directly given by nature, such as stone, wood and animal skins, is followed by the use of materials requiring some process to be employed, e.g. metals which include bronze and also concrete. Some important modern materials are discussed, such as synthetic fibres and plastics and semiconductors, and potentially important future products from new developments in nanotechnology.
The concepts of the Jahn-Teller effect and vibronic coupling are
being applied to more and more systems in both chemistry and
physics. Aspects of structural chemistry such as the distortion of
the nuclear framework to a lower-symmetry conformation have
received an increasing attention, as well as the dynamics on the
coupled potential energy surfaces.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
The original Handbook of Surface and Interface Analysis: Methods for Problem-Solving was based on the authors? firm belief that characterization and analysis of surfaces should be conducted in the context of problem solving and not be based on the capabilities of any individual technique. Now, a decade later, trends in science and technology appear to have validated their assertions. Major instrumental assets are generally funded and maintained as central facilities to help potential users make informed decisions about their appropriate use in solving analytical problem(s). Building on the popular first edition, this long-awaited second edition was motivated by the increasingly common industry view that it is more cost-effective to contract out analytical services than to maintain in-house facilities. Guided by that trend, this book focuses on developing strategic thinking for those who decide which facilities to access and where to subcontract analytical work. It covers most of the major tactical issues that are relevant at the location in which data are being produced. New Information in this Second Edition Includes:
Assessing benefits and limitations of different methodologies, this volume provides the essential physical basis and common modes of operation for groups of techniques. Exploring methods for characterization and analysis of particular types of materials and/or their relevant applications?the text synergizes traditional and novel ideas to help readers develop a versatile and rational approach to surface and interface analysis.
This edition of the private and scientific correspondence of Sir Rudolf Peierls gives a unique insight into the life and work of one of the greatest theoretical physicists of the 20th century. Rudolf Peierls' scientific work contributed to the early developments in quantum mechanics, and he is well known and much appreciated for his contributions to various disciplines, including solid state physics, nuclear physics, and particle physics. As an enthusiastic and devoted teacher, he passed on his knowledge and understanding and inspired the work of collaborators and students alike. As an effective administrator he was responsible, almost single-handedly, for the establishment of an outstanding successful centre of theoretical physics in Birmingham, and later contributed much to theoretical physics in Oxford.A meticulous collector of correspondence, Sir Rudolf left a fascinating collection of letters, in some cases spanning more than seven decades. This collection includes correspondence with his parents, his wife, the Russian-born physicist Genia Kannegieser, life-long friends such as Hans Bethe, and many great physicists, including Wolfgang Pauli, Niels Bohr, Werner Heisenberg, Lev Landau, and George Placzek, to name but a few.The second volume, which covers the years 1945 to 1995, contains fascinating documents from the early postwar period, when Peierls, like many of his colleagues elsewhere, attempted to rebuild academic life in the aftermath of the Second World War. Materials from the 1950s provide evidence for the significance of the research undertaken by Peierls' group at Birmingham, and for the positive impact of his determined implementation of international exchange on the development of theoretical physics. Later documents illustrate the role played by Peierls in nuclear disarmament, and as a link between East and West through his own personal contacts and within international organisations such as the Pugwash Movement. The extensive apparatus provides an invaluable background which allows the reader to put the documents into their multi-faceted social, political and scientific context.
Core level spectroscopy has become a powerful tool in the study of electronic states in solids. From fundamental aspects to the most recent developments, Core Level Spectroscopy of Solids presents the theoretical calculations, experimental data, and underlying physics of x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and resonant x-ray emission spectroscopy (RXES). Starting with the basic aspects of core level spectroscopy, the book explains the many-body effects in XPS and XAS as well as several theories. After forming this foundation, the authors explore more advanced features of XPS, XAS, XMCD, and RXES. Topics discussed include hard XPS, resonant photoemission, spin polarization, electron energy loss spectroscopy (EELS), and resonant inelastic x-ray scattering (RIXS). The authors also use the charge transfer multiplet theory to interpret core level spectroscopy for transition metal and rare earth metal systems. Pioneers in the theoretical and experimental developments of this field, Frank de Groot and Akio Kotani provide an invaluable treatise on the numerous aspects of core level spectroscopy that involve solids.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
The present volume includes most of the material of the invited lectures delivered at the NATO Advanced Study Institute "Morphogenesis through the interplay of nonlinear chemical instabilities and elastic active media" held from 2th to 14th July 2007 at the Institut d'Etudes Scientifiques de Cargese (http: //www.iesc.univ-corse.fr/), in Corsica (France). This traditional place to organize Summer Schools and Workshops in a well equipped secluded location at the border of the Mediterranean sea has, over many years now, earned an increasing deserved reputation. Non-linear dynamics of non equilibrium systems has worked its way into a great number of fields and plays a key role in the understanding of se- organization and emergence phenomena in domains as diverse as chemical reactors, laser physics, fluid dynamics, electronic devices and biological morphogenesis. In the latter case, the viscoelastic properties of tissues are also known to play a key role. The control and formulation of soft responsive or "smart" materials has been a fast growing field of material science, specially in the area of po- mer networks, due to their growing applications in bio-science, chemical sensors, intelligent microfluidic devices, ... . Nature is an important p- vider of active materials whether at the level of tissues or at that of s- cellular structures. As a consequence, the fundamental understanding of the physical mechanisms at play in responsive materials also shines light in the understanding of biological artefacts."
Liquid crystals allow us to perform experiments that provide insight into fundamental problems of modern physics, such as phase transitions, frustration, elasticity, hydrodynamics, defects, growth phenomena, and optics (linear and non linear). This excellent volume meets the need for an up-to-date text on liquid crystals. Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments is a result of personal research and of the graduate lectures given by the authors at the Ecole Normale Superieure de Lyon and the University of Paris VII, respectively. The first part of the book presents historical background, the modern classification of liquid crystals, and mesogenic anatomy; the second part examines liquid crystals with nematic and cholesteric orientational order. Topics include dielectric and magnetic properties, Frederiks transitions and displays, light scattering, flow and electrohydrodynamic instabilities, surface anchoring transitions, interfaces, equilibrium shapes, and the Mullins-Sekerka instability. Smectic and columnar liquid crystals are covered in more detail by the authors in a separate volume, entitled Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments. The presentation is illustrated throughout by simple experiments, some of which were performed in class. Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments provides a useful reference intended for advanced undergraduate and graduate students and researchers in liquid crystals, condensed matter physics, and materials science.
This book is a compilation of selected papers from the 8th International Multidisciplinary Conference on Optofluidics (IMCO 2018) held in Shanghai on August 5-8, 2018, as well as papers from the IMCO 2019 held in Hong Kong on June 14-17, 2019. The work focuses on the current development in the fields of optofluidics, microfluidics, silicon photonics, optical metamaterials and other related areas. Readers from both academia and industry will benefit from the experts' opinion and the lasted development in the multidisciplinary field of optofluidics.
Cottam and Tilley provide an introduction to the properties of
wave-like excitations associated with surfaces and interfaces. The
emphasis is on acoustic, optic and magnetic excitations, and apart
from one section on liquid surfaces, the text concentrates on
solids. The important topic of superlattices is also discussed, in
which the different kinds of excitation are considered from a
unified point of view.
This invaluable book explores the delicate interplay between geometry and statistical mechanics in materials such as microemulsions, wetting and growth interfaces, bulk lyotropic liquid crystals, chalcogenide glasses and sheet polymers, using tools from the fields of polymer physics, differential geometry, field theory and critical phenomena. Several chapters have been updated relative to the classic 1989 edition. Moreover, there are now three entirely new chapters - on effects of anisotropy and heterogeneity, on fixed connectivity membranes and on triangulated surface models of fluctuating membranes.
Providing a comprehensive introduction with the necessary background material to make it accessible for a wide scientific audience, Kinetics of Phase Transitions discusses developments in domain-growth kinetics. This book combines pedagogical chapters from leading experts in this area and focuses on incorporating various experimentally relevant effects-such as disorder, strain fields, and wetting surfaces-into studies of phase ordering dynamics. In addition, it highlights topics garnering recent interest, such as the growth of nanostructures on surfaces. This book also provides a comprehensive overview of numerical techniques, which have proven useful in studying these complex nonlinear problems.
This is a revised edition of the 1999 text on the electronic structure and properties of solids, similar in spirit to the well-known 1980 text "Electronic Structure and the Properties of Solids. The revisions include an added chapter on glasses, and rewritten sections on spin-orbit coupling, magnetic alloys, and actinides. The text covers covalent semiconductors, ionic insulators, simple metals, and transition-metal and f-shell-metal systems. It focuses on the most important aspects of each system, making what approximations are necessary in order to proceed analytically and obtain formulae for the properties. Such back-of-the-envelope formulae, which display the dependence of any property on the parameters of the system, are characteristic of Harrison's approach to electronic structure, as is his simple presentation and his provision of all the needed parameters. In spite of the diversity of systems and materials, the approach is systematic and coherent, combining the tight-binding (or atomic) picture with the pseudopotential (or free-electron) picture. This provides parameters--the empty-core radii as well as the covalent energies--and conceptual bases for estimating the various properties of all these systems. Extensive tables of parameters and properties are included. The book has been written as a text, with problems at the end of each chapter, and others can readily be generated by asking for estimates of different properties, or different materials, than those treated in the text. In fact, the ease of generating interesting problems reflects the extraordinary utility and simplicity of the methods introduced. Developments since the 1980 publication have made the theory simpler andmuch more accurate, besides allowing much wider application.
This is a revised edition of the 1999 text on the electronic structure and properties of solids, similar in spirit to the well-known 1980 text "Electronic Structure and the Properties of Solids. The revisions include an added chapter on glasses, and rewritten sections on spin-orbit coupling, magnetic alloys, and actinides. The text covers covalent semiconductors, ionic insulators, simple metals, and transition-metal and f-shell-metal systems. It focuses on the most important aspects of each system, making what approximations are necessary in order to proceed analytically and obtain formulae for the properties. Such back-of-the-envelope formulae, which display the dependence of any property on the parameters of the system, are characteristic of Harrison's approach to electronic structure, as is his simple presentation and his provision of all the needed parameters. In spite of the diversity of systems and materials, the approach is systematic and coherent, combining the tight-binding (or atomic) picture with the pseudopotential (or free-electron) picture. This provides parameters--the empty-core radii as well as the covalent energies--and conceptual bases for estimating the various properties of all these systems. Extensive tables of parameters and properties are included. The book has been written as a text, with problems at the end of each chapter, and others can readily be generated by asking for estimates of different properties, or different materials, than those treated in the text. In fact, the ease of generating interesting problems reflects the extraordinary utility and simplicity of the methods introduced. Developments since the 1980 publication have made the theory simpler andmuch more accurate, besides allowing much wider application.
This important book provides an introduction to the liquid state. A qualitative description of liquid properties is first given, followed by detailed chapters on thermodynamics, liquid structure in relation to interaction forces and transport properties such as diffusion and viscosity. Treatment of complex fluids such as anisotropic liquid crystals and polymers, and of technically important topics such as non-Newtonian and turbulent flows, is included. Surface properties and characteristics of the liquid-vapour critical point are also discussed. While the book focuses on classical liquids, the final chapter deals with quantal fluids.
Over the last twenty years, the growing availability of computing power has had an enormous impact on the classical fields of direct and inverse scattering. The study of inverse scattering, in particular, has developed rapidly with the ability to perform computational simulations of scattering processes and led to remarkable advances in a range of applications, from medical imaging and radar to remote sensing and seismic exploration.
This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics. |
You may like...
Understanding Viscoelasticity - An…
Nhan Phan-Thien, Nam Mai-Duy
Hardcover
R3,105
Discovery Miles 31 050
The Science and Function of…
Amanda S. Harper-Leatherman, Camille M. Solbrig
Hardcover
R5,464
Discovery Miles 54 640
Advances in Nanomaterials for Drug…
Mahdi Karimi, Maryam Rad Mansouri, …
Hardcover
R1,498
Discovery Miles 14 980
Fiber Materials - Design, Fabrication…
Jeenat Aslam, Chandrabhan Verma
Hardcover
R4,985
Discovery Miles 49 850
Magnonics - Interface Transmission…
Abdellatif Akjouj, Leonard Dobrzynski, …
Paperback
R2,620
Discovery Miles 26 200
Linear and Nonlinear Optical Responses…
Miguel Ãngel Sánchez MartÃnez
Hardcover
R4,224
Discovery Miles 42 240
|