![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > General
Functionalized polymers are macromolecules to which chemically bound functional groups are attached which can be used as catalysts, reagents, protective groups, etc. Functionalized polymers have low cost, ease of processing and attractive features for functional organic molecules. Chemical reactions for the introduction of functional groups in polymers and the conversion of functional groups in polymers depend on different properties. Such properties are of great importance for functionalization reactions for possible applications of reactive polymers. This book deals with the synthesis and design of various functional polymers, the modification of preformed polymer backbones and their various applications.
Focuses on blow room sequence of machines and its functioning. Discusses role of electronics in management of various controls. Reviews practical perspective of modern techniques used in processing cotton through blow room. Offers an exclusive chapter on modern blow room concept. Includes solved examples and exercises.
The book discusses the basic of atmospheric dynamics where the curved surface of the earth and its rotation around its own axis plays very important roles. The emphasis is on basic physical concepts and the interpretation of equations and the different terms therein. Note: T&F does not sell or distribute the hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
This book includes a series of reviews on general aspects of biomarker use in the study of psychiatric and neurodegenerative diseases and the development of medications involved in their treatment. It describes the pros and cons of the various approaches and covers the successes and failures in this research field. It is only by a thorough understanding of the shortcomings that progress can be made. The overall goal is to facilitate the understanding and treatment of these disorders, by providing a viable mechanism of catching up with other areas of modern medicine, such as diabetes and heart disease. Finally, it is anticipated that the development and application of valid biomarker tests and the leveraging of novel drug targets will help the fields of psychiatry on neurodegenerative disorders move into the area of personalized medicine where the right patients can receive the right medication at the right time for the best possible outcome.
This is the first all-encompassing textbook designed to support trainee clinical scientists in medical physics as they start work in a hospital setting whilst undertaking an academic master's course. Developed by practising physicists and experienced academics using their experience of teaching trainee medical physicists, this book provides an accessible introduction to the daily tasks that clinical scientists perform in the course of their work. It bridges the gap between theory and practice, making the book also suitable for advanced undergraduate and graduate students in other disciplines studying modules on medical physics, including those who are considering a career in medical physics through applying to the NHS Scientist Training Programme (STP). Features: Provides an accessible introduction to practical medical physics within a hospital environment Maps to the course content of the Scientist Training Programme in the NHS Acts as a complement to the academic books often recommended for medical physics courses
Biomass for Bioenergy and Biomaterials presents an overview of recent studies developed specifically for lignocellulose-based production of biofuels, biochemicals, and functional materials. The emphasis is on using sustainable chemistry and engineering to develop innovative materials and fuels for practical applications. Technological strategies for the physical processing or biological conversion of biomass for material production are also presented. FEATURES Offers a comprehensive view of biomass processing, biofuel production, life cycle assessment, techno-economic analysis, and biochemical and biomaterial production Presents details of innovative strategies to pretreat biomass Helps readers understand the underlying metabolic pathways and identify the best engineering strategies for their native strain Highlights different strategies to make biomaterials from biomass Provides insight into the potential economic viability of the biomass-based process This book serves as an ideal reference for academic researchers and engineers working with renewable natural materials, the biorefining of lignocellulose, and biofuels. It can also be used as a comprehensive reference source for university students in metabolic, chemical, and environmental engineering.
With contributions from experts from both the industry and academia, this book presents the latest developments in the identified areas. In addition, a thorough and updated coverage of the traditional aspects of heterogeneous catalysis such as preparation, characterization and use in well-established technologies such as nitration, ammoxidation and hydrofluorination is included. This book incorporates appropriate case studies, explanatory notes, and schematics for more clarity and better understanding.
This book offers a comprehensive presentation of the concepts, properties, and applications of complex materials. Authors of each chapter use a fundamental approach to define the structure and properties of a wide range of solids on the basis of the local chemical bonding and atomic order present in the material. Emphasizing the physical and chemical origins of different material properties, this important volume focuses on the most technologically important materials being utilized and developed by scientists and engineers.
Aluminum is increasingly replacing steel in automotive applications due to its superior strength-to-weight ratio, equal or better stiffness and toughness properties, durability, and manufacturability considerations. Primer on Automotive Lightweighting Technologies introduces basic ideas and principles of designing and engineering automotive components with aluminum. Topics include application of the knowledge to understand how automotive body and structures are designed, as well as other major and smaller automotive components, such as engine blocks and their components, chassis systems, and wheels. Features Discusses material considerations in engineering design Describes mechanical and physical properties of aluminum Covers manufacturing methods and automotive and industrial applications of aluminum products Offers information on design for functional performance and cost optimization Includes coverage of extruded and rolled products and car body structure This practical book is aimed at professionals in the fields of materials and mechanical engineering, automotive engineering, and metals and alloys, as well as advanced students and researchers.
This is the first book to discuss the search for new physics in charged leptons, neutrons, and quarks in one coherent volume. The area of indirect searches for new physics is highly topical; though no new physics particles have yet been observed directly at the Large Hadron Collider at CERN, the methods described in this book will provide researchers with the necessary tools to keep searching for new physics. It describes the lines of research that attempt to identify quantum effects of new physics particles in low-energy experiments, in addition to detailing the mathematical basis and theoretical and phenomenological methods involved in the searches, whilst making a clear distinction between model-dependent and model-independent methods employed to make predictions. This book will be a valuable guide for graduate students and early-career researchers in particle and high energy physics who wish to learn about the techniques used in modern predictions of new physics effects at low energies, whilst also serving as a reference for researchers at other levels. Key features: * Takes an accessible, pedagogical approach suitable for graduate students and those seeking an overview of this new and fast-growing field * Illustrates common theoretical trends seen in different subfields of particle physics * Valuable both for researchers in the phenomenology of elementary particles and for experimentalists
This book presents a comprehensive review of research on applications of carbon nanotubes (CNTs) and graphene to electronic devices. As nanocarbons in general, and CNTs and graphene in particular, are becoming increasingly recognized as the most promising materials for future generations of electronic devices, including transistors, sensors, and interconnects, a knowledge gap still exists between the basic science of nanocarbons and their feasibility for cost-effective product manufacturing. The book highlights some of the issues surrounding this missing link by providing a detailed review of the nanostructure and electronic properties, materials, and device fabrication and of the structure-property-application relationships.
Pullulan is a polysaccharide produced by the fungus Aureobasidium pullulans and possesses some distinct properties such as excellent transparent film-forming ability, moisture absorptivity, water solubility, non-toxicity, and adhesivity. These properties allow pullulan to find potential applications in various industries such as pharmaceuticals, cosmetics, food, and health care. This book presents the chemistry and properties of pullulan, along with the method of its production at the laboratory level. It discusses the structural engineering, processing methods, and versatile applications of pullulan, as well as highlights the challenges that still have to be overcome for its large-scale production. This unique book comprehensively summarizes many of the recent research findings on pullulan, contributed by leading experts in this research domain. It is a useful reference book for scientists, academicians, researchers, chemists, technologists, graduate and postgraduate students, and general readers who are interested in pullulan.
Professionals recognize entropy-enthalpy compensation as an important factor in molecular recognition, lead design, water networks, and protein engineering. It can be experimentally studied by proper combinations of diverse spectroscopic approaches with isothermal titration calorimetry and is clearly related to molecular dynamics. So, how should we treat entropy-enthalpy compensation? Is it a stubborn hindrance that solely complicates the predictability of phenomena otherwise laid on the line by Mother Nature? How should we then deal with it? This book dwells on these posers. It combines two chapters written by globally recognized specialists. Chapter 1 deals with general issues and suggests a definite approach to how we may answer the posers. Chapter 2 shows how the approach outlined might be successfully applied in a rational design of enzymes. This might provide other interesting strategic perspectives in the general theoretical physical chemistry field.
This new volume, Research Methodologies and Practical Applications of Chemistry, presents a detailed analysis of current experimental and theoretical approaches surrounding chemical science. With an emphasis on multidisciplinary as well as interdisciplinary applications, the book extensively reviews fundamental principles and presents recent research to help show logical connections between the theory and application of modern chemistry concepts. It also emphasizes the behavior of materials from the molecular point of view. The burgeoning field of chemistry and chemical science has led to many recent technological innovations and discoveries. Understanding the impact of these technologies on business, science, and industry is an important first step in developing applications for a variety of settings and contexts. The aim of this book is to present research that has transformed this discipline and aided its advancement. The book examines the strengths and future potential of chemical technologies in a variety of industries.
The development of advanced materials has become extremely important in the last decade, being widely used in academic and industrial research. This book examines the potential of advanced materials as well as nanotechnology to improve fiber science from fibril to fabric mode, to create better materials and products for a variety of aspects. The book presents research advances in materials behavior using fractal analysis, mathematical modeling and simulation, and other methods. Examined are electrical, mechanical, optical, and magnetic properties; size; morphology; and chemical behavior of such materials as aerogels, polymer films, nanocomposite materials, natural composites, catalysis, and more with a view to their application in the medical, engineering, and textile fields. With chapters written by eminent scientists, the book offers valuable information for academics, researchers, and engineering professionals. Contributions range from new methods to novel applications of existing methods to help readers gain understanding of the material and/or structural behavior of new and advanced systems.
Now in its second edition, Forensic Investigation of Explosions draws on the editor's 30 years of explosives casework experience, including his work on task forces set up to investigate major explosives incidents. Dr. Alexander Beveridge provides a broad, multidisciplinary approach, assembling the contributions of internationally recognized experts who present the definitive reference work on the subject. Topics discussed include: The physics and chemistry of explosives and explosions The detection of hidden explosives The effect of explosions on structures and persons Aircraft sabotage investigations Explosion scene investigations Casework management The role of forensic scientists Analysis of explosives and their residues Forensic pathology as it relates to explosives Presentation of expert testimony With nearly 40 percent more material, this new edition contains revised chapters and several new topics, including: A profile of casework management in the UK Forensic Explosives Laboratory, one of the world's top labs, with a discussion of their management system, training procedures, and practical approaches to problem solving Properties and analysis of improvised explosives An examination of the Bali bombings and the use of mobile analytical techniques and mobile laboratories The collection, analysis, and presentation of evidence in vehicle-borne improvised explosive device cases, as evidenced in attacks on US overseas targets This volume offers valuable information to all members of prevention and post-blast teams. Each chapter was written by an expert or experts in a specific field and provides well-referenced information underlying best practices that can be used in the field, laboratory, conference room, classroom, or courtroom.
This new volume focuses on the limitations, properties, and models in the chemistry and physics of engineering materials that have potential for applications in several disciplines of engineering and science. Contributions range from new methods to novel applications of existing methods. The collection of topics in this volume reflects the diversity of recent advances in chemistry and physics of engineering materials with a broad perspective that will be useful for scientists as well as for graduate students and engineers. This new book presents leading-edge research from around the world. Topics in the book include: * aerogels materials and technology * diffusion dynamics in nanomaterials * entropic nomograms * structural analyses of particulate-filled polymer nanocomposites mechanical properties * protection of rubbers against aging * structure-property correlation and forecast of corrosion This volume is also sold as part of a two-volume set. Volume 1 focuses on modern analytic methodologies in the chemistry and physics of engineering materials.
* Most up-to-date overview of planetary science, generously illustrated * Accessible prose with a unique perspective by professional astronomers active in planetary science research with extensive teaching experience and expertise in history of astronomy and classical astronomy * Detailed appendices that supplement the text including past, current, and future space missions
Nanomaterials in Bionanotechnology: Fundamentals and Applications offers a comprehensive treatment of nanomaterials in biotechnology from fundamentals to applications, along with their prospects. This book explains the basics of nanomaterial properties, synthesis, biological synthesis, and chemistry and demonstrates how to use nanomaterials to overcome problems in agricultural, environmental, and biomedical applications. Features Covers nanomaterials for environmental analysis and monitoring for heavy metals, chemical toxins, and water pollutant detection Describes nanomaterials-based biosensors and instrumentation and use in disease diagnosis and therapeutics Discusses nanomaterials for food processing and packaging and agricultural waste management Identifies challenges in nanomaterials-based technology and how to solve them This work serves as a reference for industry professionals, advanced students, and researchers working in the discipline of bionanotechnology.
* Most up-to-date overview of planetary science, generously illustrated * Accessible prose with a unique perspective by professional astronomers active in planetary science research with extensive teaching experience and expertise in history of astronomy and classical astronomy * Detailed appendices that supplement the text including past, current, and future space missions
There is an increasing interest in plants of the Moringa genus used as a source of phytochemicals with biopharmaceutical potential, as a functional ingredient in many products and as an additive in poultry feeding stocks. Biological and Pharmacological Properties of the Genus Moringa is the first publication to comprehensively assess the latest research on Moringa studies. This book reviews recent studies covering the botanical, agronomical, genomic, biotechnological, and ethnopharmacological aspects. It presents specialized work in a user-friendly way that will appeal to undergraduates, graduates and researchers primarily in ethnopharmacology, functional foods and with a linkage to veterinary treatments. Key Features: Describes the ethnopharmacological and ethnobotanical use of plants from all Moringa species Presents recent information that will be helpful for the future development of biopharmaceuticals Reviews the phytochemical content from all Moringa species Assesses the potential of all Moringa species as a functional ingredient
Fully updated throughout, with new journalistic boxes and recent applications Uses an accessible writing style and format, offering journalistic accounts of interesting research, worked examples, self-test questions, and a helpful glossary of frequently used terms Highlights various technological applications of physics, from locomotive lights to medical scanners to USB flash drives
Now fully updated, the second edition of Modern Diagnostic X-Ray Sources: Technology, Manufacturing, Reliability gives an up-to-date summary of X-ray source technology and design for applications in modern diagnostic medical imaging. It lays a sound groundwork for education and advanced training in the physics of X-ray production, X-ray interactions with matter, and imaging modalities and assesses their prospects. The book begins with a comprehensive and easy-to-read historical overview of X-ray tube and generator development, including key achievements leading up to the current technological and economic state of the field. The book covers the physics of X-ray generation, including the process of constructing X-ray source devices. The stand-alone chapters can be read in order or in selections. They take you inside diagnostic X-ray tubes, illustrating their design, functions, metrics for validation, and interfaces. The detailed descriptions enable objective comparison and benchmarking. This detailed presentation of X-ray tube creation and functions enables you to understand how to optimize tube efficiency, particularly with consideration for economics and environmental care. It also simplifies faultfinding. Along with covering the past and current state of the field, the book assesses the future regarding developing new X-ray sources that can enhance performance and yield greater benefits to the scientific community and to the public. After heading international R&D, marketing and advanced development for X-ray sources with Philips, and working in the X-ray industry for more than four decades, Rolf Behling retired in 2020 and is now the owner of the consulting firm XtraininX, Germany. He holds numerous patents and is continuously publishing, consulting and training.
Statistical Mechanics: Fundamentals and Model Solutions, Second Edition Fully updated throughout and with new chapters on the Mayer expansion for classical gases and on cluster expansion for lattice models, this new edition of Statistical Mechanics: Fundamentals and Model Solutions provides a comprehensive introduction to equilibrium statistical mechanics for advanced undergraduate and graduate students of mathematics and physics. The author presents a fresh approach to the subject, setting out the basic assumptions clearly and emphasizing the importance of the thermodynamic limit and the role of convexity. With problems and solutions, the book clearly explains the role of models for physical systems, and discusses and solves various models. An understanding of these models is of increasing importance as they have proved to have applications in many areas of mathematics and physics. Features Updated throughout with new content from the field An established and well-loved textbook Contains new problems and solutions for further learning opportunity Author Professor Teunis C. Dorlas is at the Dublin Institute for Advanced Studies, Ireland.
Rare Isotope Beams (RIBs) are ion beams of exotic radioactive nuclei. The study of these nuclei is key to understanding the limits of nuclear existence, nucleo-synthesis in such violent stellar sites as supernovae and merging neutron stars, and the fundamental symmetries of nature. These nuclei also provide a unique probe to study condensed matter and many of them are potentially new radioisotopes for more effective medical diagnostics and therapy. Rare Isotope Beams: Concepts and Techniques gives an up-to-date overview of all these aspects of RIB science in a single volume containing the scientific motivation, production techniques, experimental techniques for studying exotic nuclei, methods used in condensed matter research, and medical applications. The emphasis throughout is on concepts to facilitate understanding of the essence of each topic in this diverse and cross-disciplinary field involving nuclear physics, astrophysics, and particle accelerators. A brief description of major RIB facilities is also presented. Exotic nuclei are difficult to produce in enough numbers and their production involves different nuclear reaction routes and a wide range of advanced technologies, which are presented in a comprehensive manner. Experimental techniques used to study exotic nuclei are provided with examples highlighting the intricate nature of such experiments. Another unique feature is the open-ended nature of the discussions, bringing out the future challenges and possibilities in this evolving field. The book offers an excellent overview of concepts and techniques involved in RIB science for new researchers entering the field as well as professionals. |
You may like...
|