![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > General
Over the last twenty years, the growing availability of computing power has had an enormous impact on the classical fields of direct and inverse scattering. The study of inverse scattering, in particular, has developed rapidly with the ability to perform computational simulations of scattering processes and led to remarkable advances in a range of applications, from medical imaging and radar to remote sensing and seismic exploration.
This study of Australian business institutions and practices places
the rise of big business in Australia in a comparative context
through a study of its 100 largest firms in the first six and a
half decades of the 20th century.
This text looks at the physical and chemical properties of particulate matter, including the use of various microscopic techniques. It then describes the effects that these particles have on the biology and health of humans, particularly on the effects studied in the lungs. The book describes how particulate matter is monitored, looks at the ways to decrease particles in the air, and includes discussions of government policy and legislation. Particle toxicology studies have undergone significant changes since 1995, and this book captures the current picture.
We are pleased to present the Proceedings of the NATO Advanced Research Workshop "Syntheses, Properties and Applications of Ultrananocrystalline Diamond" which was held June 7-10, 2004 in St. Petersburg, Russia. The main goal of the Workshop was to provide a forum for the intensive exchange of opinions between scientists from Russia and NATO countries in order to give additional impetus to the development of the science and applications of a new carbon nanostructure, called ultrananocrystalline diamond (UNCD) composed of 2-5 nm crystallites. There are two forms of UNCD, dispersed particles and films. The two communities of researchers working on these two forms of UNCD have hitherto lacked a common forum in which to explore areas of scientific and technological overlap. As a consequence, the two fields have up to now developed independently of each other. The time had clearly come to remedy this situation in order to be able to take full advantage of the enormous potential for societal benefits to be derived from exploiting the synergistic relationships between UNCD dispersed particulates and UNCD films. The NATO sponsored ARW therefore occurred in a very timely manner and was successful in beginning the desired dialogue, a precondition for making progress toward the above stated goal. The discovery of UNCD completes a triadof nanostructured carbonswhich includes fullerenes and nanotubes.
This monograph introduces an exact model for a critical spin chain with arbitrary spin S, which includes the Haldane--Shastry model as the special case S=1/2. While spinons in the Haldane-Shastry model obey abelian half-fermi statistics, the spinons in the general model introduced here obey non-abelian statistics. This manifests itself through topological choices for the fractional momentum spacings. The general model is derived by mapping exact models of quantized Hall states onto spin chains. The book begins with pedagogical review of all the relevant models including the non-abelian statistics in the Pfaffian Hall state, and is understandable to every student with a graduate course in quantum mechanics.
Symmetry exists in realms from crystals to patterns, in external shapes of living or non-living objects, as well as in the fundamental particles and the physical laws that govern them. In fact, the search for this symmetry is the driving force for the discovery of many fundamental particles and the formulation of many physical laws. While one can not imagine a world which is absolutely symmetrical nor can one a world which is absolutely asymmetrical. These two aspects of nature are intermingled with each other inseparably. This is the basis of the existence of aperiodicity manifested in the liquid crystals and also quasi-crystals also discussed in Crystallography and the World of Symmetry ."
This volume contains the best lectures from the Summer School Lectures volumes dealing with the theme of pattern formation. Topics include self-organization by simulated evolution, nonlinear dynamics of pattern formation in physics and biology, and the emergence of computational ecologies.
This is a comprehensive treatment of the field of SPR sensors, in three parts. Part I introduces principles of surface plasmon resonance bio-sensors, electromagnetic theory of surface plasmons, theory of SPR sensors and molecular interactions at sensor surfaces. Part II examines the development of SPR sensor instrumentation and functionalization methods. Part III reviews applications of SPR biosensors in the study of molecules, and in environmental monitoring, food safety and medical diagnostics.
This fourth edition of this volume features a new chapter on computational methods that presents the basic principles on which most modern computer programs are developed. It introduces an example on rotor balancing and expands on the section on shock spectrum and isolation. It adds coverage of the methods of assumed modes and incorporates a new section on suspension bridges to illustrate the application of the continous system theory to simplified models for the calculation of natural frequencies.
This text describes the statistical mechanics of classical spin systems with quenched disorder. The first part covers the physics of spin-glass states using results obtained within the framework of the mean field theory of spin glasses. The second part is devoted to the theory of critical phenomena in the presence of weak quenched disorder. This includes a systematic derivation of the traditional renormalization group theory. In the third part Dotsenko describes other types of disordered systems, relating them to new results at the frontiers of modern research. The book is suitable for graduate students and researchers in the field of statistical mechanics of disordered systems.
This important book provides an introduction to the liquid state. A qualitative description of liquid properties is first given, followed by detailed chapters on thermodynamics, liquid structure in relation to interaction forces and transport properties such as diffusion and viscosity. Treatment of complex fluids such as anisotropic liquid crystals and polymers, and of technically important topics such as non-Newtonian and turbulent flows, is included. Surface properties and characteristics of the liquid-vapour critical point are also discussed. While the book focuses on classical liquids, the final chapter deals with quantal fluids.
Written by an experimentalist famous for his discovery of stishovite, with vast experience in phase transition studies, this book is devoted to a description of the continuous and discontinuous phase transitions. It includes chapters outlining the Van der Waals model, hard sphere and soft sphere models of melting, scaling phenomena, renormgroup approach to phase transitions, and experimental examples to illustrate various phase transitions.Unlike conventional books covering the same topic, this is meant for undergraduate students and experimentalists to understand basic concepts in the physics of phase transitions.
This textbook highlights the theory of fractional calculus and its wide applications in mechanics and engineering. It describes in details the research findings in using fractional calculus methods for modeling and numerical simulation of complex mechanical behavior. It covers the mathematical basis of fractional calculus, the relationship between fractal and fractional calculus, unconventional statistics and anomalous diffusion, typical applications of fractional calculus, and the numerical solution of the fractional differential equation. It also includes latest findings, such as variable order derivative, distributed order derivative and its applications. Different from other textbooks in this subject, the book avoids lengthy mathematical demonstrations, and presents the theories in close connection to the applications in an easily readable manner. This textbook is intended for students, researchers and professionals in applied physics, engineering mechanics, and applied mathematics. It is also of high reference value for those in environmental mechanics, geotechnical mechanics, biomechanics, and rheology.
Igor Musevic, Cindy Nieuwkerk and Theo Rasing Since the pioneering work on surface-induced alignment of liquid crystals, performed by Lehmann 1], Grandjean 2], Mauguin 3], Chatelain 4], and others 5], scientist have been looking for the answer to the question: why do certain surfaces align liquid crystals and others not'? The answer to this question has become even more important with the advent of modern liquid crystal display technologies, that are based on re liable and technologically controllable surface alignment of liquid crystals, used in a variety of electrooptic devices, such as liquid crystal displays, light modulators, optical shutters, switches, holographic systems, etc. During the last decade, the progress in the technology of liquid crystal devices, as well as the discovery of a variety of novel liquid crystalline phases have triggered a considerable and intense scientific interest in the microscopic origin of surface alignment. Fortunately, this renewed scientific and techno logical interest was accompanied by the advent of modern, surface sensitive experimental techniques, that have been successfully used in the study of liquid crystal interfaces. Whereas a decade ago the mechanisms of surface alignment were "poorly understood," nowadays we can claim that we do un derstand most of the "mysteries" of the surface alignment of liquid crystals."
The monograph presents a comparative analysis of different thermodynamic models of the equations of state. The basic ideological premises of the theoretical methods and the experiment are considered. The principal attention is on the description of states that are of greatest interest for the physics of high energy concentrations which are either already attained or can be reached in the near future in controlled terrestrial conditions, or are realized in astrophysical objects at different stages of their evolution. Ultra-extreme astrophysical and nuclear-physical applications are also analyzed where the thermodynamics of matter is affected substantially by relativism, high-power gravitational and magnetic fields, thermal radiation, transformation of nuclear particles, nucleon neutronization, and quark deconfinement. The book is intended for a wide range of specialists engaged in the study of the equations of state of matter and high energy density physics, as well as for senior students and postgraduates.
This revised second edition of a popular handbook for engineers describes the important relationship between high-energy radiation environments, electronic device physics and materials. It is a straightforward account of the problems which arise when high-energy radiation bombards matter and of engineering methods for solving those problems. Radiation effects are a problem encountered in the use of highly engineered materials such as semiconductors, optics and polymers. The finely-tuned properties of these materials may change drastically when exposed to a radiation environment such as a bean of X-rays or electrons, the space environment or the 'hadrons' in CERN's new collider. All of these environments and several more are described. The impact of these environments on microelectronics in computing, data processing and communication is the core of this book (highlighted in chapters on MOS and optical devices). While unashamedly oriented to the engineer-designer and manager, with descriptions in a highly readable form, there is no compromise in physical accuracy when describing high-energy radiation and the effects it produces, such as electronic failure, colour centres and the decay of strength. A great breadth of technical data, needed to make predictions on the spot, is presented, with literature references needed for further research and also a compendium of websites which have been tested and used by authors.
Illustrating the important aspects of tensor calculus, and highlighting its most practical features, Physical Components of Tensors presents an authoritative and complete explanation of tensor calculus that is based on transformations of bases of vector spaces rather than on transformations of coordinates. Written with graduate students, professors, and researchers in the areas of elasticity and shell theories in mind, this text focuses on the physical and nonholonomic components of tensors and applies them to the theories. It establishes a theory of physical and anholonomic components of tensors and applies the theory of dimensional analysis to tensors and (anholonomic) connections. This theory shows the relationship and compatibility among several existing definitions of physical components of tensors when referred to nonorthogonal coordinates. The book assumes a basic knowledge of linear algebra and elementary calculus, but revisits these subjects and introduces the mathematical backgrounds for the theory in the first three chapters. In addition, all field equations are also given in physical components as well. Comprised of five chapters, this noteworthy text: Deals with the basic concepts of linear algebra, introducing the vector spaces and the further structures imposed on them by the notions of inner products, norms, and metrics Focuses on the main algebraic operations for vectors and tensors and also on the notions of duality, tensor products, and component representation of tensors Presents the classical tensor calculus that functions as the advanced prerequisite for the development of subsequent chapters Provides the theory of physical and anholonomic components of tensors by associating them to the spaces of linear transformations and of tensor products and advances two applications of this theory Physical Components of Tensors contains a comprehensive account of tensor calculus, and is an essential reference for graduate students or engineers concerned with solid and structural mechanics.
The morphology that results during the growth of a material on the substrate of a different material is central to the fabrication of all quantum heterostructures. This morphology is determined by several factors, including the manner in which strain is accommodated if the materials have different lattice constants. One of the most topical manifestations of lattice mis't is the formation of coherent thr- dimensional(3D)islandsduringtheStranski-Krastanovgrowthofahighly-strained system. The prototypical cases are InAs on GaAs(001) and Ge on Si(001), though other materials combinations also exhibit this phenomenon. When the 3D islands are embedded within epitaxiallayers of a material that has a wider band gap, the carriers within the islands are con?ned by the potential barriers that surround each island, forming an array of quantum dots (QDs). Such structures have been produced for both basic physics studies and device fab- cation, including QD lasers and light-emitting diodes (LEDs) operating at the c- mercially important wavelengths of 1.3 u m and 1.55 u m. On a more speculative level, QD ensembles have been suggested as a possible pathway for the solid-state implementation of a quantum computer. Although some of the principles of qu- tum computing have been veri?ed by other means, the practical utilization of this new computingparadigmmay warrant some sort of solid state architecture. QDs are seen as possible components of such a computer, as evidenced by a number of papersappearingintheliteratureproposingQD-basedarchitecturesandworkshops that are being organized to explore these possibilities."
This book combines the perspectives of materials science of
Superplasticity, on the one hand, and those of design and
mechanics, on the other, in order to provide a holistic view of
materials, design, mechanics and performance which will lead to
useful solutions of societal benefits, in addition to providing
great intellectual challenges. After considering the experimental
evidence for superplasticity in different classes of materials, the
book discusses the physics-based models, along with their
advantages and limitations. Then, the analyses for superplastic
forming available in the framework of continuum mechanics, finite
element analysis and numerical simulations are presented. Finally,
the authors highlight some successful industrial
applications.
"Semiconductor Devices: Physics and Technology, Third Edition" is an introduction to the physical principles of modern semiconductor devices and their advanced fabrication technology. It begins with a brief historical review of major devices and key technologies and is then divided into three sections: semiconductor material properties, physics of semiconductor devices and processing technology to fabricate these semiconductor devices.
Quantum Theory: Density, Condensation, and Bonding presents in a unitary manner the main actual theories of matter, mainly the density function theory (DFT) for fermions, the Bose-Einstein condensation (BEC) for bosons, and chemical bonding as a special realization of the first two so-called mixed fermionic-bosonic states. The book covers the modern and ultimately developed quantum theories involving the key concepts of density, condensation, and bonding. The book compiles, for the first time, the density functional theory with Bose-Einstein condensation and chemical bonding theories in a fresh and novel perspective. The book introduces modern theories of matter structure and explains the nature of chemical bonds under the consecrated and ultimate quantum paradigms of molecular structure. The book is divided into three parts, one for each level of studies: Part I: Primer Density Functional Theory is suitable for undergraduate introductory courses in physics, chemistry, and the natural sciences. Part II: Primer Density Functional Bose-Einstein Condensation Theory would be suitable for graduate- or master-level courses in physics or natural sciences. Part III: Modern Quantum Theories of Chemical Bonding is written for the post-graduate, master or doctorate courses on quantum structure of molecules in chemistry or natural sciences. Thus, this book is organized as a succession of three linked courses, from undergraduate, to graduate, to postgraduate levels in modern quantum theories of many-body systems. It covers three main concepts: density, condensation, and bonding and contains the most celebrated and challenging theories of matter. The book provides a fresh perspective on the quantum theory of structure of physico-chemical systems and will show students at all levels and researchers the way for future elaboration and discoveries toward the unification of the physical and chemical concepts of matter.
Modern Synthetic and Application Aspects of Polysilanes: An
Underestimated Class of Materials?, by A. Feigl, A. Bockholt, J.
Weis, and B. Rieger;
This book presents a consistent mathematical theory of the non-electronic physical properties of disordered and amorphous solids, starting from the atomic-level dynamics and leading to experimentally verifiable descriptions of macroscopic properties such as elastic and viscoelastic moduli, plasticity, phonons and vibrational spectra, and thermal properties. This theory begins with the assumption of the undeniable existence of an “amorphous lattice”, which allows one to relegate the theoretical uncertainties about the ultimate nature of the glass transition to a subsidiary role and thus take a more pragmatic approach towards the modelling of physical properties. The book introduces the reader not only to the subtle physical concepts underlying the dynamics, mechanics, and statistical physics of glasses and amorphous solids, but also to the essential mathematical and numerical methods that cannot be readily gleaned from specialized literature since they are spread out among many often technically demanding papers. These methods are presented in this book in such a way as to be sufficiently general, allowing for the mathematical or numerical description of novel physical phenomena observed in many different types of amorphous solids (including soft and granular systems), regardless of the atomistic details and particular chemistry of the material. This monograph is aimed at researchers and graduate-level students in physics, materials science, physical chemistry and engineering working in the areas of amorphous materials, soft matter and granular systems, statistical physics, continuum mechanics, plasticity, and solid mechanics. It is also particularly well suited to those working on molecular dynamics simulations, molecular coarse-grained simulations, as well as ab initio atomistic and DFT methods for solid-state and materials science. |
![]() ![]() You may like...
Semantic Web for the Working Ontologist…
James Hendler, Fabien Gandon, …
Hardcover
R2,375
Discovery Miles 23 750
Elliptic Systems of Phase Transition…
Nicholas D. Alikakos, Giorgio Fusco, …
Hardcover
R3,071
Discovery Miles 30 710
Ubiquitous Information Technologies and…
Youn-Hee Han, Doo-Soon Park, …
Hardcover
R6,118
Discovery Miles 61 180
VHDL '92 - The New Features of the VHDL…
Jean-Michel Berge, Etc, …
Hardcover
R2,647
Discovery Miles 26 470
Introducing Delphi Programming - Theory…
John Barrow, Linda Miller, …
Paperback
![]() R863 Discovery Miles 8 630
|