Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > General
Due to the increasing popularity of herbal-based drugs under the pandemic like COVID 19, the worldwide demand for medicinal plants has increased to aid the immune system. Very timely topic for working on or have an interest in the traditional as well as modern research of medicinal plants. The book can be a useful reference for students, pharmacists, pharmacognosists, chemists, phytochemists, and cosmetic chemists by providing information about fundamental chemical principles, modes of action, and product formulation of bioactive natural products for medical applications.
This book is the first of its kind to bring basic notions of contemporary physics to bear on African cine-scapes. In this book, renowned African cinema scholar Kenneth W. Harrow presents unique new ways to think about space and time in film, with a specific focus on African and African diasporic cinema. Through a series of case studies, he explores how cinema creates and represents time and space and, more specifically, how a cinema centered in African landscapes and figures accomplishes this. He reflects on the issues and problems posed by scientists when faced with the basic questions of what space and time are and their solutions or conclusions, giving both film studies and African studies scholars access to new ways to formulate their thinking about African cine-scapes. Working beyond the limits of a framework based in a postcolonial and cultural understanding of time and space, Harrow demonstrates how a scientific understanding of time and space can open up new approaches to African cinema and cinema in general. A unique, interdisciplinary book that encourages brand new ways to approach cinematic texts and, specifically, African cine-scapes.
Biophysical Chemistry explores the concepts of physical chemistry and molecular structure that underlie biochemical processes. Ideally suited for undergradate students and scientists with backgrounds in physics, chemistry or biology, it is also equally accessible to students and scientists in related fields as the book concisely describes the fundamental aspects of biophysical chemistry, and puts them into a biochemical context. The book is organized in four parts, covering thermodynamics, kinetics, molecular structure and stability, and biophysical methods. Cross-references within and between these parts emphasize common themes and highlight recurrent principles. End of chapter problems illustrate the main points explored and their relevance for biochemistry, enabling students to apply their knowledge and to transfer it to laboratory projects. Features: Connects principles of physical chemistry to biochemistry Emphasizes the role of organic reactions as tools for modification and manipulation of biomolecules Includes a comprehensive section on the theory of modern biophysical methods and their applications
This book offers comprehensive coverage of all the core topics of bioinformatics, and includes practical examples completed using the MATLAB bioinformatics toolbox (TM). It is primarily intended as a textbook for engineering and computer science students attending advanced undergraduate and graduate courses in bioinformatics and computational biology. The book develops bioinformatics concepts from the ground up, starting with an introductory chapter on molecular biology and genetics. This chapter will enable physical science students to fully understand and appreciate the ultimate goals of applying the principles of information technology to challenges in biological data management, sequence analysis, and systems biology. The first part of the book also includes a survey of existing biological databases, tools that have become essential in today's biotechnology research. The second part of the book covers methodologies for retrieving biological information, including fundamental algorithms for sequence comparison, scoring, and determining evolutionary distance. The main focus of the third part is on modeling biological sequences and patterns as Markov chains. It presents key principles for analyzing and searching for sequences of significant motifs and biomarkers. The last part of the book, dedicated to systems biology, covers phylogenetic analysis and evolutionary tree computations, as well as gene expression analysis with microarrays. In brief, the book offers the ideal hands-on reference guide to the field of bioinformatics and computational biology.
This new book is fully up to date with all the latest developments on both theoretical and experimental investigations of the Standard Model (SM) of particle physics with a particular emphasis on its historical development on both sides. It further stresses the cross-fertilisation between the two sub-disciplines of theoretical and experimental particle physics which has been instrumental in establishing the SM. In other words, the book develops a truly phenomenological attitude to the subject. In addition to emphasising the successes of the SM, this book also critically assesses its limitations and raises key unanswered questions for the purpose of presenting a new perspective of how to further our knowledge above and beyond it. It also contains both historical information from past experiments and latest results from the Large Hadron Collider at CERN. This book will be an invaluable reference to advanced undergraduate and postgraduate students, in addition to early-stage researchers in the field. Key Features: Provides a unique approach not found in current literature in developing and verifying the SM Presents the theory pedagogically but rigorously from basic knowledge of quantum field theory Brings together experimental and theoretical practice in one, cohesive text
Covers key areas of heterojunction nanomaterials for easy understanding of students, researchers, and academicians to promote the research in this field Systematically summarizes synthetic strategies, physicochemical properties, photocatalytic mechanisms, and applications of heterojunction materials through high-quality illustrations and schematic diagrams and references accompanying each chapter Emphasizes the ongoing challenges and potential directions for future development of heterojunction photocatalysts
* Guides readers into more detailed and technical treatments of readout optical signals * Gives a broad overview of optical signal detection including terahertz region and two-dimensional material * Helps readers further their studies by offering chapter-end problems and recommended reading.
Calculations in Chemical Kinetics for Undergraduates aims to restore passion for problem solving and applied quantitative skills in undergraduate chemistry students. Avoiding complicated chemistry jargon and providing hints and step wise explanations in every calculation problem, students are able to overcome their fear of handling mathematically applied problems in physical chemistry. This solid foundation in their early studies will enable them to connect fundamental theoretical chemistry to real experimental applications as graduates. Additional Features Include: Contains quantitative problems from popular physical chemistry references. Provides step by step explanations are given in every calculation problem. Offers hints to certain problems as "points to note" to enable student comprehension. Includes solutions for all questions and exercises. This book is a great resource for undergraduate chemistry students however, the contents are rich and useful to even the graduate chemist that has passion for applied problems in physical chemistry of reaction Kinetics.
Calculations in Chemical Kinetics for Undergraduates aims to restore passion for problem solving and applied quantitative skills in undergraduate chemistry students. Avoiding complicated chemistry jargon and providing hints and step wise explanations in every calculation problem, students are able to overcome their fear of handling mathematically applied problems in physical chemistry. This solid foundation in their early studies will enable them to connect fundamental theoretical chemistry to real experimental applications as graduates. Additional Features Include: Contains quantitative problems from popular physical chemistry references. Provides step by step explanations are given in every calculation problem. Offers hints to certain problems as "points to note" to enable student comprehension. Includes solutions for all questions and exercises. This book is a great resource for undergraduate chemistry students however, the contents are rich and useful to even the graduate chemist that has passion for applied problems in physical chemistry of reaction Kinetics.
This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. The fifth volume in a ten-volume set covers exotic nanostructures and quantum systems. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.
The student's companion website and the instructor manual can be accessed here. This textbook provides the knowledge and skills needed for thorough understanding of the most important methods and ways of thinking in experimental physics. The reader learns to design, assemble, and debug apparatus, to use it to take meaningful data, and to think carefully about the story told by the data. Key Features: Efficiently helps students grow into independent experimentalists through a combination of structured yet thought-provoking and challenging exercises, student-designed experiments, and guided but open-ended exploration. Provides solid coverage of fundamental background information, explained clearly for undergraduates, such as ground loops, optical alignment techniques, scientific communication, and data acquisition using LabVIEW, Python, or Arduino. Features carefully designed lab experiences to teach fundamentals, including analog electronics and low noise measurements, digital electronics, microcontrollers, FPGAs, computer interfacing, optics, vacuum techniques, and particle detection methods. Offers a broad range of advanced experiments for each major area of physics, from condensed matter to particle physics. Also provides clear guidance for student development of projects not included here. Provides a detailed Instructor's Manual for every lab, so that the instructor can confidently teach labs outside their own research area. The manual can be accessed here.
Spin-label electron paramagnetic resonance (EPR) spectroscopy is a versatile molecular probe method that finds wide application in molecular biophysics and structural biology. This book provides the first comprehensive summary of basic principles, spectroscopic properties, and use for studying biological membranes, protein folding, supramolecular structure, lipid-protein interactions, and dynamics. The contents begin with discussion of fundamental theory and practice, including static spectral parameters and conventional continuous-wave (CW) spectroscopy. The development then progresses, via nonlinear CW-EPR for slower motions, to the more demanding time-resolved pulse EPR, and includes an in-depth treatment of spin relaxation and spectral line shapes. Once the spectroscopic fundamentals are established, the final chapters acquire a more applied character. Extensive appendices at the end of the book provide detailed summaries of key concepts in magnetic resonance and chemical physics for the student reader and experienced practitioner alike. Key Features: Indispensable reference source for the understanding and interpretation of spin-label spectroscopic data in its different aspects. Tables of fundamental spectral parameters are included throughout. Forms the basis for an EPR graduate course, extending up to a thorough coverage of advanced topics in Specialist Appendices. Includes all necessary theoretical background. The primary audience is research workers in the fields of molecular biophysics, structural biology, biophysical chemistry, physical biochemistry and molecular biomedicine. Also, physical chemists, polymer physicists, and liquid-crystal researchers will benefit from this book, although illustrative examples used are often taken from the biomolecular field. Readers will be postgraduate researchers and above, but include those from other disciplines who seek to understand the primary spin-label EPR literature.
This up-to-date reference is the most comprehensive summary of the field of nanoscience and its applications. It begins with fundamental properties at the nanoscale and then goes well beyond into the practical aspects of the design, synthesis, and use of nanomaterials in various industries. It emphasizes the vast strides made in the field over the past decade - the chapters focus on new, promising directions as well as emerging theoretical and experimental methods. The contents incorporate experimental data and graphs where appropriate, as well as supporting tables and figures with a tutorial approach.
New innovations are needed for the invention of more efficient, affordable, sustainable and renewable energy systems, as well as for the mitigation of climate change and global environmental issues. In response to a fast-growing interest in the realm of renewable energy, Renewable Energy Systems: Efficiency, Innovation and Sustainability identifies a need to synthesize relevant and up-to-date information in a single volume. This book describes a systems approach to renewable energy, including technological, political, economic, social and environmental viewpoints, as well as policies and benefits. This unique and concise text, encompassing all aspects of the field in a single source, focuses on truly promising innovative and affordable renewable energy systems. Key Features: Focuses on innovations in renewable energy systems that are affordable and sustainable Collates the most relevant and up-to-date information on renewable energy systems, in a single and unique volume Discusses lifecycle assessment, cost and availability of systems Emphasizes bio-related topics Provides a systems approach to the renewable energy technologies and discusses technological, political, economic, social, and environmental viewpoints as well as policies
Life Cycle Assessment of Wastewater Treatment addresses in detail the required in-depth life cycle assessment of wastewater treatment. This is to meet the special demands placed upon wastewater treatment processes, due to both the limited quantity and often low quality of water supplies. Wastewater management clearly plays a central role in achieving future water security in a world where water stress is expected to increase. Life cycle assessment (LCA) can be used as a tool to evaluate the environmental impacts associated with wastewater treatment and potential improvement options. This unique volume will focus on the analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. Key Features: Focuses on the analysis of wastewater treatment plants using a life cycle assessment (LCA) approach Discusses unconventional water sources such as recycled wastewater, brackish groundwater and desalinated seawater Explains life cycle assessment in detail, which has become one of the reference methods used to assess the environmental performance of processes over their complete life cycle, from raw material extraction, infrastructure construction and operation to final dismantling Explores a technique (LCA) that is becoming increasingly popular amongst researchers in the water treatment field nowadays because of its holistic approach Based on the real life experiences, the subject of wastewater is presented in simple terms and made accessible to anyone willing to learn and experiment
Fully updated throughout, with new content on topics including the latest developments in fission and fusion energy, the global financial crisis of 2008/2009, and the Fukushima-Daiichi nuclear accident. Accessible to readers without a formal education in the area Authored by an authority in the field
Gives basics of Fortran and Numerical Calculation. The book includes Fortran codes and also gives access to author's website. Summarizes history of Quantum Mechanics through the most important papers. Presents detailed mathematical basis of Quantum Mechanics and Quantum Chemistry. Includes proposed exercises and do-it-yourself activities.
This new volume offers a state-of-the-art report on various recent scientific developments in the theory of engineering materials. It addresses the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures.Focusing on practical applications and industry needs, and supported by a solid outlining of theoretical background, the volume provides an overview of approaches that have been developed for designing nanostructured materials. It also covers several aspects of the simulation and design of nanomaterials, analyzed by a selected group of active researchers in the field. The volume also looks at how the advancement of computational tools have enabled nanoscopic prediction of physical and chemical properties and how they can be used to simulate and analyze nanostructures.Materials Modeling for Macro to Micro/Nano Scale Systems is addressed to a wide readership and will be useful for undergraduate and graduate students and as a reference source for professionals including engineers, applied mathematicians, and others working on different application of nanomaterials in engineering.
Volatility of crude oil prices, depleting reservoirs and environmental concerns have stimulated worldwide research for alternative and sustainable sources of raw materials for chemicals and fuels. The idea of using single-carbon atom molecules as chemical building blocks is not new, and many such compounds have been techno-economically studied as raw materials for fuels. Nevertheless, unifying the scientific and technical issues under the topic of C1 chemistry is not as easy as it may appear. C1 Chemistry: Principles and Processes provides a comprehensive understanding of the chemical transformation from molecular to commercial plant scales and reviews the sources of C1 molecules, their conversion processes and the most recent achievements and research needs. This book: Describes the latest processes developments and introduces commercial technologies Covers a wide range of feedstocks, including greenhouse gases and organic wastes Details chemistry, thermodynamics, catalysis, kinetics and reactors for respective conversions Includes preparation and purification of C1 feedstocks, C1 molecule coupling reactions and process technologies for each C1 conversion reaction Considers environmental impacts and sustainability This book will be of interest to a wide range of researchers, academics, professionals and advanced students working in the chemical, environmental and energy sectors and offers readers insights into the challenges and opportunities in the active field of C1 chemistry.
This comprehensive and extensively classroom-tested biophysics textbook is a complete introduction to the physical principles underlying biological processes and their applications to the life sciences and medicine. The foundations of natural processes are placed on a firm footing before showing how their consequences can be explored in a wide range of biosystems. The goal is to develop the readers' intuition, understanding, and facility for creative analysis that are frequently required to grapple with problems involving complex living organisms. Topics cover all scales, encompassing the application of statics, fluid dynamics, acoustics, electromagnetism, light, radiation physics, thermodynamics, statistical physics, quantum biophysics, and theories of information, ordering, and evolutionary optimization to biological processes and bio-relevant technological implementations. Sound modeling principles are emphasized throughout, placing all the concepts within a rigorous framework. With numerous worked examples and exercises to test and enhance the reader's understanding, this book can be used as a textbook for physics graduate students and as a supplementary text for a range of premedical, biomedical, and biophysics courses at the undergraduate and graduate levels. It will also be a useful reference for biologists, physicists, medical researchers, and medical device engineers who want to work from first principles.
This volume provides basic and cutting-edge methods and protocols to study the major characteristics of eukaryotic cells. Chapters detail the different pathways of endocytosis in vivo, real time imaging of endocytic steps, endocytosis in model organisms, super-resolution methods to follow proteins involved in exocytosis, specific protocols for exocytosis in specialized cells such as neutrophils or neuroendocrine cells, as well as secretion of exosomes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and clearly written, Exocytosis and Endocytosis: Methods and Protocols is a valuable resource for researchers in the fields of cell biology, neurology, immunology, oncology, and those interested in studying protein trafficking and signal regulation.
Remains accessible but incorporates a rigorous mathematical treatment with clarity and emphasizing a contemporary style and a rejuvenated approach Presents a student-friendly and self-contained structure Balances theory and worked examples
The book covers the fundamental concepts of phases, phase diagrams and their applications. Stress is on understanding and not on memorization. The book has descriptive passages and diagrams (cooling curves) that help students gain a solid foundation in subject. This text will help them learn phase rule faster. It also contains numerous phase diagrams. Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
In light of increasing human-induced global climate change, there is a greater need for clean energy resources and zero carbon projects. This new volume offers up-to-date coverage of the fundamentals as well as recent advancements in energy efficient thermal energy storage materials, their characterization, and technological applications. Thermal energy storage (TES) systems offer very high-energy savings for many of our day-to-day applications and could be a strong component for enhancing the usage of renewable/clean energy-based devices. Because of its beneficial environmental impact, this technology has received wide attention in the recent past, and dedicated research efforts have led to the development of novel materials, as well to innovative applications in very many fields, ranging from buildings to textile, healthcare to agriculture, space to automobiles. This book offers a valuable and informed systematic treatment of latent heat-based thermal energy storage systems, covering current energy research and important developmental work.
This volume explains cleaning of cotton after blow room treatment and individualization process in conventional card including functions related to licker-in, cylinder, and doffer, and so forth. Description of modern card includes improved cleaning at higher production rates and individualization at such higher rates. Larger part of the book is devoted to drawing of the sliver and relative description for any modern machine including on-line controls and introduction of indicator lamp system to improve both machine and labour efficiency is discussed as well. This volume also includes the related calculation for both card and draw frame. Focuses on modern carding processes, functions, and attachments. Includes chapters on defects in carding and drawn material and related calculations. Highlights the features of modern draw frame, especially the drafting system. Discusses automation and processes of modern carding machines for improving machine efficiency. Describes drafting and doubling including drafting as basic processes of spinning. This volume is aimed at senior undergraduate/Graduate students in Textile Engineering, staple fibre processing, spinning of staple fibres. |
You may like...
Mycotoxin Prevention and Control in…
Michael Appell, David Kendra, …
Hardcover
Physiology and Pathophysiology of…
D. Neil Granger, James D Morris, …
Hardcover
R3,063
Discovery Miles 30 630
Handbook of Biology and Politics
Steven A. Peterson, Albert Somit
Hardcover
R6,614
Discovery Miles 66 140
Gray's Anatomy - Complete & Illustrated…
Henry Gray, Henry Vandyke Carter, …
Paperback
R2,221
Discovery Miles 22 210
Quantitative Biology of Endocytosis
Julien Berro, Michael M Lacy
Hardcover
R1,661
Discovery Miles 16 610
Guide to Wellness Through Stretching…
Dale Deis, Ed Stiles
Hardcover
The Analysis of Biological Data Achieve…
Michael C Whitlock, Dolph Schluter
Mixed media product
R2,200
Discovery Miles 22 000
|