![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > General
This book guides designers, process engineers, or mechanics to select and use anaerobic machinery adhesives for sealing flanged joints, designing threaded connections for security and sealing, and designing adhesive assists for more durable shrink, press, and slip fitted assemblies.
Thin layer chromatography (TLC) is well suited for performing enantioseparations for research as well as larger-scale applications. A fast, inexpensive, and versatile separation technique, there are many practical considerations that contribute to its effectiveness. Thin Layer Chromatography in Chiral Separations and Analysis is the first book to focus solely on the theory, capabilities, and applications of TLC for direct and indirect enantioseparations. The first part of the book examines the fundamental principles of chirality and TLC. It describes the necessary materials, laboratory equipment, procedures, and strategies for the separation, quantification, isolation, and analysis of chiral compounds. The second part evaluates the real-world enantioseparations and densitometric analyses. Emphasizing pharmaceutical applications, the book discusses chiral separation mechanisms and methods for analyzing the chiral purity of diastereoisomers, amino acids, beta-blockers, and NSAIDS. Topics also include commercial stationary phases and chiral modifiers of mobile phases. Thin Layer Chromatography in Chiral Separations and Analysis presents a unified perspective of theory and experimental details underlying the collective developments in the field. The book offers scientists in a variety of disciplines and levels of expertise a complete guide to understanding the current and potential applications of chiral TLC.
With the advent of analytical techniques and capabilities to measure particle sizes in nanometer ranges, there has been tremendous interest in the use of nanoparticles for more efficient methods of drug delivery. Nanoparticulate Drug Delivery Systems addresses the scientific methodologies, formulation, processing, applications, recent trends, and emerging technologies in the research of nanoparticulate drug delivery systems (NPDDS). It extensively covers applications of NPDDS- including lipid nanoparticles for dermal applications; nanocarriers for the treatment of restenosis; and for ocular, central nervous system, and gastrointestinal applications. It also explores its use as an adjuvant for vaccine development. Supplying insight from international experts, this guide Discusses formulation for poorly soluble drugs Presents biological requirements for nanotherapeutic applications Demonstrates the role of nanobiotechnology in the development of nanomedicine Documents recent advances in nanoparticulate technology-including electrospining, formation of microcrystals, and production of liquid crystalline phases Examines the technology of metallic nanoparticles
As radiological residue, both naturally occurring and technologically driven, works its way through the ecosystem, we see its negative effects on the human population. Radionuclide Concentrations in Food and the Environment addresses the key issues concerning the relationship between natural and manmade sources of environmental radioactivity, their transportation through the ecosystem, and the subsequent radionuclide concentrations in foods and the human population. The book discusses the negative effects of environmental radioactivity on plants and animals, as well as the effects of radiocontaminated food on human health, and perspectives for transfer prevention. Beginning with the fundamentals of matter and the behavior of particles, the text lays a solid foundation for discussions on the source of radionuclides and their concentrations in air, water, and soil. Using predictive modeling, the authors examine the transfer of radionuclides through ecosystems and their effects on individual substances. The book provides up-to-date information on monitoring programs and legislation, detailed descriptions of detection systems, and evaluations of safety protocols in radioanalytical laboratories and in food processing. The authors devote considerable attention to the nuclear and radiological terrorist threat, illicit trafficking and masking of radioactive materials, event scenarios, and radiological forensics.
Featuring contributions from leading experts, Organic Photochemistry and Photophysics is a unique resource that addresses the organic photochemistry and photophysical behavior in aromatic molecules, thiocarbonyls, selected porphyrins, and metalloporphyrins. The book presents theories pertaining to radiative and radiationless transitions. It describes excited-state proton-transfer reactions of aromatic compounds and the physical, energetic, and environmental effects of atom transfer reactions. The text discusses the role of the carbonyl and azo groups in ketones and azoalkanes in the development of photochemistry, followed by a review of nucleophilic substitution reactions in the photochemistry of aromatics (also called photosubstitution) and the various atomic bonds that result from these reactions. The book presents studies that explain the factors that govern the nature and efficiencies of SET-promoted photochemical reactions. It then focuses on photoamination as a convenient, powerful, and environmentally friendly synthetic process for transforming a variety of substrates into the corresponding aminated compounds. The final chapter explores how dye structure affects the sequence-dependence of DNA binding, which has potential applications in nonlinear optics and DNA detection as well as incorporating DNA into various nanostructures and devices. With an emphasis on the current uses of light in both materials chemistry and medicinal chemistry, this book serves as a comprehensive resource on photochemical reactions and discusses topics that are useful for researchers as well as newcomers in the fields of photochemistry, photobiology, photomedicine, and photophysics
"Presents the most comprehensive coverage available of the detection, isolation, identification, and estimation of all anionic surfactants in a wide variety of samples in trace and macro quantities. Features new chapters on volumetric and trace analysis, molecular and mass spectroscopy, and chromatographic processes."
Emphasizes the efficacy of synthetically occurring compounds in the management of free radical-mediated illnesses. The text details the design, development and delivery of therapeutic antioxidants used in the treatment of pathophysiological disorders, from amylotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) to Alzheimer's disease.
This is a new, basic introduction to polymer science. It is both comprehensive and readable. The authors are leading educators in this field with extensive backgrounds in industrial and academic polymer research. The text starts with a description of the types of microstructures found in polymer materials. This provides an understanding of some of the key features of the various mechanisms of homopolymerization and copolymerization which are discussed in following chapters. Also discussed in these chapters are the kinetics and statistics of polymerization, with a separate chapter on the characterization of chain structure by spectroscopic methods. The next part of the text deals with chain conformation, structure and morphology, leading to a discussion of crystallization, melting and glass transition. The discussion then moves from solid state to solution properties where solution thermodynamics is introduced. This provides the basis for discussion of the measurement of molecular weight by various solution methods. The final chapter deals with mechanical and rheological properties which are discussed from a phenomenological continuum approach and then in terms of a fundamental molecular perspective. Altogether, this new text provides a comprehensive, readable introduction to and overview of polymer science. It is well illustrated with schematics prepared for this text to help in the understanding of key concepts. It will provide a basic understanding of today's polymer science for technical and engineering personnel not already familiar with the subject, and a convenient update and overview for materials scientists.
The main topic of the volume encompasses three areas of phenomenological research: person, subject, and organism. These three topics are interrelated in various ways. On the one hand, the question is Husserlian phenomenology of personhood and subjectivity, and on the other hand, it is a broader problem including epistemological, ontological and biological approaches. Those great traditional and contemporary themes of subjectivitiy and intersubjectivity, concepts of person, community and interpersonality, questions of humanity, value and biological status of human beings all became part of Edmund Husserl's focus. The contributors intend to show that a number of inspiring and unexplored questions arose from these thematic areas, questions which are related to various specific and interconnected fields of study.
Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization. The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nuclear reaction analysis. The second part turns to applications, looking at the broad range of potential uses in thin film reactions, ion implantation, nuclear energy, biology, and art/archaeology. Examines classical collision theory Details the fundamentals of five specific ion beam analysis techniques Illustrates specific applications, including biomedicine and thin film analysis Provides examples of ion beam analysis in traditional and emerging research fields Supplying readers with the means to understand the benefits and limitations of IBA, the book offers practical information that users can immediately apply to their own work. It covers the broad range of current and emerging applications in materials science, physics, art, archaeology, and biology. It also includes a chapter on computer applications of IBA.
Understanding the elastoplastic deformation of metals and geomaterials, including the constitutive description of the materials and analysis of structure undergoing plastic deformation, is an essential part of the background required by mechanical, civil, and geotechnical engineers as well as materials scientists. However, most books address the subject at a introductory level and within the infinitesimal strain context. Elastoplasticity Theory takes a different approach in an advanced treatment presented entirely within the framework of finite deformation. This comprehensive, self-contained text includes an introduction to nonlinear continuum mechanics and nonlinear elasticity. In addition to in-depth analysis of the mathematical and physical theories of plasticity, it furnishes an up-to-date look at contemporary topics, such as plastic stability and localization, monocrystalline plasticity, micro-to-macro transition, and polycrysalline plasticity models. Elastoplasticity Theory reflects recent trends and advances made in the theory of plasticity over the last four decades. It will not only help stimulate further research in the field, but will enable its readers to confidently select the appropriate constitutive models for the materials or structural members relevant to their own applications.
Selecting illustrative examples from the recent literature, this reference studies the underlying principles and physics of a wide range of spectroscopic techniques utilized in the pharmaceutical sciences and demonstrates various applications for each method analyzed in the text-showing how knowledge of the mechanisms of spectroscopic phenomena may facilitate more advanced technologies in the field.
This fully updated new edition presents organic reaction mechanism questions, carefully selected from the primary chemical literature, to understand how reactants are transformed into products. The author explains step-by-step solutions to all problems with appropriate contextual comments explaining the rationale and reasoning underlying each step, and identifying the underlying principles involved in each question. In the process the reader gains a better understanding of the fundamental principles of organic chemistry and how to become proficient in using the Lewis acid/Lewis base concept to complete organic reactions without resorting to memorization. Features : The questions are graded in difficulty with Part A containing questions aimed at students taking the sophomore-level organic chemistry class, while part B contains questions of somewhat greater difficulty suitable for students taking an honors course in organic chemistry or a beginning graduate course. Detailed answers are provided to all questions so students can check their answers and important points are highlighted in each answer. Special emphasis has been placed on the selection of questions to ensure that each question illustrates one or more fundamental principles of organic chemistry. Interspersed throughout the book are minireviews that cover the material pertaining to a particular topic. The specific literature references corresponding to each question are included and students can look up those references for more contextual information. Includes a large number of carefully-selected mechanism questions and step-by-step solutions, including explanatory comments
Medical decision support systems (MDSS) are computer-based programs that analyse data within a patient's healthcare records to provide questions, prompts, or reminders to assist clinicians at the point of care. Inputting a patient's data, symptoms, or current treatment regimens into an MDSS, clinicians are assisted with the identification or elimination of the most likely potential medical causes, which can enable faster discovery of a set of appropriate diagnoses or treatment plans. Explainable AI (XAI) is a "white box" model of artificial intelligence in which the results of the solution can be understood by the users, who can see an estimate of the weighted importance of each feature on the model's predictions, and understand how the different features interact to arrive at a specific decision. This book discusses XAI-based analytics for patient-specific MDSS as well as related security and privacy issues associated with processing patient data. It provides insights into real-world scenarios of the deployment, application, management, and associated benefits of XAI in MDSS. The book outlines the frameworks for MDSS and explores the applicability, prospects, and legal implications of XAI for MDSS. Applications of XAI in MDSS such as XAI for robot-assisted surgeries, medical image segmentation, cancer diagnostics, and diabetes mellitus and heart disease prediction are explored.
Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene therapy techniques. Finally, the book presents synthetic tissues and organs that are currently under development for regenerative medicine applications. The ability to engineer biocompatible tissue is the hallmark of modern biomedical engineering, integrating all aspects of every sub-discipline in the field. Featuring chapters drawn from the third edition of the best-selling Handbook of Biomedical Engineering as well as new contributions not found in the handbook, Tissue Engineering surveys the latest advances in this relatively young area. The contributing authors are a diverse group with backgrounds in academia, clinical medicine, and industry. Furthermore, the text includes contributions from Europe, Asia, and North America, helping to broaden the views on the development and application of tissue engineered devices.
Science and Applications of Conducting Polymers emphasizes potential industrial applications of conducting polymers. The papers presented discuss the basic physics and chemistry of conducting polymers, followed by an in-depth examination of applications. The book is ideal for researchers in polymer physics, electronics, optics, and semiconductor physics.
Image Analysis of Food Microstructure offers a condensed guide to the most common procedures and techniques by which quantitative microstructural information about food can be obtained from images. The images are selected from a broad range of food items, including macroscopic images of meat and finished products such as pizza, and the microstructures of cheeses, dough and baked goods, ice cream, fruits and vegetables, emulsions, foams, and gels. The book informs food scientists about the image processing and measurement tools used to characterize a variety of microstructures in foods, using high-quality image techniques to illustrate chemical composition, thermo-mechanical processing, and genetic and structural properties. These different types of images used to measure various aspects of structure include: macroscopic light photography, confocal light microscopy, electron microscopy, atomic force microscope images, magnetic resonance, and computed tomography. Then the text explains how to interpret images to produce data, plot the results in different graphs, and identify trends. Examples using these image analysis techniques show typical results that researchers can expect and recreate. Image Analysis of Food Microstructure summarizes the basic procedures that can be useful in various aspects of food research, from nutraceuticals to cooking and food processing. It presents the processing of images and mathematical principles needed for image analyses in a step-by-step approach to extract key information from the images obtained.
Gallium Arsenide and Related Compounds 1991emphasizes current results on the materials, characterization, and device aspects of a broad range of semiconductor materials, particularly the III-V compounds and alloys. The book is a valuable reference for researchers in physics, materials science, and electronics and electrical engineering who work on III-V compounds.
A comprehensive treatment of a large family of polymers useful in a wide range of applications in such fields as automotive, pharmaceutical, cosmetic, metal-working, mining, industrial coating, textile, construction, and home furnishings. Summarizes the chemistry and mechanisms; provides basic prepa
The publication date of the first edition is not stated, but the new edition is apparently considerably revised and expanded. It was written to serve as a multi-purpose text at the senior or graduate level and as a reference for the practicing scientist or engineer. Readers should have a math backgr
The Santa Fe Institute, as key element in its founding activities, sponsored two workshops on 'Emerging Syntheses in Science.' There was unanimous agreement among the participants that Professor Gell-Mann's keynote address and the ensuing talks were of such high quality and general interest that it would be highly desirable to publish these for bro
Although the use of composites has increased in many industrial, commercial, medical, and defense applications, there is a lack of technical literature that examines composites in conjunction with concrete construction. Fulfilling the need for a comprehensive, explicit guide, Reinforced Concrete Design with FRP Composites presents specific information necessary for designing concrete structures with fiber reinforced polymer (FRP) composites as a substitute for steel reinforcement and for using FRP fabrics to strengthen concrete members. In a reader-friendly, design-oriented manner, this book discusses the analysis, design, durability, and serviceability of concrete members reinforced with FRP. The authors first introduce the elements that constitute composites-the structural constituent and matrix-and discuss how composites are manufactured. Following an examination of the durability of FRP composites that contain fibers, such as glass, carbon, or aramid, the book illustrates how FRP external reinforcement systems (FRP-ER) can be used for enhancing the strength and stiffness of concrete structures using theory and design principles. The concluding chapter concentrates on serviceability aspects of concrete members internally reinforced with FRP. An excellent resource of design and construction practices, Reinforced Concrete Design with FRP Composites is a state-of-the-art reference on concrete members reinforced with FRP.
Kinetics and Thermodynamics of Fast Particles in Solids examines the kinetics and non-equilibrium statistical thermodynamics of fast charged particles moving in crystals in different modes. It follows a line of research very different from traditional ways of constructing a theory of radiation effects, which gives a purely mechanistic interpretation of particle motion. In contrast, this book takes into account the thermodynamic forces due to separation of the thermodynamic parameters of the subsystem of particles ("hot" atoms) on the parameters of the thermostat (electrons and lattice), in addition to covering the various mechanisms of collisions. Topics Include: Construction of a local kinetic equation of Boltzmann type for fast particles interacting with the conduction electrons and lattice vibrations, on the basis of the principles of Bogolyubov's kinetic theory Calculation of the equilibrium energy and angular distributions of fast particles at a depth of the order of coherence length, and the evolution of particle distribution with increasing depth of penetration of the beam Calculation of transverse quasi-temperature of channeled particles with the heating of the beam in the process of diffusion of particles in the space of transverse energies, as well as cooling the beam through a dissipative process Research in the framework of non-equilibrium thermodynamics of the relaxation kinetics of random particles, including the thermodynamics of positronium atoms moving in insulators under laser irradiation Analysis of the kinetics of hot carriers in semiconductors and thermalization of hot carriers, as well as the calculation of the statistical distribution of ejected atoms formed during the displacement cascade The book sets a new direction of the theory of radiation effects in solids-non-equilibrium statistical thermodynamics
This work details minor, trace and ultratrace methods; addresses the essential stages that precede measurement; and highlights the measurement systems most likey to be used by the pragmatic analyst. It features key material on inclusion and phase isolation. The book is designed to provide useful maps and signposts for metals analysts who must verify that stringent trace level compositional specifications have been met.
Spectroscopic Techniques and Hindered Molecular Motion presents a united, theoretical approach to studying classical local thermal motion of small molecules and molecular fragments in crystals by spectroscopic techniques. Mono- and polycrystalline case studies demonstrate performance validity. The book focuses on small molecules and molecular fragments, such as N2, HCl, CO2, CH4, H2O, NH4, BeF4, NH3, CH2, CH3, C6H6, SF6, and other symmetrical atomic formations, which exhibit local hindered motion in molecular condensed media: molecular and ionic crystals, molecular liquids, liquid crystals, polymeric solids, and biological objects. It reviews the state of studying the hindered molecular motion (HMM) phenomenon and the experimental works on the basis of the latest theoretical research. Case Studies Physical models of hindered molecular motion General solution of the stochastic problem for the hindered molecular motion in crystals Formulae of the angular autocorrelation function symmetrized on the crystallographic point symmetry groups Formulae of the spectral line shapes concerning the dielectric, infrared, Raman, nuclear magnetic relaxation, and neutron scattering spectroscopy in the presence of the hindered molecular motion Experimental probation of the theoretical outcomes Proton relaxation in three-atomic molecular fragments undergoing axial symmetry hindered motion Structural distortion in the ordered phase of crystalline ammonium chloride Organic compounds, polymers, pharmaceutical products, and biological systems consist of the molecular fragments, which possess rotational or conformational degrees of freedom or an atomic exchange within the fragme |
![]() ![]() You may like...
Core Actors in America - A Vital View of…
Stephen Terhune Smith
Hardcover
R3,467
Discovery Miles 34 670
Dynamics and Vibration Analyses of…
Qingkai Han, Jing Wei, …
Hardcover
Symmetry in Complex Network Systems…
Visarath In, Antonio Palacios
Hardcover
Modelling, Estimation and Control of…
Alessandro Chiuso, Luigi Fortuna, …
Hardcover
|