![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Life sciences: general issues > General
Big questions and issues arise about the role of the scientific life in our society and in our world. These have to do with trusting science at all, or with the wider roles of the scientist. The Whens and Wheres of a Scientific Life serves as an epilogue to author John R. Helliwell's scientific life trilogy of books on the Hows (i.e. skills), the Whys and the Whats of a scientific life. When and where questions play a big role in major science facility decisions. When and where also play a big role in controlling a pandemic like the coronavirus COVID-19. The consequences of such work and the role science plays in society are discussed in this book. Key Features: Discusses when and where we can make new and better things happen and make new discoveries. Explains whens and wheres as examples in basic science and explaining these to the public User friendly and concise, this text provides a wide range of examples of science and discovery The author has diverse experience in career development, teaching and research The importance of open data to the reproducibility of science are described
This volume describes computational approaches to predict multitudes of PTM sites. Chapters describe in depth approaches on algorithms, state-of-the-art Deep Learning based approaches, hand-crafted features, physico-chemical based features, issues related to obtaining negative training, sequence-based features, and structure-based features. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Authoritative and cutting-edge, Computational Methods for Predicting Post-Translational Modification Sites aims to be a useful guide for researchers who are interested in the field of PTM site prediction.
Archimedes to Hawking takes the reader on a journey across the centuries as it explores the eponymous physical laws-from Archimedes' Law of Buoyancy and Kepler's Laws of Planetary Motion to Heisenberg's Uncertainty Principle and Hubble's Law of Cosmic Expansion-whose ramifications have profoundly altered our everyday lives and our understanding of the universe. Throughout this fascinating book, Clifford Pickover invites us to share in the amazing adventures of brilliant, quirky, and passionate people after whom these laws are named. These lawgivers turn out to be a fascinating, diverse, and sometimes eccentric group of people. Many were extremely versatile polymaths-human dynamos with a seemingly infinite supply of curiosity and energy and who worked in many different areas in science. Others had non-conventional educations and displayed their unusual talents from an early age. Some experienced resistance to their ideas, causing significant personal anguish. Pickover examines more than 40 great laws, providing brief and cogent introductions to the science behind the laws as well as engaging biographies of such scientists as Newton, Faraday, Ohm, Curie, and Planck. Throughout, he includes fascinating, little-known tidbits relating to the law or lawgiver, and he provides cross-references to other laws or equations mentioned in the book. For several entries, he includes simple numerical examples and solved problems so that readers can have a hands-on understanding of the application of the law. A sweeping survey of scientific discovery as well as an intriguing portrait gallery of some of the greatest minds in history, this superb volume will engage everyone interested in science and the physical world or in the dazzling creativity of these brilliant thinkers.
Composite Materials: Properties, Characterisation, and Applications provides an in-depth description of the synthesis, properties, and various characterisation techniques used for the study of composite materials. Covers applications and simulation tests of these advanced materials Presents real-world examples for demonstration Discusses surface, thermal, and electrical characterisation techniques Covers composites for use as sensors Aimed at industry professionals and researchers, this book offers readers thorough knowledge of the fundamentals as well as advanced level techniques involved in composite material characterisation, development, and applications.
Comprises four parts, the first of which provides an overview of the topics that are developed from fundamental principles to more advanced levels in the other parts. Presents in the second part an in-depth introduction to the relevant background in molecular and cellular biology and in physical chemistry, which should be particularly useful for students without a formal background in these subjects. Provides in the third part a detailed treatment of microscopy techniques and optics, again starting from basic principles. Introduces in the fourth part modern statistical approaches to the determination of parameters of interest from microscopy data, in particular data generated by single molecule microscopy experiments. Uses two topics related to protein trafficking (transferrin trafficking and FcRn-mediated antibody trafficking) throughout the text to motivate and illustrate microscopy techniques
Optoelectronic Organic-Inorganic Semiconductor Heterojunctions summarizes advances in the development of organic-inorganic semiconductor heterojunctions, points out challenges and possible solutions for material/device design, and evaluates prospects for commercial applications. Introduces the concept and basic mechanism of semiconductor heterojunctions Describes a series of organic-inorganic semiconductor heterojunctions with desirable electrical and optical properties for optoelectronic devices Discusses typical devices such as solar cells, photo-detectors, and optoelectronic memories Outlines the materials and device challenges as well as possible strategies to promote the commercial translation of semiconductor heterojunctions-based optoelectronic devices Aimed at graduate students and researchers working in solid-state materials and electronics, this book offers a comprehensive yet accessible view of the state of the art and future directions.
Lithium-Ion Batteries and Solar Cells: Physical, Chemical, and Materials Properties presents a thorough investigation of diverse physical, chemical, and materials properties and special functionalities of lithium-ion batteries and solar cells. It covers theoretical simulations and high-resolution experimental measurements that promote a full understanding of the basic science to develop excellent device performance. Employs first-principles and the machine learning method to fully explore the rich and unique phenomena of cathode, anode, and electrolyte (solid and liquid states) in lithium-ion batteries Develops distinct experimental methods and techniques to enhance the performance of lithium-ion batteries and solar cells Reviews syntheses, fabrication, and measurements Discusses open issues, challenges, and potential commercial applications This book is aimed at materials scientists, chemical engineers, and electrical engineers developing enhanced batteries and solar cells for peak performance.
This volume first considers the categories of zinc metalloenzymes, together with models of the enzymic metal-ion binding sites. It covers the nutritional aspects of zinc: its absorption and excretion, its influence on the activity of enzymes and hormones, and the zinc deficiency syndrome.
This 5-volume set allows you to assess the health and environmental effects of chemicals by determining the routes of exposure of the chemical to sensitive organisms. Environmental Fate and Exposure of Organic Chemicals provides relevant facts on how individual chemicals behave in the environment and how humans and environmental organisms are exposed to the chemicals during their production, rise, transport, and disposal. Each chemical is prepared by one of the best-known organizations in environmental fate and exposure and is peer-reviewed by a panel of expert scientists. The information on each chemical includes all experimental values and references for physical properties, all chemical fate studies, and all available monitoring data and interpretative summaries.
While the effects of pressure change are readily quantified in physics, chemistry, and engineering applications, the physiology, medicine, and biology of pressure changes in living systems are much more complicated. This complex science translated to technical diving is discussed in a five-part series, with each topic self-contained and strategically developed in relationship to diving, spanning many disciplines and focusing on a number of technical areas. A suite of application exercises is provided at strategic points in the text. Additional material focusing on diving data, statistical correlations, underwater tests, and risk is included.
This interdisciplinary and accessible new volume presents a broad range of application-based green chemistry and engineering research. The book familiarizes readers with the integration of tools and spell out the approaches for green engineering of new processes as well as improving the environmental risks of existing processes. The expert authors discuss the myriad opportunities and the challenges facing green chemistry today in both its theoretical and practical implementation. The book expands upon green chemistry concepts with the latest research and new and innovative applications, providing both the breadth and depth researchers need. Topics include solar energy, electrospinning of bio-based polymeric nanofibers, biotransformation, engineered nanomaterials in environmental protection, and much more.
This book provides a review of biochemistry as an algebra of molecules of living matter and utilizes Clifford algebras to discuss the basic biochemical processes of DNA replication, DNA transcription, RNA splicing and translation. Viral carcinogenesis is discussed in depth, specific attention is paid to the structural features of biomolecules that define a particular Clifford algebra, and useful examples of genetic information being transformed into Clifford algebras are provided.
This textbook provides a comprehensive, yet accessible, introduction to statistical mechanics. Crafted and class-tested over many years of teaching, it carefully guides advanced undergraduate and graduate students who are encountering statistical mechanics for the first time through this - sometimes - intimidating subject. The book provides a strong foundation in thermodynamics and the ensemble formalism of statistical mechanics. An introductory chapter on probability theory is included. Applications include degenerate Fermi systems, Bose-Einstein condensation, cavity radiation, phase transitions, and critical phenomena. The book concludes with a treatment of scaling theories and the renormalization group. In addition, it provides clear descriptions of how to understand the foundational mathematics and physics involved and includes exciting case studies of modern applications of the subject in physics and wider interdisciplinary areas. Key Features: Presents the subject in a clear and entertaining style which enables the author to take a sophisticated approach whilst remaining accessible Contains contents that have been carefully reviewed with a substantial panel to ensure that coverage is appropriate for a wide range of courses, worldwide Accompanied by volumes on thermodynamics and non-equilibrium statistical mechanics, which can be used in conjunction with this book, on courses which cover both thermodynamics and statistical mechanics
Introducing a new engineering product or changing an existing model involves developing designs, reaching economic decisions, selecting materials, choosing manufacturing processes, and assessing environmental impact. These activities are interdependent and should not be performed in isolation from each other. This is because the materials and processes used in making a product can have a major influence on its design, cost, and performance in service. This Fourth Edition of the best-selling Materials and Process Selection for Engineering Design takes all of this into account and has been comprehensively revised to reflect the many advances in the fields of materials and manufacturing, including: Increasing use of additive manufacturing technology, especially in biomedical, aerospace and automotive applications Emphasizing the environmental impact of engineering products, recycling, and increasing use of biodegradable polymers and composites Analyzing further into weight reduction of products through design changes as well as material and process selection, especially in manufacturing products such as electric cars Discussing new methods for solving multi-criteria decision-making problems, including multi-component material selection as well as concurrent and geometry-dependent selection of materials and joining technology Increasing use of MATLAB by engineering students in solving problems This textbook features the following pedagogical tools: New and updated practical case studies from industry A variety of suggested topics and background information for in-class group work Ideas and background information for reflection papers so readers can think critically about the material they have read, give their interpretation of the issues under discussion and the lessons learned, and then propose a way forward Open-book exercises and questions at the end of each chapter where readers are evaluated on how they use the material, rather than how well they recall it, in addition to the traditional review questions Includes a solutions manual and PowerPoint lecture materials for adopting professors Aimed at students in mechanical, manufacturing, and materials engineering, as well as professionals in these fields, this book provides the practical know-how in order to choose the right materials and processes for development of new or enhanced products.
Chiral Organic Pollutants introduces readers to the growing challenges of chirality in synthetic chemicals. In this volume, contributors brilliantly summarize the characteristics of chiral pollutants to provide tools and techniques for effectively assessing their environmental and human health risks. Chapters cover recent research on the physicochemical properties, sources, exposure pathways, environmental fate, toxicity, and enantioselective analysis of chiral organic pollutants. Chiral Organic Pollutants also provides comprehensive discussions on the current trends in the synthesis and legislation of chiral chemicals. Key Features: Includes sampling and analytical methods for the enantioselective analysis of a wide array of chiral organic pollutants in food and the environment Summarizes recent research on the sources, fate, transport, and toxicity of chiral organic pollutants in the environment Critically examines the sources and pathways of chiral organic pollutants such as pesticides, pharmaceuticals, and flame retardants in food Includes a comprehensive discussion on current trends in the enantioselective synthesis and chiral switching of pesticides and pharmaceuticals Provides analysis of current national and international regulations of chiral synthetic chemicals The use of chiral synthetic chemicals such as pesticides, pharmaceuticals, personal care products, and halogenated flame retardants has significantly grown in the past 60 years. Hence, understanding the human and environmental health effects of chiral organic pollutants is crucial in the industry, academia, and policymaking. Chiral Organic Pollutants is an excellent textbook and reference for students, scientists, engineers, and policymakers interested in food quality, environmental pollution, chemical analysis, organic synthesis, and toxicology. Also available in the Food Analysis and Properties Series: Analysis of Nanoplastics and Microplastics in Food, edited by Leo. M.L. Nollet and Khwaja Salahuddin Siddiqi (ISBN: 9781138600188) Proteomics for Food Authentication, edited by Leo M.L. Nollet, and Semih OEtles (ISBN: 9780367205058) Mass Spectrometry Imaging in Food Analysis, edited by Leo M.L. Nollet (ISBN: 9781138370692) For a complete list of books in this series, please visit our website at: www.crcpress.com/Food-Analysis--Properties/book-series/CRCFOODANPRO
An increasing number of technologies are being used to detect minute quantities of biomolecules and cells. However, it can be difficult to determine which technologies show the most promise for high-sensitivity and low-limit detection in different applications. Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit details proven approaches for the detection of single cells and even single molecules-approaches employed by the world's foremost microfluidics and nanotechnology laboratories. While similar books concentrate only on microfluidics or nanotechnology, this book focuses on the combination of soft materials (elastomers and other polymers) with hard materials (semiconductors, metals, and glass) to form integrated detection systems for biological and chemical targets. It explores physical and chemical-as well as contact and noncontact-detection methods, using case studies to demonstrate system capabilities. Presenting a snapshot of the current state of the art, the text: Explains the theory behind different detection techniques, from mechanical resonators for detecting cell density to fiber-optic methods for detecting DNA hybridization, and beyond Examines microfluidic advances, including droplet microfluidics, digital microfluidics for manipulating droplets on the microscale, and more Highlights an array of technologies to allow for a comparison of the fundamental advantages and challenges of each, as well as an appreciation of the power of leveraging scalability and integration to achieve sensitivity at low cost Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit not only serves as a quick reference for the latest achievements in biochemical detection at the single-cell and single-molecule levels, but also provides researchers with inspiration for further innovation and expansion of the field.
Various foods, herbs and spices are used to treat or prevent disease and there have been considerable advances in scientific techniques over the last few decades. These have been used to examine the composition and applications of traditional cures. Modern science has also seen the investigation of herbs, spices and botanicals beyond their traditional usage. Contributions are from leading national and international experts including those from world renowned institutions. Please target oncologists, cancer specialists, physicians, health scientists, healthcare workers, pharmacologists, and research scientists. The audience also includes federal and state program directors. It is valuable to academic libraries that cover the domains of health and medical sciences. It is also suitable for undergraduates, postgraduates, lecturers, and academic professors.
The book fills a void as a textbook with hands-on laboratory exercises designed for biomedical engineering undergraduates in their senior year or the first year of graduate studies specializing in electrical aspects of bioinstrumentation. Each laboratory exercise concentrates on measuring a biophysical or biomedical entity, such as force, blood pressure, temperature, heart rate, respiratory rate, etc., and guides students though all the way from sensor level to data acquisition and analysis on the computer. The book distinguishes itself from others by providing electrical circuits and other measurement setups that have been tested by the authors while teaching undergraduate classes at their home institute over many years. Key Features: * Hands-on laboratory exercises on measurements of biophysical and biomedical variables * Each laboratory exercise is complete by itself and they can be covered in any sequence desired by the instructor during the semester * Electronic equipment and supplies required are typical for biomedical engineering departments * Data collected by undergraduate students and data analysis results are provided as samples * Additional information and references are included for preparing a report or further reading at the end of each chapter Students using this book are expected to have basic knowledge of electrical circuits and troubleshooting. Practical information on circuit components, basic laboratory equipment, and circuit troubleshooting is also provided in the first chapter of the book.
Containing the latest, groundbreaking discoveries in the field, this text outlines the basics of Einstein's theory of gravity with a focus on its most important astrophysical consequences, including stellar structures, black holes and the physics of gravitational waves. Blending advanced topics - usually not found in introductory textbooks - with examples, pedagogical boxes, mathematical tools and practical applications of the theory, this textbook maximises learning opportunities and is ideal for master and graduate students in Physics and Astronomy. Key features: * Provides a self-contained and consistent treatment of the subject that does not require advanced previous knowledge of the field. * Explores the subject with a new focus on gravitational waves and astrophysical relativity, unlike current introductory textbooks. * Fully up-to-date, containing the latest developments and discoveries in the field.
Scanning Transmission Electron Microscopy is focused on discussing the latest approaches in the recording of high-fidelity quantitative annular dark-field (ADF) data. It showcases the application of machine learning in electron microscopy and the latest advancements in image processing and data interpretation for materials notoriously difficult to analyze using scanning transmission electron microscopy (STEM). It also highlights strategies to record and interpret large electron diffraction datasets for the analysis of nanostructures. This book: Discusses existing approaches for experimental design in the recording of high-fidelity quantitative ADF data Presents the most common types of scintillator-photomultiplier ADF detectors, along with their strengths and weaknesses. Proposes strategies to minimize the introduction of errors from these detectors and avenues for dealing with residual errors Discusses the practice of reliable multiframe imaging, along with the benefits and new experimental opportunities it presents in electron dose or dose-rate management Focuses on supervised and unsupervised machine learning for electron microscopy Discusses open data formats, community-driven software, and data repositories Proposes methods to process information at both global and local scales, and discusses avenues to improve the storage, transfer, analysis, and interpretation of multidimensional datasets Provides the spectrum of possibilities to study materials at the resolution limit by means of new developments in instrumentation Recommends methods for quantitative structural characterization of sensitive nanomaterials using electron diffraction techniques and describes strategies to collect electron diffraction patterns for such materials This book helps academics, researchers, and industry professionals in materials science, chemistry, physics, and related fields to understand and apply computer-science-derived analysis methods to solve problems regarding data analysis and interpretation of materials properties.
There is an important overlap between science and design. The most significant technological developments cannot be produced without designers to conceptualize them. By the same token, designers cannot do their job properly without a good understanding of the scientific or technical principles that are being developed within the product. Science in Design: Solidifying Design with Science and Technology reveals the significance of the essential yet understudied intersection of design and scientific academic research and encompasses technological development, scientific principles, and the point of overlap between science and design. Encourages readers to comprehend the role of science in all facets of design Discusses the fundamental involvement of science required for engineering and design irrespective of whether the design is from an individual, business, or social perspective Covers the ontology, characteristics, and application of science in major fields of design education and design research, with an introduction of emerging practices transforming sustainable growth through applied behavioral models Depicts the art and science of material selection using new design techniques and technology advances like augmented reality, AI, and decision-support toolkits This unique book will benefit scientists, technologists, and engineers, as well as designers and professionals, across a variety of industries dealing with scientific analysis of design research methodology, design lifecycle, and problem solving.
There is an important overlap between science and design. The most significant technological developments cannot be produced without designers to conceptualize them. By the same token, designers cannot do their job properly without a good understanding of the scientific or technical principles that are being developed within the product. Science in Design: Solidifying Design with Science and Technology reveals the significance of the essential yet understudied intersection of design and scientific academic research and encompasses technological development, scientific principles, and the point of overlap between science and design. Encourages readers to comprehend the role of science in all facets of design Discusses the fundamental involvement of science required for engineering and design irrespective of whether the design is from an individual, business, or social perspective Covers the ontology, characteristics, and application of science in major fields of design education and design research, with an introduction of emerging practices transforming sustainable growth through applied behavioral models Depicts the art and science of material selection using new design techniques and technology advances like augmented reality, AI, and decision-support toolkits This unique book will benefit scientists, technologists, and engineers, as well as designers and professionals, across a variety of industries dealing with scientific analysis of design research methodology, design lifecycle, and problem solving.
Did the Universe have a beginning? Will it have an end? Or has it always been the same, never changing? This is the subject of cosmology; the study of the Universe, and this book provides a perfect introduction to the subject for anyone that is interested in the wonders of our Universe This book provides an accessible overview of the Standard Model of Cosmology, which is explained in six Cosmological Clues, including evidence for the Big Bang and dark matter and dark energy - the keystones of modern cosmology. It takes readers through some of the most exciting questions in cosmology, such as what evidence do we have that the Universe started from the Big Bang? Has dark matter been observed? Will we ever know what dark energy is? Are the multiverses real? And could the Universe be a hologram? This book is an ideal guide for anyone interested in finding out more about our Universe. It will be of interest to those studying cosmology for the first time, including readers without a scientific background, who have an interest in looking up at the stars and wondering where they all came from! Key features: Contains the latest evidence for the Big Bang, dark matter, and dark energy and explores exciting scientific ideas, such as inflation and multiverses Provides a clear explanation of the main theories of how the Universe evolved based on key observations - the Cosmological Clues Gives the reader a concise introduction to the scientific process, using cosmology as the example, and explores why it has been so successful in creating the technologies we have today
Did the Universe have a beginning? Will it have an end? Or has it always been the same, never changing? This is the subject of cosmology; the study of the Universe, and this book provides a perfect introduction to the subject for anyone that is interested in the wonders of our Universe This book provides an accessible overview of the Standard Model of Cosmology, which is explained in six Cosmological Clues, including evidence for the Big Bang and dark matter and dark energy - the keystones of modern cosmology. It takes readers through some of the most exciting questions in cosmology, such as what evidence do we have that the Universe started from the Big Bang? Has dark matter been observed? Will we ever know what dark energy is? Are the multiverses real? And could the Universe be a hologram? This book is an ideal guide for anyone interested in finding out more about our Universe. It will be of interest to those studying cosmology for the first time, including readers without a scientific background, who have an interest in looking up at the stars and wondering where they all came from! Key features: Contains the latest evidence for the Big Bang, dark matter, and dark energy and explores exciting scientific ideas, such as inflation and multiverses Provides a clear explanation of the main theories of how the Universe evolved based on key observations - the Cosmological Clues Gives the reader a concise introduction to the scientific process, using cosmology as the example, and explores why it has been so successful in creating the technologies we have today
Containing the latest, groundbreaking discoveries in the field, this text outlines the basics of Einstein's theory of gravity with a focus on its most important astrophysical consequences, including stellar structures, black holes and the physics of gravitational waves. Blending advanced topics - usually not found in introductory textbooks - with examples, pedagogical boxes, mathematical tools and practical applications of the theory, this textbook maximises learning opportunities and is ideal for master and graduate students in Physics and Astronomy. Key features: * Provides a self-contained and consistent treatment of the subject that does not require advanced previous knowledge of the field. * Explores the subject with a new focus on gravitational waves and astrophysical relativity, unlike current introductory textbooks. * Fully up-to-date, containing the latest developments and discoveries in the field. |
![]() ![]() You may like...
Soft Computing for Intelligent Systems…
Nikhil Marriwala, C C Tripathi, …
Hardcover
R6,790
Discovery Miles 67 900
Energy-Efficient Communication…
Robert Fasthuber, Francky Catthoor, …
Hardcover
R5,098
Discovery Miles 50 980
Advanced Pulse-Width-Modulation: With…
Dong JIANG, Zewei Shen, …
Hardcover
Spacecraft Electromagnetic Compatibility…
Hua Zhang, Yuting Zhang, …
Hardcover
R4,711
Discovery Miles 47 110
Recent Findings in Boolean Techniques…
Rolf Drechsler, Daniel Grosse
Hardcover
R3,026
Discovery Miles 30 260
Artificial Intelligence and Hardware…
Ashutosh Mishra, Jaekwang Cha, …
Hardcover
R3,637
Discovery Miles 36 370
Logic Synthesis for FPGA-Based Control…
Alexander Barkalov, Larysa Titarenko, …
Hardcover
R3,043
Discovery Miles 30 430
The IoT Physical Layer - Design and…
Ibrahim (Abe) M Elfadel, Mohammed Ismail
Hardcover
R3,089
Discovery Miles 30 890
|