![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > General
Tissue Engineering Strategies for Organ Regeneration addresses the existing and future trends of tissue engineering approaches for organ/tissue regeneration or repair. This book provides a comprehensive summary of the recent improvement of biomaterials used in scaffold-based tissue engineering, and the tools and different protocols needed to design tissues and organs. The chapters in this book provide the in-depth principles for many of the supporting and enabling technologies including the applications of BioMEMS devices in tissue engineering, and the combination of organoid formation and three dimensional (3D) bioprinting. The book also highlights the advances and strategies for regeneration of three-dimensional microtissues in microcapsules, tissue reconstruction techniques, and injectable composite scaffolds for bone tissue repair and augmentation. Key Features: Addresses the current obstacles to tissue engineering applications Provides the latest improvements in the field of integrated biomaterials and fabrication techniques for scaffold-based tissue engineering Shows the influence of microenvironment towards cell-biomaterials interactions Highlights significant and recent improvements of tissue engineering applications for the artificial organ and tissue generation Describes the applications of microelectronic devices in tissue engineering Describes different current bioprinting technologies
Drug Discovery with Privileged Building Blocks traces back PharmaBlock's founding philosophy of designing privileged building blocks. High-quality building blocks are crucial not only to biological activities of different molecules but also to ADMET properties, which eventually will impact the success rate of drug discovery projects. A thorough study of how building blocks perform in drug molecules and a regular analysis of new building block structures in the latest researches have proven to be a fruitful strategy to generate novel building blocks. Using this strategy, PharmaBlock has supplied the drug industry with a great number of building blocks, which are increasingly being adopted by drug hunters, and these are identified in this book. Each chapter may be read and studied without learning the previous chapters. This book will be a good starting point for novice medicinal chemists, and veteran medicinal chemists will find it useful as well. Key Feature The book covers privileged building blocks appearing most frequently on patents for novel drugs. The latest relevant tactics are explained in the context of drug design and medicinal chemistry. Key synthesis, especially large-scale synthesis, is described. The most recent literature references are cited.
Black phosphorus (BP)-based two-dimensional (2D) nanomaterials are used as components in practical industrial applications in biomedicine, electronics, and photonics. There is a need to controllably shape engineered scalable structures of 2D BP building blocks, and their assembly/organization is desired for the formation of three-dimensional (3D) forms such as macro and hybrid architectures, as it is expected that these architectures will deliver even better materials performance in applications. Semiconducting Black Phosphorus: From 2D Nanomaterial to Emerging 3D Architecture provides an overview of the various synthetic strategies for 2D BP single-layer nanomaterials, their scalable synthesis, properties, and assemblies into 3D architecture. The book covers defect engineering and physical properties of black phosphorous; describes different strategies for the development of 2D nanostructures of BP with other species such as polymers, organic molecules, and other inorganic materials; offers a comparative study of 3D BP structures with other 3D architectures such as dichalcogenides (TMDs, graphene, and boron nitride); and discusses in detail applications of 3D macrostructures of BP in various fields such as energy, biomedical, and catalysis. This is an essential reference for researchers and advanced students in materials science and chemical, optoelectronic, and electrical engineering.
Knowledge of the basic interactions that take place between geological materials and different substances is the first step in understanding the effects of adsorption and other interfacial processes on the quality of rocks and soils, and on driving these processes towards a beneficial or neutral result. Interfacial Chemistry of Rocks and Soils examines the different processes at solid and liquid interfaces of soil and rock, presenting a complete analysis that emphasizes the importance of chemical species on these interactions. This Second Edition features novel results in the field and expanded coverage of the kinetics of interfacial processes. New content includes models of heterogeneous isotope exchange, sorption isotherms for heterovalent cation exchange, as well as sorption of anions by chemically modified clays. Summarizing the results and knowledge of the authors' research in this field over several decades, this volume: Explores the individual components of the studied systems: the solid, the solution, and the interface Discusses the characteristics and thermodynamics of the interface Profiles the most important analytical methods in the study of interfacial processes Demonstrates transformations initiated by interfacial processes Outlines avenues of treatment that may solve geological, soil science, and environmental problems Drawn chiefly from the authors' years of research at the Imre Lajos Isotope Laboratory in the Department of Physical Chemistry at the University of Debrecen in Hungary, this book discusses chemical reactions on the surfaces/interfaces of soils and rocks; examines the role of these processes in environmental, colloid and geochemistry; and explores the effects on agricultural, environmental and industrial applications.
Semiconducting polymers are of great interest for applications in electroluminescent devices, solar cells, batteries, and diodes. This volume provides a thorough introduction to the basic concepts of the photophysics of semiconducting polymers as well as a description of the principal polymerization methods for luminescent polymers. Divided into two main sections, the book first introduces the advances made in polymer synthesis and then goes on to focus on the photophysics aspects, also exploring how new advances in the area of controlled syntheses of semiconducting polymers are applied. An understanding of the photophysics process in this kind of material requires some knowledge of many different terms in this field, so a chapter on the basic concepts is included. The process that occurs in semiconducting polymers spans time scales that are unimaginably fast, sometimes less than a picosecond. To appreciate this extraordinary scale, it is necessary to learn a range of vocabularies and concepts that stretch from the basic concepts of photophysics to modern applications, such as electroluminescent devices, solar cells, batteries, and diodes. This book provides a starting point for a broadly based understanding of photophysics concepts applied in understanding semiconducting polymers, incorporating critical ideas from across the scientific spectrum.
In this book, the fundamentals of micro- and nanofabrication are described on the basis of the concept of "using gases as a fabrication tool." Unlike other books available on the subject, this volume assumes only entry-level mathematics, physics, and chemistry of undergraduates or high-school students in science and engineering courses. Necessary theories are plainly explained to help the reader learn about this new attractive field and enable further reading of specialized books. The book is an attractive guide for students, young engineers, and anyone getting involved in micro- and nanofabrication from various fields including physics, electronics, chemistry, and materials sciences.
Every electrochemical source of electric current is composed of two electrodes with an electrolyte in between. Since storage capacity depends predominantly on the composition and design of the electrodes, most research and development efforts have been focused on them. Considerably less attention has been paid to the electrolyte, a battery's basic component. This book fills this gap and shines more light on the role of electrolytes in modern batteries. Today, limitations in lithium-ion batteries result from non-optimal properties of commercial electrolytes as well as scientific and engineering challenges related to novel electrolytes for improved lithium-ion as well as future post-lithium batteries.
A contribution to the series on Natural Products Chemistry of Global Plants, Natural Products Chemistry of Botanical Medicines from Cameroon focuses on the sources and chemistry of natural products from plants in Cameroon, West Africa. The plants selected offer an opportunity to trace a route through history from ancient civilizations to the modern day, showing the important value to man of natural products in medicines and in foods. This book highlights how many of the extracts from Cameroon are today associated with important drugs, nutrition products, beverages, perfumes, cosmetics and pigments, as well as presenting their complex chemistry and structure. Key Features: Forms an important part of the series on Natural Products Chemistry of Global Plants, as Cameroon is a country with rich experience in the use of medicinal plants and with a wide diversity of botanical resources Addresses the current development of pharmacognosy research in Cameroon Provides readers with updated information on the chemistry and pharmacology of natural products with pharmaceutical potential Covers an extensive range of chemical, botanical and pharmacological diversities Xavier Siwe Noundou is a Scholar/Scientist based at Rhodes University in Grahamstown, South Africa. He has been a EU FP7 Marie Curie Fellow (2015-2016), Kaposvar University in Hungary (2015, 2016), Trakia Univesity in Bulgaria (2016), TWAS Fellow (2013), National Research Foundation South Africa Fellow (2014-2016). Dr Noundou works on Medicinal Chemistry focusing on Chemistry, Pharmacognosy and Nanotechnology. His main research interests include terrestrial natural products chemistry (from Cameroon and South Africa) and marine natural products chemistry (from the South African coastline): bioactive metabolites isolated as potential antiparasitic, antimicrobial, antiviral and antiproliferative candidates. He is author of more than forty scientific publications in his field of expertise.
Biomass for Bioenergy and Biomaterials presents an overview of recent studies developed specifically for lignocellulose-based production of biofuels, biochemicals, and functional materials. The emphasis is on using sustainable chemistry and engineering to develop innovative materials and fuels for practical applications. Technological strategies for the physical processing or biological conversion of biomass for material production are also presented. FEATURES Offers a comprehensive view of biomass processing, biofuel production, life cycle assessment, techno-economic analysis, and biochemical and biomaterial production Presents details of innovative strategies to pretreat biomass Helps readers understand the underlying metabolic pathways and identify the best engineering strategies for their native strain Highlights different strategies to make biomaterials from biomass Provides insight into the potential economic viability of the biomass-based process This book serves as an ideal reference for academic researchers and engineers working with renewable natural materials, the biorefining of lignocellulose, and biofuels. It can also be used as a comprehensive reference source for university students in metabolic, chemical, and environmental engineering.
Originally published in 1995, Creation and Evolution in the Early American Scientific Affiliation is the tenth volume in the series, Creationism in Twentieth Century America, reissued in 2021. The volume comprises of original primary sources from the American Science Affiliation, a group formed following an invitation from the president of the Moody Bible Institute in Chicago, in answer to the perceived need for an academic society for American Evangelical Scientists to explicate the relationship between science and faith. The society confronted the debate between creation and evolution head on, leaving a paper trail documenting their thoughts and struggles. This diverse and expansive collection includes 53 selections that appeared during the organisation's first two decades and focuses on the encounter between science and American evangelicalism in the twentieth century, in particular the debates surrounding the ever-increasing preference for evolutionary theory. The collection will be of especial interest to natural historians, and theologians as well as academics of philosophy, and history.
Titanium dioxide (TiO2) has drawn considerable attention as an attractive inorganic raw material for various applications due to its inexpensiveness, nontoxic nature, stability, and excellent photocatalytic activity. Photocatalysis is one of the most promising route for sustainable chemistry of the 21st century. It can contribute to solving environmental, global energy, and chemical problems, as well as to the sustainable production of commodities in the near future. This book presents the fundamentals of photocatalysis in nanostructured TiO2 and describes the factors affecting the photocatalytic activity, design, and synthesis of various forms of nanostructured TiO2. It highlights the use of ion-doping and inert-atmosphere annealing to extend the light-absorption range of photocatalysts and reduce recombination between electrons and holes. It discusses numerous applications in the fields of energy and environment, such as water purification, gas sensing, storage and delivery, and energy generation. The book is an invaluable resource and useful guide for a broad readership in various fields of catalysis, materials science, environment, and energy.
This book provides an overview of key current developments in the synthetic strategy of functional novel nanomaterials in various spectroscopic characterizations and evaluations and highlights possible future applications in nanotechnology and materials science. It illustrates the wide-ranging interest in these areas and provides a background to the later chapters, which address the novel synthesis of high-yield nanomaterials and their biomaterials, graphene, polymeric nanomaterials, green nanomaterials, green polyester, liquid crystal electro-optic switching applications, nanobiotechnology, transition metal oxides, response characteristics of exclusive spectroscopic investigation as well as electron microscopic study, flexible and transparent electrodes, optoelectronics, nanoelectronics, smart displays, switchable device modulation, health care, energy storage, solar/fuel cells, environmental and plant biology, social, ethical, and regulatory implications of various aspects of green nanotechnology, as well as significant foreseeable spectroscopic applications of key functional nanomaterials. Given appropriate regulation for and research on the topics covered, commercial production of manufactured novel composite materials can be realized. Furthermore, the many discoveries highlighted in the book can modulate spectroscopic performances with technical excellence in multidisciplinary research of high competence.
Here is a compilation of the research being done by scientists from various disciplines of chemistry at universities across the globe. This new volume provides a wealth of practical experience and research on new methodologies and important applications in chemical science. It also includes presentations on small-scale new drug design related projects that have potential applications in several disciplines of chemistry and in drug development. In this book, contributions range from new methods to novel applications of existing methods to enhance understanding of the material and/or structural behavior of new and advanced systems. Topics cover computational methods in chemical sciences and electrochemical investigations; studies of some of physico-chemical properties of several important novel macrocyclic ligands; the use of lanthanide-ions doped nanomaterials; quantitative estimation of heavy metals, a sustainable, efficient and green promoter for the synthesis of some heterocyclic compounds; and much more.
Covers the fundamental instrumentation and techniques Discusses HRMS-based phytochemical research details Focuses strictly on the phytochemical considerations
Focusing on the physical properties of diamond and sapphire, this monograph provides readers with essential details on crystal structure and growth, mechanical properties, thermal properties, optical properties, light scattering of diamond and sapphire crystals, and sapphire lasers. Various physical properties are comprehensively discussed: Mechanical properties include hardness, tensile strength, compressive strength, and Young's modulus. Thermal properties include thermal expansion, specific heat, and thermal conductivity. Optical properties of diamond and sapphire include transmission, refractive index, and absorption. Light scattering includes Raman scattering and Brillouin scattering. Sapphire lasers include chromium-doped and titanium-doped lasers. Aimed at researchers and industry professionals working in materials science, physics, electrical engineering, and related fields, this monograph is the first to concentrate solely on physical properties of these increasingly important materials.
Biotribology includes tribological phenomena of natural and implant surface interactions under relative motion in the human body. Biotribology: Emerging Technologies and Applications disseminates ideas and research trends in biotribology and presents pioneering recent research advances impacting the field, focusing on the roles of mathematics, chemistry, physics, materials, and mechanical engineering. Discusses lubrication of joint replacements, computational modeling of biotribology and multibody biomechanical models Describes metal-organic frameworks, medical friction pairs, and electrochemical techniques to tribocorrosion tests Covers state of the art and future technological developments and applications, as well as challenges and opportunities Biotribology is an important and growing field, and the topics covered in this book will be of great interest to the international tribology community, appealing to readers working in the fields of materials science, biomedical engineering, biotechnology, mechanical engineering, and related areas.
Bacterial cellulose (BC) is a natural polymer produced by different microbial cells. Its unique structural, physico-chemical, mechanical, thermal, and biological properties offer much potential for use in diverse applications in the biomedical, electronics, energy, and environmental fields, among others. This text provides an overview of the synthesis, characterization, modification, and application of BC. * Discusses sources, characterization, and biosynthesis of BC * Covers composites and aerogels based on BCs * Describes development of BCs from waste and challenges in large-scale production of BCs * Explores a variety of applications such as environmental, industrial, and biomedical This book will be of great interest to researchers and industry professionals in materials science, chemical engineering, chemistry, and other related fields seeking to learn about the synthesis and application of this important material.
* Covers material testing and development using computational intelligence * Highlights the technologies to integrate computational intelligence and materials sciences * Discusses how computational tools can generate new materials with advanced applications * Details case studies and detailed applications * Investigates challenges in developing and using computational intelligence in materials science * Analyzes historic changes that are taking place in designing of materials
Despite remarkable advances in astronomy, space research, and related technology since the first edition of this book was published, the philosophy of the prior editions has remained the same throughout. However, because of this progress, there is a need to update the information and present the new findings. In the fourth edition of Astronomy: Principles and Practice, much like the previous editions, the celebrated authors give a comprehensive and systematic treatment to the theories of astronomy. This reference furthers your study of astronomy by presenting the basic software and hardware, providing several straightforward mathematical tools, and discussing some simple physical processes that are either involved in the astronomer's tools of trade or concerned in the mechanisms associated with astronomical bodies. The first six chapters introduce the simple observations that can be made by the eye as well as discuss how such observations were interpreted by previous civilizations. The next several chapters examine the interpretation of positional measurements and the basic principles of celestial mechanics. The authors then explore radiation, optical telescopes, and radio and high-energy technologies. They conclude with practical projects and exercises. New to the Fourth Edition: Revised values such as the obliquity of the ecliptic Expanded material that is devoted to new astronomies and techniques such as optical data recording A listing of Web sites that offer information on relevant astronomical events Revised and expanded, this edition continues to offer vital information about the fundamentals of astronomy. Astronomy: Principles and Practice, Fourth Edition satisfies the need of anyone who has a strong desire to understand the philosophy and applications of the science of astronomy.
Quantum mechanics is a general theory of the motions, structures, properties, and behaviors of particles of atomic and subatomic dimensions. While quantum mechanics was created in the first third of the twentieth century by a handful of theoretical physicists working on a limited number of problems, it has further developed and is now applied by a great number of people working on a vast range of problems in wide areas of science and technology. Basic Molecular Quantum Mechanics introduces quantum mechanics by covering the fundamentals of quantum mechanics and some of its most important chemical applications: vibrational and rotational spectroscopy and electronic structure of atoms and molecules. Thoughtfully organized, the author builds up quantum mechanics systematically with each chapter preparing the student for the more advanced chapters and complex applications. Additional features include the following: This book presents rigorous and precise explanations of quantum mechanics and mathematical proofs. It contains qualitative discussions of key concepts with mathematics presented in the appendices. It provides problems and solutions at the end of each chapter to encourage understanding and application. This book is carefully written to emphasize its applications to chemistry and is a valuable resource for advanced undergraduates and beginning graduate students specializing in chemistry, in related fields such as chemical engineering and materials science, and in some areas of biology.
The primary goal of nanotechnology is to achieve nanoscale materials and devices with atomic precision. Toward this goal, breakthroughs have recently been made in the solution-phase synthesis and applications of atomically precise nanoclusters. This book presents the exciting progress in this new research field. The chapters are contributed by leading experts of the field and cover the synthetic methods, atomic structures, electronic and optical properties, and catalytic applications of noble metal nanoclusters. Such new nanocluster materials offer exciting opportunities for chemists and physicists to understand the fundamental science of nanoclusters, especially the atomic-level structure-property correlation and design of new materials, as well as for developing a range of applications including catalysis, biomedicine, sensing, imaging, optics, and energy conversion. The book will be of interest to readers and researchers in nanotechnology, nanochemistry, catalysis, and computational chemistry, as well as practitioners in industry R&D for new materials. It is written to be accessible to undergraduate and graduate students and, therefore, is an excellent teaching material.
Design of new processes that avoid the use of toxic reagents has been the focus of intense research of late. Catalysis by metals and non-metals offers diverse opportunities for the development of new organic reactions with promising range of selectivities-chemoselectivity, regioselectivity, diastereoselectivity, and enantioselectivity. Furthermore, these transformations frequently occur under mild conditions, tolerate a broad array of functional groups, and proceed with high stereoselectivity. The area of catalysis is sometimes referred to as a 'foundational pillar' of green chemistry. Catalytic reactions often reduce energy requirements and decrease separations because of increased selectivity; they are also capable of permitting the use of renewable feedstocks of less toxic reagents or minimizing the quantities of reagents needed. New catalytic organic synthesis methodologies have, thus, offered several possibilities for considerable improvement in the eco-compatibility of fine chemical production. Hence, these catalytic methodologies have emerged as powerful tools for the efficient and chemoselective synthesis of heterocyclic molecules. Key Features: Presents the synthesis of different five-membered heterocycles. Contains the most up-to-date information in this fast-moving field. Covers novel catalytic approaches used in the study and application of catalysts in synthetic organic reactions. Presents new methodologies for the synthesis of heterocycles.
Blood microcirculation is essential to our bodies for the successful supply of nutrients, waste removal, oxygen delivery, homeostasis, controlling temperature, wound healing, and active immune surveillance. This book provides a physical introduction to the subject and explores how researchers can successfully describe, understand, and predict behaviours of blood flow and blood cells that are directly linked to these important physiological functions. Using practical examples, this book explains how the key concepts of physics are related to blood microcirculation and underlie the dynamic behavior of red blood cells, leukocytes, and platelets. This interdisciplinary book will be a valuable reference for researchers and graduate students in biomechanics, fluid mechanics, biomedical engineering, biological physics, and medicine. Features: The first book to provide a physical perspective of blood microcirculation Draws attention to the potential of this physical approach for novel applications in medicine Edited by specialists in this field, with chapter contributions from subject area specialists
Provides practical solutions for the treatment and recycling of distillery waste illustrated by specific case studies. Focuses on recent industry practices and preferences, along with newer approaches for wastewater treatment. An instructive compilation of treatment approaches, including advanced physicochemical and integrated/sequential methods. Covers biocomposting of sludge and effluent and biodiesel production from distillery waste for recycling and sustainable development. Emphasizing the relationship of metagenomics with organometallic compounds of distillery waste. Discusses the role of ligninolytic enzymes and bioreactors in distillery wastewater treatment.
This intriguing and accessible book examines the experiments on neutrino oscillations. It argues that this history gives us good reason to believe in the existence of neutrinos, a particle that interacts so weakly with matter that its interaction length is measured in light years of lead. Yet, the scientific process has provided evidence of the elusive neutrino. Written in a style accessible to any reader with a college education in physics, Are There Really Neutrinos? is of interest to students and researchers alike. This second edition contains a new epilogue highlighting the new developments in neutrino physics over the past 20 years. |
![]() ![]() You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Power Management for Wearable Electronic…
Dima Kilani, Baker Mohammad, …
Hardcover
R1,597
Discovery Miles 15 970
Applied Approaches to Societal…
Tohru Naito, Woo Hyung Lee, …
Hardcover
R4,832
Discovery Miles 48 320
Linear CMOS RF Power Amplifiers - A…
Hector Solar Ruiz, Roc Berenguer Perez
Hardcover
R3,567
Discovery Miles 35 670
A Student's Approach To Taxation In…
L. Bruwer, C. Cass, …
Paperback
Analog/RF and Mixed-Signal Circuit…
Mourad Fakhfakh, Esteban Tlelo-Cuautle, …
Hardcover
R5,197
Discovery Miles 51 970
|