![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Meteorology > General
Weather forecasting is the most visible branch of meteorology and has its modern roots in the nineteenth century when scientists redefined meteorology in the way weather forecasts were made, developing maps of isobars, or lines of equal atmospheric pressure, as the main forecasting tool. This book is the history of how weather forecasting was moulded and modelled by the processes of nation-state building and statistics in the Western world.
Information-based decision-making during drought, often brings out some of the excellent practices that are prevalent in society / individuals. This book is designed to provide information on the drought process, meteorological, hydrological, agriculture, socio-economic aspects and available technologies such as satellite remote sensing data analysis and Geographical Information system for assessment. Assessment procedures utilising the various parameters of importance from various sources for micro level management that would enhance the effectiveness of management practice are dealt in detail. Resource availability and affected group determine the relief assistance for the present event and information that would help them in their realisation and preparedness for the forthcoming years by select countries is highlighted. This would help in the formulation of schemes for event mitigation and area development plans. The readers would gain complete knowledge on drought. This book is expected to act as a guide in preparing people as effective natural resource utilizationist under drought situations.
Originally published in 1990, The Biogeography of the British Isles is devoted to the biogeography of the British Isles and surrounding shelf seas. Bringing together a wealth of diverse information, it is thoroughly referenced and well illustrated, and will be invaluable to students of geography, environmental science, ecology, botany, and zoology. The book traces the development of British biogeography over the last two centuries, examining key topics such as ecosystems, habitats, and niches in the context of plant and animal distribution. The book gives a detailed account of the development of biogeographical mapping and recording systems, and describes modern-day distributions, both in the countryside and in urban areas against the backcloth of human activities.
Originally published in 1981 Historical Plant Geography is an introductory treatment of historical plant geography and stresses the basic theoretical frame of the subject. The book is about neither the study of vegetation nor the concept of the ecosystem, instead focusing on the much older tradition concerned with analysing the geographical distribution of individual species and natural plant groups. Important areas are discussed, such as global plate tectonics and sea-floor spreading, plant maps are introduced and there is a basic treatment of recent advances in plant taxonomy. The book will appeal to students and academics of geography, botany, ecology and environmental sciences.
Originally published in 1984, Themes in Biogeography presents a broad examination of biogeographical themes, extending across the field of plant and animal ecology and geography. The book provides a detailed and unique investigation into life and its environment and delves into not just geography, and ecology, but provides an interdisciplinary look at these areas across both biological and environmental sciences. The book examines biogeographical themes applying them to areas of research in soils and climate change, as well as in depth studies of plant communities and their animal associates. The book also discusses plants and animals through their taxonomic distribution, and deals with factors of plant geography, using both global and regional examples. This book will be of interest to biologists, ecologists and geographers alike.
Lectures in Meteorology is a comprehensive reference book for meteorologists and environmental scientists to look up material on the thermodynamics, dynamics and chemistry of the troposphere. The lectures demonstrate how to derive/develop equations - an essential tool for model development. All chapters present applications of the material including numerical models. The lectures are written in modular form, i.e. they can be used at the undergraduate level for classes covered by the chapters or at the graduate level as a comprehensive, intensive course. The student/instructor can address chapters 2 (thermodynamics) and 4 (radiation) in any order. They can also switch the order of chapter 5 (chemistry) and 6 (dynamics). Chapter 7 (climatology and climate) requires an understanding of all chapters. Chapter 3 (cloud physics) needs basics from chapter 2 to understand the cloud microphysical processes. The governing conservation equations for trace constituents, dry air, water substances, total mass, energy, entropy and momentum are presented, including simplifications and their application in models. A brief introduction to atmospheric boundary layer processes is presented as well. Basic principles of climatology discussed include analysis methods, atmospheric waves and their analytical solutions, tropical and extra-tropical cyclones, classical and non-classical mesoscale circulations, and the global circulation. The atmospheric chemistry section encompasses photolytic and gas-phase processes, aqueous chemistry, aerosol processes, fundamentals of biogeochemical cycles and the ozone layer. Solar and terrestrial radiation; major absorber; radiation balance; radiative equilibrium; radiative-convective equilibrium; and basics of molecular, aerosol and cloud adsorption and scattering and their use in remote sensing are also presented.
The evidence for the Little Ice Age, the most important fluctuation in global climate in historical times, is most dramatically represented by the advance of mountain glaciers in the sixteenth and seventeenth centuries and their retreat since about 1850. The effects on the landscape and the daily life of people have been particularly apparent in Norway and the Alps. This major book places an extensive body of material relating to Europe, in the form of documentary evidence of the history of the glaciers, their portrayal in paintings and maps, and measurements made by scientists and others, within a global perspective. It shows that the glacial history of mountain regions all over the world displays a similar pattern of climatic events. Furthermore, fluctuations on a comparable scale have occurred at intervals of a millennium or two throughout the last ten thousand years since the ice caps of North America and northwest Europe melted away. This is the first scholarly work devoted to the Little Ice Age, by an author whose research experience of the subject has been extensive. This book includes large numbers of maps, diagrams and photographs, many not published elsewhere, and very full bibliographies. It is a definitive work on the subject, and an excellent focus for the work of economic and social historians as well as glaciologists, climatologists, geographers, and specialists in mountain environment.
This highly practical handbook is an exhaustive treatment of
eddy covariance measurement that will be of keen interest to
scientists who are not necessarily specialists in micrometeorology.
The chapters cover measuring fluxes using eddy covariance
technique, from the tower installation and system dimensioning to
data collection, correction and analysis.
Originally published in 1973. This collection of essays looks at the 'quantitative revolution' and the 'new geography' by some of the geographers who had a significant part in those innovations and looks ahead to further developments. The views in the chapters are diverse and offer a fascinating glimpse of the discipline of geography as the subject was undergoing such change and becoming more socially committed. They cover theory, spatial-systems theory, forecasting, human ecology and climatology alongside the teaching of the subject. The concerns of the contemporary geographer come across and are of interest today as these areas have developed still more.
Radiative heat transfer is a fundamental factor in the energetics of the terrestrial atmosphere: the system consisting of the atmosphere and the underlying layer is heated by the Sun, and this heating is compensated, on the average, by thermal radia tion. Only over a period of 1-3 days from some specified initial moment can the dynamic processes in the atmosphere be considered to be adiabatic. Global dynamic processes of long duration are regulated by the actual influxes of heat, one of the main ones being the radiative influx. Radiation must be taken into account in long-term, weather forecasting and when considering the global circulation of the atmosphere, the theory of climate, etc. Thus it is necessary to know the albedo of the system, the amount of solar radiation transmitted by the atmosphere, the absorptivity of the atmosphere vis-a-vis solar radiation, and also the effective radiation flux, the divergence of which represents the radiative cooling or heating. All these quantities have to be integrated over the wavelength spectrum of the solar or thermal radiation, and they must be ascertained as functions of the determining factors. The relation ships between the indicated radiation characteristics, the optical quantities directly determining them, the optically active compo nents of the atmosphere, and the meteorological fields will be discussed in this book."
The Arctic ecosystem is diverse, fascinating, and special. The animals and people who live there have adapted to the icy landscape. But because the Earth's temperature is warming, the polar ice in the Arctic is melting. Discover why it's so important to save the Arctic, not just for the people and animals who live there, but for the entire Earth, too! Created in collaboration with the Spanish-translated Smithsonian Institution, this Smithsonian Informational Text builds reading skills while engaging students' curiosity about STEAM topics through real-world examples. Packed with factoids and informative sidebars, it features a hands-on STEAM challenge that is perfect for use in a makerspace and teaches students every step of the engineering design process. Make STEAM career connections with career advice from actual Smithsonian employees working in STEAM fields. Discover engineering innovations that solve real-world problems with content that touches on all aspects of STEAM: Science, Technology, Engineering, the Arts, and Math!
1 2 Michel M. VERSTRAETE and Martin BENISTON 1 Space Applications Institute, EC Joint Research Centre, Ispra, Italy 2 Department of Geography, University of Fribourg, Switzerland This volume contains the proceedings ofthe workshop entitled "Satellite Remote Sensing and Climate Simulations: Synergies and Limitations" that took place in Les Diablerets, Switzerland, September 20-24, 1999. This international scientific conference aimed at addressing the current and pot- tial role of satellite remote sensing in climate modeling, with a particular focus on land surface processes and atmospheric aerosol characterization. Global and regional circulation models incorporate our knowledge ofthe dynamics ofthe Earth's atmosphere. They are used to predict the evolution of the weather and climate. Mathematically, this system is represented by a set ofpartial differential equations whose solution requires initial and bo- dary conditions. Limitations in the accuracy and geographical distribution of these constraints, and intrinsic mathematical sensitivity to these conditions do not allow the identification of a unique solution (prediction). Additional observations on the climate system are thus used to constrain the forecasts of the mathematical model to remain close to the observed state ofthe system.
The innovation in space technologies has generated a new method for observing and monitoring tsunamis from space. Most tsunami remote sensing studies focus on using classical image processing tools or conventional edge detection procedures. However, these methods do not use modern physics, applied mathematics, signal communication, remote sensing data and innovative space technologies. This book equips readers to understand how to monitor tsunamis from space with remote sensing technology art to create a better alarm warning system.
This book introduces the UTCI (Universal Thermal Climate Index) and summarizes progress in this area. The UTCI was developed as part of the European COST Action Program and first announced to the scientific community in 2009. Since then, a decade has followed of applicability tests and research results, as well as knowledge gained from applying the UTCI in human adaptation and thermal perception. These findings are of interest to researchers in the interdisciplinary areas of biometeorology, climatology and urban planning. The book summarizes this progress, discussing the limitations found and provides pointers to future developments. It also discusses UTCI applications in the areas of human biometeorology and urban planning including possibilities of using UTCI and similar indices in climate-responsive urban planning. The book's message is illustrated with many case studies from the real world. Chapter 10 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book arises from a European Commission 6th Framework Programme for Research project: 'Global Climate Change Impacts on the Built Heritage and Cultural Landscape - The Noah's Ark Project'. The work recognised that although climate change attracts wide interest at research and policy levels, little attention is paid to its impact on cultural heritage. In a period when enhanced regulation has improved European air quality, it seems important to explore how the threat of climate change to cultural heritage can become better recognised and perceived as relevant. As a non-renewable resource to be transmitted to future generations, cultural heritage includes the built heritage, artefacts inside buildings, archaeological sites and cultural landscapes. Rather than examining the fate of individual monuments, the 'Noah's Ark Project' took a strategic overview of the changing pressures on heritage. The results can now be viewed on a wide geographical scale, presented here as a vulnerability atlas and accompanying guidelines. This atlas aims to fill the present gap in studies on the effects of future climate variations on cultural heritage, producing maps that link climate science to the potential damage to our material heritage. NP] The atlas gathers different types of maps and research outputs of future scenarios. Sections within the atlas include climate maps, displaying traditional climate parameters relevant to cultural heritage, and specific heritage climatologies; damage maps that quantitatively express the damage induced by climate parameters on building materials in future scenarios; risk and multiple-risk maps showing areas of increasing or decreasing risk across European regions; and thematic sections focusing on specific processes of damage that may arise from climate change. The atlas is also supported by key recommendations for policy-makers managing the impact of climate change on European heritage sites.
One of the fundamental goals of earth system science research is to adopt a more holistic view of the earth as a 'system' comprising different domains. The Society of Earth Scientists has brought out this multidisciplinary publication to emphasize the need of an integrated approach to understand the Earth system. It focuses on natural disasters and, in particular, on climate change and its effects in Asia and understanding the significance of these developments within the context of the paleo-climatic record. The later sections of the book then focus on other types of natural disasters as well as those induced by human interaction with our environment.
Global warming is extremely complex because it deals with so many different characteristics of the Earth and their complex interactions. It is addressed by almost all sciences including many aspects of geosciences, atmospheric, the biological sciences, and even astronomy. It has recently become the concern of other diverse disciplines such as economics, agriculture, demographics and population statistics, medicine, engineering, and political science. This book attempts to address these complex interactions, integrate them, and derive meaningful conclusions and possible solutions. Robert Strom and Jeffrey Kargel provide a complete, easy-to-read explanation of past and present global climate change, causes and possible solutions to the problem, including the politics and reasons why this is such a politically charged issue.
This book discusses the impact of climate change, land use and land cover, and socio-economic dynamics on landslides in Asian countries. Scholars recently have brought about a shift in their focus regarding triggering factors for landslides, from rainfall or earthquake to claiming rapid urbanization, extreme population pressure, improper land use planning, illegal hill cutting for settlements and indiscriminate deforestation. This suggests that the occurrence or probabilities of landslides are shaped by both climate-related and non-climate-related anthropogenic factors. Among these issues, land use and land cover change or improper land use planning is one of the key factors. Further climate change shapes the rainfall pattern and intensity in different parts of the world, and consequently rainfall-triggered landslides have increased. These changes cause socio-economic changes. Conversely, socio-economic and lifestyle changes enhance inappropriate land use and climate change. All these changes in land use, climate and socio-economic aspects are dynamics in nature and shape landslide risks in Asian countries, where they are given serious attention by governments, disaster management professionals, researchers and academicians. This book comprises 21 chapters divided into three major sections highlighting the effect of climate change on landslide incidence with the influence on vegetation and socio-economic aspects. The sections address how climate change and extreme events have triggered landslides. The advances in geospatial techniques with the focus on land use and land cover change along with the effect on socio-economic aspects are also explored.
This book analyzes various properties and structures of ice from the point of view to solve problems in civil aviation. The Arctic zone of the Russian Federation, together with large territories of Siberia and the Far East, is a zone, that is insufficiently provided with ground navigation facilities, as well as platforms and airfields for landing aircraft, including in the event of unpredictable situations. However, most of this area, especially in winter, is covered with ice, which can be used to solve this problem. The possibility of using ice sheets for the construction of airfields or the location of ground-based flight support facilities requires careful study and analysis. This book is devoted to the study of the properties and structure of ice, with a view for use in civil aviation to construct ice airfields and the placement of ground-based flight support facilities.
Numerical Weather Prediction (NWP) is the current state-of-art methodology to provide weather prediction at different spatial and time scales to serve user community. The NWP uses a modeling system built up adopting the mathematical equations governing atmospheric motion, incorporating the physical processes through parameterization methods, solved applying numerical methods and carrying out large number-crunching calculations on high speed computers. The NWP products have their application in agriculture, aviation, transport, tourism, sports, industry, health, energy and many other social sectors. Several decision support systems of disaster management and risk assessment are dependent on meteorological information from NWP products. The purpose of this book is to present the basics of NWP in lucid form to those who seek an overview of the science of modern weather prediction. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan).
The application of surface geochemical methods to finding petroleum is based on the detection of hydrocarbons in the soil that have leaked from a petroleum reservoir at depth. While the "seal" over the deposit was once considered impermeable, surface geochemistry data now show that such leakage is a common occurrence. Despite its simplicity and low costs, surface geochemistry remains controversial because, until now, there was no objective and in-depth treatment of the various methods of surface geochemistry for oil exploration. Written by a successful oil finder, this practical guide: surveys a broad array of surface geochemistry techniques, from soil gases to microbiology, and provides clear strategies for applying them to the high-stakes art of petroleum exploration; offers numerous case studies, both successes and failures, to show the strengths and weaknesses of different approaches; examines statistical and spatial variation, surveys, and models in surface geochemistry, demonstrating how each analytical tool can be used to optimize accuracy; integrates surface geochemistry data interpretation with data from conventional methods of oil exploration, and considers the economics of surface geochemical approaches; and discusses key topics that have been neglected in the literature, such as grid design and the effects of soils. Geologists, geophysicists, geological engineers, and exploration managers involved in petroleum exploration will gain valuable insights from this volume. By presenting and evaluating each method of surface geochemistry in a neutral tone, this volume enables the reader to select and employ these methods with greater confidence.
The VDI Commission on Air Pollution Prevention - in cooperation with the German Meteorological Society - presents in this book the proceedings of the first International Symposium on "Environmental Meteorology," held in Wurzburg (West Germany) from 29 September to 1 October 1987. The primary goal was to get together scientists, experts of the meteorological services, specialists of environmental boards, and consulting engineers of the European countries. An equally important objective was to provide a bench mark document in the resulting proceedings publication. The 1987 symposium shall start a series of symposia on all fields of environmental meteorology to be held once in three or four years in one of the European countries. We are full of hope to come to an intense cooperation with the national meteorological and environmental societies in the countries with this concern. We like to express our sincere appreciation to the authors for their efforts and attention to the quality shown herein. The credit must be extended to the session Chairmen and to the advisory committee for the selection of the papers. We think the book contributes substantially to a better understanding of meteorology being the link between emission and deposition of atmospheric pollutants. |
You may like...
Resilience - The Science of Adaptation…
Zinta Zommers, Keith Alverson
Paperback
R2,099
Discovery Miles 20 990
Antarctic Climate Evolution
Fabio Florindo, Martin Siegert, …
Paperback
R3,862
Discovery Miles 38 620
The Indian Ocean and its Role in the…
Caroline Ummenhofer, Raleigh R. Hood
Paperback
R3,517
Discovery Miles 35 170
The Arctic - A Barometer of Global…
Neloy Khare, Rajni Khare
Paperback
R2,821
Discovery Miles 28 210
Artificial Intelligence of Things for…
Rajeev Kumar Gupta, Arti Jain, …
Hardcover
R6,683
Discovery Miles 66 830
Global Change Scenarios of the 21st…
J. Alcamo, R. Leemans, …
Hardcover
R4,336
Discovery Miles 43 360
|