![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > General
- Focuses on a very physical and specific understanding of how humans measure and interpret the measurements of the quantity of time, unlike existing books which explore qualitative, speculative theories currently entertained in physics and philosophy.
- Focuses on a very physical and specific understanding of how humans measure and interpret the measurements of the quantity of time, unlike existing books which explore qualitative, speculative theories currently entertained in physics and philosophy.
Is the first to present the historic background and numerous case studies on Moebius topology in mathematics, astronomy, chemistry, molecular medicine, physics and nanomaterials, literature, arts, and architecture Covers research on Moebius strip topology-controlled nanodevices for use in chemistry, biology, physics, and material sciences, including aspects from modern computer simulations for molecular design and engineering Highlights case studies on Moebius topology from the 18th-19th century up to the present years, taking examples from Europe, America, Australia, and Asia Reports on how drug-delivery techniques can be revolutionized through the development of topologically protected ring-shaped nanoproteins, such as Moebius-type cyclotides; the structural stability of such bioengineered nanodevices allows for better drug transport across the blood-brain barrier Reports on the spectacular modern architecture of buildings and bridges inspired by Moebius strip topology in Berlin, Amsterdam, Beijing, and Changsha Is richly illustrated with excellent figures to accompany each chapter and section Is authored by internationally renowned researchers in the field of magnetic resonance spectroscopy on complex (bio)chemical systems
Fish Diseases: Prevention and Control Strategies provides essential information on disease prevention and treatment by the most experienced fish culturists in the industry. The book presents both traditional and novel methodologies of identifying and addressing fish disease risk, along with preventative and responsive insights to the challenges impacting fish production today. Both specific (vaccination) and non-specific (immunostimulation) approaches are explored, from maintaining optimal environmental conditions, to understanding how stressors in fish affect their immune system.
This volume provides basic and cutting-edge methods and protocols to study the major characteristics of eukaryotic cells. Chapters detail the different pathways of endocytosis in vivo, real time imaging of endocytic steps, endocytosis in model organisms, super-resolution methods to follow proteins involved in exocytosis, specific protocols for exocytosis in specialized cells such as neutrophils or neuroendocrine cells, as well as secretion of exosomes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and clearly written, Exocytosis and Endocytosis: Methods and Protocols is a valuable resource for researchers in the fields of cell biology, neurology, immunology, oncology, and those interested in studying protein trafficking and signal regulation.
* Guides readers into more detailed and technical treatments of readout optical signals * Gives a broad overview of optical signal detection including terahertz region and two-dimensional material * Helps readers further their studies by offering chapter-end problems and recommended reading.
Cover simple modelling approaches as well as full Monte Carlo simulation of x-ray tubes Bremsstrahlung and characteristic contributions to the spectrum are discussed in detail Learning is supported by free open-source software and an online repository of code.
Scientists have long been looking for alternative methods for the cleaning of historical and cultural museum objects as conventional methods often fail to completely remove surface films, leaving contamination and surface residues behind. Low-temperature plasmas have recently been found to provide a new, efficient and durable approach that maintains the safety of both the materials and personnel. This book is the first to introduce the emerging use of low-temperature plasmas in the cleaning and decontamination of cultural heritage items. It provides a comprehensive exploration of the new possibilities of cleaning objects with plasma, before providing a practice guide to the individual cleaning methods and an overview of the technologies and conditions used in the different cleaning regimes. It is an ideal reference for researchers in plasma physics, in addition to professionals working in the field of historical and cultural conservation. Features: Provides a thorough overview of the cleaning potential of emerging plasma technologies in accessible language for professional restorers and conservators without a scientific background Includes the latest case studies from the field, which have not been published elsewhere yet Authored by a team of experts in the field About the Authors: Dr. Radko Tino is an Associate Professor at the Slovak University of Technology in Bratislava, Slovakia. Dr. Katarina Vizarova is an Associate Professor at the Slovak University of Technology in Bratislava, Slovakia. Dr. Frantisek Krcma is an Associate Professor at Brno University of Technology, Czech Republic. Dr. Milena Rehakova is an Associate Professor at the Slovak University of Technology in Bratislava, Slovakia. Dr. Viera Jancovicova is an Associate Professor at the Slovak University of Technology in Bratislava, Slovakia. Dr. Zdenka Kozakova is an Associate Professor at Brno University of Technology, Czech Republic.
This book is dedicated to the fundamental physical aspects of stability, the influence of structural defects on the properties and structural phase transformations of BCC alloys. The authors present patterns that occur in the structural-phase states of functional alloys with low stability or instability under thermal cycling effects. Structural-phase transformations and the physical laws governing the influence of the thermomechanical effect on the properties of alloys are examined to advance development of technological processes for processing functional materials. Features: Studies the correlation between structural phase states and changes in the physico-mechanical properties of intermetallic compounds Explores the influence of thermomechanical cycling on the properties of functional alloys Details low-stability pretransition states in alloys
Biomedical Applications of Magnetic Particles discusses fundamental magnetic nanoparticle physics and chemistry and explores important biomedical applications and future challenges. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, detailing methods to characterize magnetic particles, and quantitatively describing the applied magnetic forces, torques, and the resultant particle motions. The second section describes the wide range of biomedical applications, including chemical sensors, cellular actuators, drug delivery, magnetic hyperthermia, magnetic resonance imaging contrast enhancement, and toxicity. Additional key features include: Covers both introduction to physics and characterization of magnetic nanoparticles and the state of the art in biomedical applications Authoritative reference for scientists and engineers for all new or old to the field Describes how the size of magnetic nanoparticles affects their magnetic properties, colloidal properties, and biological properties. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers.
Carbon forms a variety of allotropes due to the diverse hybridization of s- and p-electron orbitals, including the time-honored graphite and diamond as well as new forms such as C60 fullerene, nanotubes, graphene, and carbyne. The new family of carbon isotopes-fullerene, nanotubes, graphene, and carbyne-is called "nanostructured carbon" or "nanocarbon." These isotopes exhibit extreme properties such as ultrahigh mechanical strength, ultrahigh charge-carrier mobility, and high thermal conductivity, attracting considerable attention for their electronic and mechanical applications as well as for exploring new physics and chemistry in the field of basic materials science. Electron sources are important in a wide range of areas, from basic physics and scientific instruments to medical and industrial applications. Carbon nanotubes (CNTs) and graphene behave as excellent electron-field emitters owing to their exceptional properties and offer several benefits compared to traditional cathodes. Field emission (FE) produces very intense electron currents from a small surface area with a narrow energy spread, providing a highly coherent electron beam-a combination that not only provides us with the brightest electron sources but also explores a new field of electron beam-related research. This book presents the enthusiastic research and development of CNT-based FE devices and focuses on the fundamental aspects of FE from nanocarbon materials, including CNTs and graphene, and the latest research findings related to it. It discusses applications of FE to X-ray and UV generation and reviews electron sources in vacuum electronic devices and space thrusters. Finally, it reports on the new forms of carbon produced via FE from CNT.
- Offers an abundance of explanations in a simple and clear manner without requiring mathematical knowledge above high school level - Presents thorough and detailed explanations of both General Relativity and Special Relativity - Presents simple demonstrations that are physically oriented and include complete explanations - Gives demonstrations of Special Relativity, including E=mc(2), and General Relativity, including the covariant derivative, the geodesic equation and the relativistic Maxwell laws
This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed to produce artifacts in interpretation unless the observer has a solid background in the mathematics of limited reproducibility. The material covered is presented in a modular approach, allowing more advanced sections to be skipped if the reader is primarily interested in applications. At the same time, most derivations of analytical solutions for the selected examples are provided in full length to guide more advanced readers in their attempts to derive solutions on their own. The book employs uniform notation throughout, and a glossary has been added to define the most important notions discussed.
This book offers an overview of the key ideas of Petri nets, how they were developed, and how they were applied in diverse applications. The chapters in the first part offer individual perspectives on the impact of Petri's work. The second part of the book contains personal memories from researchers who collaborated with him closely, in particular they recount his unique personality. The chapters in the third part offer more conventional treatments on various aspects of current Petri net research, and the fourth part examines the wide applications of Petri nets, and the relationships with other domains. The editors and authors are the leading researchers in this domain, and this book will be a valuable insight for researchers in computer science, particularly those engaged with concurrency and distributed systems.
Explores a unique topic in physics. Traces the author's search for hypothetical subatomic particles. Both a memoir and a scientific detective story. Employs humor and eliminates jargon wherever possible. Suitable for both general readers and scientists.
Presenting a collection of papers resulting from the conference on "Applied Chemistry and Industrial Catalysis (ACIC 2021), Qingdao, China, 24-26 December 2021". The theme of the conference was: "Clean Production and High Value Utilization", discussing how to reduce the environmental footprint at the source and produce high value-added end products in chemical manufacturing. The conference brought together scholars from the Chinese government, top universities, business associations, research centers and high-tech enterprises, and was committed to building and enabling a platform for the cooperation among the Chinese government, Chemical industry, and scholars. The goal was to build a bridge between R&D results and the Chemical industry. The conference conducted in-depth exchanges and discussions on relevant topics such as applied chemistry and industrial catalysis aiming to provide an academic and technical communication platform for scholars and engineers engaged in scientific research and engineering practice in the field of chemistry, catalysis and function material. By sharing the research status of scientific research achievements and cutting-edge technologies, it helps scholars and engineers all over the world comprehend the academic development trend and broaden research ideas. So as to strengthen international academic research, academic topics exchange and discussion, and promote the industrialization cooperation of academic achievements.
Covers the challenges and obstacles involved in using nano-materials for actual applications. Discusses the latest advancements in the synthesis of various carbon based nano-materials. Self-contained source dedicated to understanding of Carbon nano-materials. Explores the area that satisfy needs of a diverse group of researchers, industrialists, educators and students. Interdisciplinary nature of book content makes it effective to connect the gap between disciplines.
This book is a treatise on cardiomyocytes, the most important cell for the contractile function of the heart. There has been significant progress in our understanding of the function-related structure, developmental processes and their determinants, mechanisms of cell cycle regulation, post-natal growth, energy metabolism, and reversible and irreversible response of cardiomyocytes to diverse forms of physiological stress and injury. There is also more clarity on the alterations in the biological mechanisms in cardiomyocytes that lead to pathological states and the changes in the cells that occur secondary to disease conditions. Thanks to these advances in knowledge, there have been great gains in attempts to identify disease biomarkers and therapeutic targets for better management of patients with heart diseases. Possibilities to induce regeneration or proliferation of cardiomyocytes and thus repair and or regenerate the damaged heart are also on the horizon.
Provides a well-explained and backgrounded, up-to-date account of close binary systems, in a fast-moving field of research that is growing in scientific importance Surveys a wide range of case-studies within the context of binary and multiple star systems Fills an acknowledged gap in current literature
Borate-based phosphors have attracted much attention, due to their high optical stability, low-cost synthesis via conventional and non-conventional methods and resulting technology to be environmentally friendly. This book discusses the structural and chemical parameters of borates as a phosphor including suitable synthesis methods and proper characterization of materials. Further, it includes applications of borate materials such as photoluminescence, UV application, UVU application, photo therapy application and radiological applications. Features: Provides information on borate phosphors and their structure. Aids selection of proper structural and functional borates used in applications based on phosphor technology. Discloses the modification in properties of borate functional group upon mixing or substitution with other metallic functional groups. Discusses biological applications such as photo-thermal heating-based therapy, temperature sensors, imaging, and diagnosis. Includes current trends and innovations, limitations and challenges, prospects, and scope in each chapter. This book is aimed at researchers and graduate students in inorganic materials, luminescent/optical materials, materials science/engineering, and physics.
Covers development of oxide dispersion strengthened sustainable material to withstand high temperature environment Describes stimulating application oriented final mechanical properties Illustrates fabrication of alloys through effective route in order to achieve desired properties Presents in-depth comprehension of deformation behavior at ambient and high temperature Explores critical applications of the alloys in nuclear reactors, defense and aviation sectors
This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples.
Life Cycle Assessment of Wastewater Treatment addresses in detail the required in-depth life cycle assessment of wastewater treatment. This is to meet the special demands placed upon wastewater treatment processes, due to both the limited quantity and often low quality of water supplies. Wastewater management clearly plays a central role in achieving future water security in a world where water stress is expected to increase. Life cycle assessment (LCA) can be used as a tool to evaluate the environmental impacts associated with wastewater treatment and potential improvement options. This unique volume will focus on the analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. Key Features: Focuses on the analysis of wastewater treatment plants using a life cycle assessment (LCA) approach Discusses unconventional water sources such as recycled wastewater, brackish groundwater and desalinated seawater Explains life cycle assessment in detail, which has become one of the reference methods used to assess the environmental performance of processes over their complete life cycle, from raw material extraction, infrastructure construction and operation to final dismantling Explores a technique (LCA) that is becoming increasingly popular amongst researchers in the water treatment field nowadays because of its holistic approach Based on the real life experiences, the subject of wastewater is presented in simple terms and made accessible to anyone willing to learn and experiment
This book presents recent and important developments in the field of Photonics and Optoelectronics, with a particular focus on Laser Technology, Optical Communications, Optoelectronic Devices and Image Processing. At present, Photonics and Optoelectronics Technologies are pivotal to the future of laser, displays, sensors and communication technologies, and currently being developed at an extraordinary rate. This book details the theories underlying the mechanisms involved in the relevant Photonics and Optoelectronics. Devices such as laser diodes, photodetectors, and integrated optoelectronic circuits are investigated. The reviews by leading experts are of interest to researchers and engineers as well as advanced students.
- Covers topics such as fundamentals of electrochemistry for energy applications of COFs not covered in competing titles - Provides details about recent methods used for synthesis and characterization of COFs-based nanomaterials, particularly of energy applications - Covers the state-of-the-art development in COFs and their applications in green energy generation and storage - Widens fundamentals about COFs and mechanisms for realization and advancement in devices with improved energy efficiency and high storage capacity - Provides new directions to scientists, researchers, and students to better understand the principle, technologies, and applications of COFs |
You may like...
Effective Use of Social Media in Public…
Kavita Batra, Manoj Sharma
Paperback
R2,941
Discovery Miles 29 410
Vaxxers - The Inside Story Of The Oxford…
Sarah Gilbert, Catherine Green
Paperback
R123
Discovery Miles 1 230
Natural Plant Products in Inflammatory…
Roberto de Paula do Nascimento, Ana Paula Da Fonseca Machado, …
Paperback
R3,265
Discovery Miles 32 650
Vascular Disease in Women - An Overview…
Caitlin Hicks, Linda Harris
Paperback
R3,546
Discovery Miles 35 460
|