![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Meteorology > General
This collection of peer reviewed papers represents a concise, up-to-date summary of our current knowledge of planetary boundary layer (PBL) physics and parameterization. As such, it makes a major contribution to the interchange of knowledge and ideas between physicists, meteorologists and environmental modellers and sets out the course to be followed in subsequent research to improve PBL parameterizations in climate, numerical weather prediction, air quality, and emergency preparedness models. Major themes covered are: Nature and theory of turbulent boundary layers; Boundary layer flows a" modelling and applications to environmental security; Nature, theory and modelling of boundary-layer flows; and Air flows within and above urban and other complex canopies a" air-sea-ice interactions. The NATO Advanced Research Workshop, held in Dubrovnik, Croatia, 18-22 April 2006, that gave rise to this, book was attended by 57 scientists drawn from 21 countries on four continents. In recognition of his outstanding career and reaching the milestone age of 70, the workshop was dedicated to Professor Sergej Zilitinkevitch and a substantial number of contributions are based on or linked to his fundamental work.
Clouds, convection and precipitation processes are central components of Earth's weather and climate. They are produced by atmospheric motions across a very wide range of space-time scales from local weather to long-term global climate variation. They feedback on these motions by perturbing the heating/cooling that drive the atmospheric circulation. These processes also perturb the oceanic circulation and land surface properties that affect the atmospheric circulation.Because of the coupling of the atmosphere-ocean-land system across all scales by cloud, convection and precipitation processes, studying their behaviors requires measurements in space-time variations across all these scales simultaneously. Satellite constellations with global coverage and high time resolution offer the ideal platforms for such observations. This book summarizes some of the latest research using combinations of various satellite observations to study these processes and to evaluate their representations in global weather and climate models.Included with this publication are downloadable electronic slides and accompanying notes of each lecture for students, teachers, and public speakers around the world to be better able to understand cloud, convection and precipitation processes.
This book systematically introduces the new technology used in the construction of underwater large slurry shields under complex conditions. The basic principles, scope of application, construction technology and technical points of the key technologies such as the origin and arrival of the shield, crossing the shallow soil in the middle of the river, crossing the guard, and changing the knife and opening the knife are clarified.
These proceedings are based upon the review lectures, the re search talks and the accompanying discussion from the NATO Advanced Study Institute on "The Dynamical and Chemical Coupling of the Neutral and Ionized Atmosphere" held at Spatind, Norway April 12-22, 1977. In recent years, in spite of the many subdivisions of atmospher ic physics it has become clear that a complete understanding of the subject matter requires an interdisciplinary effort of the scien tists working on a variety of atmospheric phenomena. This Advanced Study Institute was organized in order to meet this demand. A number of eminent scientists were invited to review the major subfields in atmospheric physics and expose the areas where the coupling between the neutral and ionized atmosphere is evident. These review papers were supported by current research results. However, the material covered here is by no means complete con sidering the range of subject matter covered by the title. The re sponsibility for this inadequacy lies with the editors and the pro gram committee, rather than with the individual contributors. Oslo, June 1977. B. Grandal J.A. Holtet. PARTICIPANTS Max-Planck-Institute for Nuclear Physics Arnold, F. P.O.Box 1248, D-0069 Heidelberg F.R.G. Bj centsrn, L. Uppsala Ionospheric Observatory S-755 90 Uppsala Sweden The Institute for Mathematical and Physical Brekke, A."
The book presents a collection of articles devoted to atmospheric and ionospheric science reported during the Conference "Atmosphere, Ionosphere, Safety" held in Kaliningrad, Russia in July 2010. It consists of reviews devoted to physics of elementary processes, aerosols, ionosphere dynamics, microwave discharges and plasmoids. Such a wide range of topics presents a comprehensive analysis of this atmospheric science including trends and questions which exist to be solved.
This two-volume book offers a broad range of discussions on the immense challenge of climate change, one confronting every country on the planet and forcing them to find a path towards a sustainable future that will not have disastrous consequences in relation to our chances of survival. It also presents a snapshot of the status quo, which reflects all the decisions and measures taken to date. Analyzing the consequences of the steps that will shape our future, the two volumes also reflect on important decisions at a global level that have already been taken. In this first volume on green energy, decarbonization, and forecasting the green transition, respected international scholars analyze various technical aspects of and alternatives to the so-called "green energy transition," as well as measures intended to help reach the ambitious goal of net zero emissions within the next thirty years. Throughout the 13 chapters, the authors forecast future scenarios for the use of alternative energy sources. Additionally, the book discusses questions regarding the suitability of current measures and presents innovative alternatives that have remained largely overlooked. This book is a must-read for scholars, researchers and students, as well as policymakers interested in a better understanding of climate change, present scenarios, and alternative solutions and measures.
This book introduces systematically the application of Bayesian probabilistic approach in soil mechanics and geotechnical engineering. Four typical problems are analyzed by using Bayesian probabilistic approach, i.e., to model the effect of initial void ratio on the soil-water characteristic curve (SWCC) of unsaturated soil, to select the optimal model for the prediction of the creep behavior of soft soil under one-dimensional straining, to identify model parameters of soils and to select constitutive model of soils considering critical state concept. This book selects the simple and easy-to-understand Bayesian probabilistic algorithm, so that readers can master the Bayesian method to analyze and solve the problem in a short time. In addition, this book provides MATLAB codes for various algorithms and source codes for constitutive models so that readers can directly analyze and practice. This book is useful as a postgraduate textbook for civil engineering, hydraulic engineering, transportation, railway, engineering geology and other majors in colleges and universities, and as an elective course for senior undergraduates. It is also useful as a reference for relevant professional scientific researchers and engineers.
The main purpose of this book is to introduce the reader to the subject of solar activity and the connection with Earth's climate. It commences with a brief review of the historical progress on the understanding of the solar-terrestrial connection and moves on to an objective scrutiny of the various hypothesis. The text focuses on how knowledge about the solar cycle and Earth's climate is obtained. It includes discussion of observations, methods and the physics involved, with the necessary statistics and analysis also provided, including an examination of empirical relations between sunspots and the Earth's climate. The author reviews plausible physical mechanisms involved in any links between the solar cycle and the Earth's climate, emphasizing the use of established scientific methods for testing hypothesized relationships.
This open access book is designed as a continuation of the editor's 2019 book Achieving the Paris Climate Agreement Goals. This volume provides an in-depth analysis of industry sectors globally, and its purpose is to present emission reduction targets in 5-year steps (2025 to 2050) for the main twelve finance sectors per the Global Industry Classification System. This scientific analysis aims to support the United Nations Principles for Responsible Investment initiative to give sustainability guidance for the global finance industry. The industry sector pathways presented here are based on the latest global and regional 100% renewable energy and non-energy greenhouse gas Representative Concentration Pathways in order to keep climate change significantly under +1.5 C and thereby achieve the Paris Climate Agreement goals. The heart of this book is three chapters presenting the results of industry scenario modelling. These chapters cover twelve industry and service sectors as well as transportation and buildings. The specific energy demand and specific emissions are presented based on the emission accounting concept of "Scope 1, Scope 2 and Scope 3" emission pathways. This methodology has been developed to measure the climate and sustainability index for companies, and this research project expands the methodology to apply it to entire industry sectors. The results presented here are the first overall industry assessments under Scope 1, 2 and 3 from 2020 through 2050. The base for the energy pathways is the scenarios scenarios published in the previous volume. The nonenergy GHG emission scenarios, broken down to agriculture & forestry and industry, are detailed and include all major greenhouse gases and aerosols. The final section of the book presents the main conclusions of the industry pathway development work and recommendations for the finance industry and policy makers. Additionally, future qualitative future investment requirements in specific technologies and measures are presented.
This book comprehensively covers many aspects of green mine, including the basic situation of green mines, mine facilities, extraction management, ecological environment, scientific and technological innovation, standardized management, environmental protection inspectors, and special tools in response to the needs of green mine construction, assessment, and management. It is highly informative with valuable techniques and tools providing insights both for scholars and practitioners working in green mine field.
Climate Change and Life: The Complex Co-evolution of Climate and Life on Earth, and Beyond covers the critical tectonic and biogeochemical cycles that drive climate and shape the modern world. It compares the history of Earth to the histories of Venus and Mars, including new findings of Martian climate change. The book is multidisciplinary and will instruct readers on the range of extremes in climate and biogeochemical cycling that shape life on Earth. Topics covered include climate drivers on Earth (atmospheric gases, non-gaseous particulates in the atmosphere, etc.), various techniques to assess past climates, mass extension drivers, and future predictions. The book takes a long view on climate change and evolution while also focusing on defining moments in Earth history where critical thresholds and events occur. Climate scientists, earth scientists, environmental scientists and researchers in all other areas related to climate change will find value in the research presented in this book.
The Southern Hemisphere commands an increasing interest among atmospheric chemists. It has smaller and less industrialized continents than the Northern Hemisphere and thus enjoys lower emissions of anthropogenic and biogenic pollu tants. As a consequence, the concentrations of trace species are lower in the Sou thern Hemisphere, giving rise to significant inter-hemispheric gradients. From an observation of the climatology of the various trace gas gradients important conclu sions on the chemical lifetimes, the distribution of sources and transport of trace species can be derived. Thus it is only fitting that the CSIRO Division of Atmos pheric Research, Aspendale, Australia, hosted the Conference on the Scientific Application of Baseline Observations of Atmospheric Composition (SABOAC). It was convened by Dr Graeme Pearman of the CSIRO and sponsored by the CSIRO and the Australian Bureau of Meteorology. Graeme Pearman and Ian Galbally of the CSIRO also agreed to serve as Guest Editors. The Conference was well attended and because of its location enjoyed an un usually large number of participants from the Southern Hemisphere. About 40 papers were presented with a large share of original contributions. At this point we would like to thank the reviewers who helped to maintain strict standards. The con ference topics ranged from Nonreactive Gases, Reactive Gases, Transport, Parti culates, Precipitation Chemistry, to Radiation and Carbondioxide. The present Proceedings do not quite maintain that sequence but partly reflect the order of receipt. DIETER EHHALT 3 Journal of Atmospheric Chemistry 3 (l985), 3-27."
Around the world, extreme weather events are becoming increasingly "the new normal" and are expected to increase in the 21st century as a result of climate change. Extreme weather events have devastating impacts on human lives and national economies. This book examines ways to protect people from hazards using early warning systems, and includes contributions from experts from four different continents representing 14 different universities, 8 government agencies and two UN agencies. Chapters detail critical components of early warning systems, ways to identify vulnerable communities, predict hazards and deliver information. Unique satellite images illustrate the transnational impact of disasters, while case studies provide detailed examples of warning systems. With contributors from the fields of economics, ethics, meteorology, geography and biology, this book is essential reading for anyone interested in disaster risk reduction or climate change.
This book describes the latest advances, innovations and applications in the field of waste management and environmental geomechanics as presented by leading researchers, engineers and practitioners at the International Conference on Sustainable Waste Management through Design (IC_SWMD), held in Ludhiana (Punjab), India on November 2-3, 2018. Providing a unique overview of new directions, and opportunities for sustainable and resilient design approaches to protect infrastructure and the environment, it discusses diverse topics related to civil engineering and construction aspects of the resource management cycle, from the minimization of waste, through the eco-friendly re-use and processing of waste materials, the management and disposal of residual wastes, to water treatments and technologies. It also encompasses strategies for reducing construction waste through better design, improved recovery, re-use, more efficient resource management and the performance of materials recovered from wastes. The contributions were selected by means of a rigorous peer-review process and highlight many exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different waste management specialists.
This book presents the theoretical bases and the application tools for using the 'convergence-confinement' method which is a rational method largely used in design engineering for tunneling. Until recently, the stability conditions of underground works and the choice of support methods were essentially defined on the basis of good practice or empirical methods. The progress made, on one hand on the knowledge of the constitutive laws of soils and rocks and, on the other hand on the numerical modeling of the interaction between the ground and the structures have led to the development of robust design tools for tunnels supports. The convergence-confinement method makes it possible to simulate the excavation of a tunnel and the installation of the support using a simple plane strain model. The book presents the theoretical bases of the method and its most recent developments. Closed-form solutions for stress and displacement fields around tunnels are provided for elastic, viscoelastic and elasto-plastic behavior of the ground. More generally, the principles for applying the method in numerical models are presented.
A charming and beautifully illustrated book, first published in 1893, covering all aspects of the weather including: Times and Seasons, Months, Days of the week, Winter birds and times of their arrival, Sun, Moon and Stars, Wind, Clouds, Mists, Haze, Dew, Fog, Sky, Air, Sound, Sea, Tide, Heat, Rain, Rainbow, Frost, Hail, Snow, Ice, Thunder and Lightning. Measuring instruments include: Barometer, Thermometer, Hygrometer, Telescope, Spectroscope. Animals include: Quadrupeds, Birds, Fish, Molluscs, Reptiles, Insects, Plants etc. This new edition has been completely redesigned and is fully illustrated with reproductions of woodcuts, photographs and drawings throughout.
Stratospheric processes play a signi?cant role in regulating the weather and c- mate of the Earth system. Solar radiation, which is the primary source of energy for the tropospheric weather systems, is absorbed by ozone when it passes through the stratosphere, thereby modulating the solar-forcing energy reaching into the t- posphere. The concentrations of the radiatively sensitive greenhouse gases present in the lower atmosphere, such as water vapor, carbon dioxide, and ozone, control the radiation balance of the atmosphere by the two-way interaction between the stratosphere and troposphere. The stratosphere is the transition region which interacts with the weather s- tems in the lower atmosphere and the richly ionized upper atmosphere. Therefore, this part of the atmosphere provides a long list of challenging scienti?c problems of basic nature involving its thermal structure, energetics, composition, dynamics, chemistry, and modeling. The lower stratosphere is very much linked dynamically, radiatively, and chemically with the upper troposphere, even though the temperature characteristics of these regions are different. The stratosphere is a region of high stability, rich in ozone and poor in water - por and temperature increases with altitude. The lower stratospheric ozone absorbs the harmful ultraviolet (UV) radiation from the sun and protects life on the Earth. On the other hand, the troposphere has high concentrations of water vapor, is low in ozone, and temperature decreases with altitude. The convective activity is more in the troposphere than in the stratospher
The Second International Symposium on Constitutive Modeling of Geomaterials: Advances and New Applications (IS-Model 2012), is to be held in Beijing, China, during October 15-16, 2012. The symposium is organized by Tsinghua University, the International Association for Computer Methods and Advances in Geomechanics (IACMAG), the Committee of Numerical and Physical Modeling of Rock Mass, Chinese Society for Rock Mechanics and Engineering, and the Committee of Constitutive Relations and Strength Theory, China Institution of Soil Mechanics and Geotechnical Engineering, China Civil Engineering Society. This Symposium follows the first successful International Workshop on Constitutive Modeling held in Hong Kong, which was organized by Prof. JH Yin in 2007. Constitutive modeling of geomaterials has been an active research area for a long period of time. Different approaches have been used in the development of various constitutive models. A number of models have been implemented in the numerical analyses of geotechnical structures. The objective of the symposium is to provide a forum for researchers and engineers working or interested in the area of constitutive modeling to meet together and share new ideas, achievements and experiences through presentations and discussions. Emphasis is placed on recent advances of constitutive modeling and its applications in both theoretic and experimental aspects. Six famous scholars have been invited for the plenary speeches of the symposiums. Some prominent scholars have been invited to organize four specialized workshops on hot topics, including Time-dependent stress-strain behavior of geomaterials, Constitutive modeling within critical state soil mechanics, Multiscale and multiphysics in geomaterials, and Damage to failure in rock structures . A total of 49 papers are included in the above topics. In addition, 51 papers are grouped under three topics covering Behaviour of geomaterials, Constitutive model, and Applications . The editors expect that the book can be helpful as a reference to all those in the field of constitutive modeling of geomaterials. "
Through application of the Smoothed Particle Hydrodynamics (SPH) method, this monograph mainly focuses on large deformations and flow failure simulations of geomaterials and movement behavior, which are always involved in geo-disasters. The work covers the theoretical background, numerical techniques, code implementation issues, and many novel and interesting applications. Two-dimensional and three-dimensional SPH models in the framework of both hydrodynamics and solid mechanics are established, with detailed descriptions. The monograph also contains many appealing and practical examples of geo-disaster modeling and analysis, including the fluidized movement of flow-like landslides, lateral spread of liquefied soils, and flow slides in landfills. In the documented SPH simulations, the propagation of geo-disasters is effectively reproduced. Dynamic behaviors of geomaterials during propagation are ascertained, including sliding path, flow velocity, maximum distance reached, and distribution of deposits. In this way, the monograph presents a means for mapping hazardous areas, estimating hazard intensity, and identifying and designing appropriate protective measures.
This book is written by the world's leading climatologists and environmental scientists. It addresses many of the issues raised in the debate on global change, providing a new point of view on climate which is being integrated into the space and time organization of societies. The volume contains three main parts: 1. Climatic Changes and Fluctuations; 2. Climates on a Regional Scale, including problems from tropical through temperate zones to polar regions; and 3. Man-Climate Relationships on a Local Scale. Global change is caused mainly by climatic variation and change and activities of human societies. This book aims to describe these facts from the various space scales - global, regional and local - and also different time scales - post-glacial, historical and recent periods. Since climate affects all kinds of human activities such as agriculture, forestry, architecture, civil engineering, transportation, tourism, health, etc., this book may contribute to the work of researchers, planners and policy makers in a wide variety of fields. For example, as indicated by the IPCC 1995 Report, adjustment of human societies is considered to be one of the most important features in the 21st Century. For consideration of these past, present and future problems, this book will provide, in a systematic way, numerous sources of up-to-date knowledge.
Prior to the space age, meteorologists rarely paid particular attention to the height regions above the tropopause. What was known about the upper atmosphere above about 100 km came essentially from ionospheric and geomagnetic research. The region in between, presently known as the middle atmosphere, was almost terra incognita above the height reachable by balloons. It was space research that allowed for the first time direct access to middle and upper atmospheric heights. About 40 years ago, Sidney Chapman coined a new word 'aeronomy' to describe the study of these two height regions. When asked about the difference between aeronomy and meteorology, he allegedly replied: 'it is the same as between astronomy and astrology' . This mild irony indicates the preferred prejudice of many ionospheric physicists and geomagneticians in those days toward meteorology as a descriptive rather than an exact science, in spite of the presence of such giants as Carl Rossby and Hans Ertel. |
![]() ![]() You may like...
The Indian Ocean and its Role in the…
Caroline Ummenhofer, Raleigh R. Hood
Paperback
Climate Change and Anthropogenic Impacts…
Ahmed Karmaoui, Abdelkrim Ben Salem, …
Hardcover
R6,744
Discovery Miles 67 440
The Royal Meteorological Society…
The Royal Meteorological Society
Paperback
R337
Discovery Miles 3 370
Artificial Intelligence of Things for…
Rajeev Kumar Gupta, Arti Jain, …
Hardcover
R7,249
Discovery Miles 72 490
|