![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Technology: general issues > Technical design > General
The integrated and advanced science research topic man-machine-environment system engineering (MMESE) was first established in China by Professor Shengzhao Long in 1981, with direct support from one of the greatest modern Chinese scientists, Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993, Xuesen Qian wrote: "You have created a very important modern science and technology in China!" MMESE primarily focuses on the relationship between man, machines and the environment, studying the optimum combination of man-machine-environment systems. In this system, "man" refers to people in the workplace (e.g. operators, decision-makers); " machine" is the general name for any object controlled by man (including tools, machinery, computers, systems and technologies), and "environment" describes the specific working conditions under which man and machine interact (e.g. temperature, noise, vibration, hazardous gases etc.). The three goals of optimization of man-machine-environment systems are to ensure safety, efficiency and economy. Proceedings of the 14th International Conference on Man-Machine-Environment System Engineering are an academic showcase of the best papers selected from more than 400 submissions, introducing readers to the top research topics and the latest developmental trends in the theory and application of MMESE. These proceedings are interdisciplinary studies on the concepts and methods of physiology, psychology, system engineering, computer science, environment science, management, education, and other related disciplines. Researchers and professionals working in these interdisciplinary fields and researchers on MMESE related topics will benefit from these proceedings.
Mixed finite element methods are a tool to solve complex engineering problems of different nature. This subject is treated in the volume from the engineering and the mathematical point. Different applications are considered which depict the value of mixed formulations in engineering on one side. On the other side the mathematical background is provided including proofs of convergence and stability of these methods and adequate solvers for mixed problems are discussed. This broad spectrum yields an indepth treatment of mixed methods from different perspectives.
Inland Waterway (IW), or river vessels are in every respect different from the seagoing ships. The professional literature is mostly focused on conventional seagoing fleets, leaving a gap in the documentation of design practices for IW vessels. The principal attribute that differentiates river vessels from the seagoing ships is the low, or shallow, draught due to water depth restrictions. This book addresses key aspects for the design of contemporary, shallow draught IW vessels for the transport of dry cargo (containers and bulk cargo). Most of the logic that is presented is applicable to the design of river vessels for any river, but the material that is presented is focused on vessels for the River Danube and its tributaries. The term 'contemporary river vessel' assumes that the present-day technology and current Danube river infrastructure are taken into consideration in its design. It is believed that the technologies and concepts that are proposed here are applicable for all new vessel designs for the next 10 to 15 years. Other innovative technologies should be considered for designs beyond that horizon. Moreover, nowadays contemporary IW vessel must be in harmony with the Environmentally Sustainable Transport (EST) policies and hence special attention is paid to both ecology and efficiency. Note however that shipowners and ship operators usually tend to choose the conventional cost-effective transport technologies. Given that potential divergence of interests, the concepts and technologies treated here may be regarded as innovative.
Advances in Product Family and Product Platform Design: Methods & Applications highlights recent advances that have been made to support product family and product platform design along with successful applications in industry. This book provides not only motivation for product family and product platform design (i.e., address questions about "why and when should we platform") but also methods and tools to support the design and development of families of products based on shared platforms (i.e. address the "how" and "what" questions about platforming). It begins with a general overview of product family design to introduce the general reader to the topic and then progress to more advanced topics and design theory to help designers, engineers, and project managers plan, architect, and implement platform-based product development strategies for their company. Finally, successful industry applications provide readers and practitioners with case studies and "talking points" to become platform advocates and leaders within their organization.
Geological models used in predictive hydrogeological modeling are not exact replicas of the objects they represent: many details related to structures and properties of the objects remain unknown. Those details may considerably affect simulation results.A provable evaluation of the uncertainty of hydrogeological and solute transport simulations are almost impossible. In this book the author describes how to obtain the best-possible results in simulations, based on the available data and predefined criteria that are turned into transforming mechanisms. The latterare mathematical expressions for evaluating model parameters supporting effective simulations. Examples of the mechanisms as well as methods of their evaluation are provided in this book. It is also shown how these mechanisms can be used for the interpretation of hydrogeological data.The first edition of this book was published in the series "Springer Briefs in Earth Sciences.""
This book consists of peer-reviewed papers, presented at the International Conference on Sustainable Design and Manufacturing (SDM 2020). Leading-edge research into sustainable design and manufacturing aims to enable the manufacturing industry to grow by adopting more advanced technologies and at the same time improve its sustainability by reducing its environmental impact. Relevant themes and topics include sustainable design, innovation and services; sustainable manufacturing processes and technology; sustainable manufacturing systems and enterprises; and decision support for sustainability. Application areas are wide and varied. The book provides an excellent overview of the latest developments in the sustainable design and manufacturing areas.
The integrated and advanced science research topic
Man-Machine-Environment system engineering (MMESE) was first
established in China by Professor Shengzhao Long in 1981, with
direct support from one of the greatest modern Chinese scientists,
Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993,
Xuesen Qian wrote: You have created a very important modern science
and technology in China
Three Dimensional Weaving is a nascent technology which has triggered research interests around the world. The technology has the potential to finely balance the in-plane and out-of plane properties in composites. This state-of-the-art book focuses on three emerging 3D weaving technologies viz., Orthogonal weaving, Angle interlock weaving and Dual Plane shedding based 3D weaving. It provides focused knowledge about these technologies and has a pragmatic approach to developing customized 3D weaving machines. Fundamental approach to understanding weave design basics, thereupon practical weaving , addressing quality aspects, arriving at testing approaches are all detailed in the book. The applications for these technologies are both in strategic (space, aerospace, defense) as well as societal (medical, automobile) sectors. The book has six chapters, wherein the first three chapters are devoted to Orthogonal and angle interlock weaving and their quality control aspects. Approach to weaving preforms of complex geometries such as T-stiffeners, tapers, Origami-based structures are also discussed The fourth and fifth chapter are entirely devoted to machinery development for Dual plane shedding based 3D weaving often termed as 'True 3D weaving'. The chapters discuss detailed machine design of the sub-elements such as let-off, shedding, picking, beat-up and take-up. The reader is taken through a prototype development of a 3D weaving machine by way of concept, illustrations, practical development and weaving of samples. The sixth chapter summarises the editor's views about the technology. This volume will be beneficial to scientists and researchers in both academia and the industry.
This book presents a domain of extreme industrial and scientific interest: the study of smart systems and structures. It presents polytope projects as comprehensive physical and cognitive architectures that support the investigation, fabrication and implementation of smart systems and structures. These systems feature multifunctional components that can perform sensing, control, and actuation. In light of the fact that devices, tools, methodologies and organizations based on electronics and information technology for automation, specific to the third industrial revolution, are increasingly reaching their limits, it is essential that smart systems be implemented in industry. Polytope projects facilitate the utilization of smart systems and structures as key elements of the fourth industrial revolution. The book begins by presenting polytope projects as a reference architecture for cyber-physical systems and smart systems, before addressing industrial process synthesis in Chapter 2. Flow-sheet trees, cyclic separations and smart configurations for multi-component separations are discussed here. In turn, Chapter 3 highlights periodic features for drug delivery systems and networks of chemical reactions, while Chapter 4 applies conditioned random walks to polymers and smart materials structures. Chapter 5 examines self-assembly and self-reconfiguration at different scales from molecular to micro systems. Smart devices and technologies are the focus of chapter 6. Modular micro reactor systems and timed automata are examined in selected case studies. Chapter 7 focuses on inferential engineering designs, concept-knowledge, relational concept analysis and model driven architecture, while Chapter 8 puts the spotlight on smart manufacturing, industry 4.0, reference architectures and models for new product development and testing. Lastly, Chapter 9 highlights the polytope projects methodology and the prospects for smart systems and structures. Focusing on process engineering and mathematical modeling for the fourth industrial revolution, the book offers a unique resource for engineers, scientists and entrepreneurs working in chemical, biochemical, pharmaceutical, materials science or systems chemistry, students in various domains of production and engineering, and applied mathematicians.
This book addresses one of the most important components for pedestrian safety in vehicles - laminated windshields. It includes detailed real-world material characterization results for laminated glass and testing methodologies, constitutive models, and step-by-step numerical simulation modeling and simulation methods. As such, the book provides readers a thorough understanding of the mechanical behaviors of laminated glass and windshields. It also presents fundamental test data, analysis methodologies and essential insights into laminated glass safety design and mechanical behavior prediction. The book addresses the needs of researchers, engineers and postgraduate students in the fields of automotive engineering, mechanical engineering and related areas.
This work addresses the topic of optical networks cross-layer design with a focus on physical-layer-impairment-aware design. Contributors captures both the physical-layer-aware network design as well as the latest advances in service-layer-aware network design. Treatment of topics such as, optical transmissions which are prone to signal impairments, dense packing of wavelengths, dispersion, crosstalk, etc., as well as how to design the network to mitigate such impairments, are all covered.
Good product designs merge materials, technology and hardware into a unified user experience; one where the technology recedes into the background and people benefit from the capabilities and experiences available. By focusing on functional gain, critical awareness and emotive connection, even the most multifaceted and complex technology can be made to feel straightforward and become an integral part of daily life. Researchers, designers and developers must understand how to progress or appropriate the right technical and human knowledge to inform their innovations. The 1st International Smart Design conference provides a timely forum and brings together researchers and practitioners to discuss issues, identify challenges and future directions, and share their R&D findings and experiences in the areas of design, materials and technology. This proceedings of the 1st Smart Design conference held at Nottingham Trent University in November 2011 includes summaries of the talks given on topics ranging from intelligent textiles design to pharmaceutical packaging to the impact of social and emotional factors on design choices with the aim of informing and inspiring future application and development of smart design.
The Scientific Network of Integrated Systems, Design and Technology (ISDT) is an initiative that has been established to respond industrial needs for integration of " Knowledge Technology" (KT)" with multi- and inter-disciplinary applications. In particular the objective of ISDT is to incorporate multilateral engineering disciplines i.e. Composite-, Automotive-, Industrial-, Control- and Micro-Electronics Engineering, and derive knowledge for design and development of innovative product and services. In this context, the discourse of KT is established to address effective use of Knowledge Management, Semantic Technology, Information Systems and Software Engineering towards evolution of adaptive and intelligent systems for industrial applications. This carefully edited book presents the results of the latest ISDT meeting with special involvement of leading researchers and industries whose contributions are presented in the book chapters. This book consists of three main chapters namely: . Chapter 1: Applied Knowledge Management in Practice . Chapter 2: Semantic Technologies for Industrial Management and Process Controlling . Chapter 3: Knowledge Driven Approaches for Product Engineering Each article presents a unique in-progress research with respect to the target goal of improving our common understanding of KT integration and promoting further researches and cooperation in future.
The initial motivator for the development of DRM, a Design Research Methodology, and the subsequent writing of this book was our frustration about the lack of a common terminology, benchmarked research methods, and above all, a common research methodology in design. A shared view of the goals and framework for doing design research was missing. Design is a multidisciplinary activity occurring in multiple application areas and involving multiple stakeholders. As a consequence, design research emerges in a variety of disciplines for a variety of applications with a variety of subjects. This makes it particularly difficult to review its literature, relate various pieces of work, find common ground, and validate and share results that are so essential for sustained progress in a research community. Above all, design research needs to be successful not only in an academic sense, but also in a practical sense. How could we help the community develop knowledge that is both academically and practically worthwhile? Each of us had our individual ideas of how this situation could be improved. Lucienne Blessing, while finishing her thesis that involved studying and improving the design process, developed valuable insights about the importance and relationship of empirical studies in developing and evaluating these improvements. Amaresh Chakrabarti, while finishing his thesis on developing and evaluating computational tools for improving products, had developed valuable insights about integrating and improving the processes of building and evaluating tools.
Understanding the fatigue behaviour of structural components under variable load amplitude is an essential prerequisite for safe and reliable light-weight design. For designing and dimensioning, the expected stress (load) is compared with the capacity to withstand loads (fatigue strength). In this process, the safety necessary for each particular application must be ensured. A prerequisite for ensuring the required fatigue strength is a reliable load assumption. The authors describe the transformation of the stress- and load-time functions which have been measured under operational conditions to spectra or matrices with the application of counting methods. The aspects which must be considered for ensuring a reliable load assumption for designing and dimensioning are discussed in detail. Furthermore, the theoretical background for estimating the fatigue life of structural components is explained, and the procedures are discussed for numerous applications in practice. One of the prime intentions of the authors is to provide recommendations which can be implemented in practical applications.
Product design is characterized by a steady increase in complexity. The main focus of this book is a structural approach on complexity management. This means, system structures are considered in order to address the challenge of complexity in all aspects of product design. Structures arise from the complex dependencies of system elements. Thus, the identification of system structures provides access to the understanding of system behavior in practical applications. The book presents a methodology that enables the analysis, control and optimization of complex structures, and the applicability of domain-spanning problems. The methodology allows significant improvements on handling system complexity by creating improved system understanding on the one hand and optimizing product design that is robust for system adaptations on the other hand. Developers can thereby enhance project coordination and improve communication between team members and as a result shorten development time. The practical application of the methodology is described by means of two detailed examples.
This book is a collection of articles presented by researchers and practitioners, including engineers, biologists, health professionals and informatics/computer scientists, interested in both theoretical advances and applications of information systems, artificial intelligence, signal processing, electronics and other engineering tools in areas related to biology and medicine in the All India Seminar on Biomedical Engineering 2012 (AISOBE 2012), organized by The Institution of Engineers (India), Jabalpur Local Centre, Jabalpur, India during November 3-4, 2012. The content of the book is useful to doctors, engineers, researchers and academicians as well as industry professionals.
This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads. Chapter 8 gives a cost comparison of cylindrical and conical shells. The book contains a large collection of literatures and a subject list and a name index.
Nowadays, engineering systems are of ever-increasing complexity and must be c- sidered asmultidisciplinary systems composed of interacting subsystems or system components from different engineering disciplines. Thus, an integration of various engineering disciplines, e.g, mechanical, electrical and control engineering in ac- current design approach is required. With regard to the systematic development and analysis of system models, interdisciplinary computer aided methodologies are - coming more and more important. A graphical description formalism particularly suited for multidisciplinary s- tems arebondgraphs devised by Professor Henry Paynter in as early as 1959 at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, USA and in use since then all over the world. This monograph is devoted exclusively to the bond graph methodology. It gives a comprehensive, in-depth, state-of-the-art presentation including recent results sc- tered over research articles and dissertations and research contributions by the - thor to a number of topics. The book systematically covers the fundamentals of developing bond graphs and deriving mathematical models from them, the recent developments in meth- ology, symbolic and numerical processing of mathematical models derived from bond graphs. Additionally it discusses modern modelling languages, the paradigm of object-oriented modelling, modern software that can be used for building and for processing of bond graph models, and provides a chapter with small case studies illustrating various applications of the methodology
This first volume of the updated and extended 3rd edition of this work covers the basic chemistry and technology of oligo-polyol fabrication, the characteristics of the various oligo-polyol families and the effects of their structure on the properties of the resulting PU. This book is of interest to chemists and engineers in industry and academia as well as anyone working with polyols for the manufacture of PUs.
Mechatronics in Action s case-study approach provides the most effective means of illustrating how mechatronics can make products and systems more flexible, more responsive and possess higher levels of functionality than would otherwise be possible. The series of case studies serves to illustrate how a mechatronic approach has been used to achieve enhanced performance through the transfer of functionality from the mechanical domain to electronics and software. Mechatronics in Action not only provides readers with access to a range of case studies, and the experts view of these, but also offers case studies in course design and development to support tutors in making the best and most effective use of the technical coverage provided. It provides, in an easily accessible form, a means of increasing the understanding of the mechatronic concept, while giving both students and tutors substantial technical insight into how this concept has been developed and used.
Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinearities introduced by pendulum motion may change the system dynamics, and entail a rapid increase of the oscillations of both the structure and the pendulum, leading to full pendulum rotation or chaotic dynamics. To magnetorheological damping is proposed. Nonlinear mechanics has to be used to explain undesired response in slender footbridges, such as that occurred in the famous event of the London Millenium Bridge. The observed phenomena can be explained by an analytical nonlinear discrete-time model. Shape memory alloys (SMAs) exhibit very interesting nonlinear thermo-mechanical properties such as shape memory effect and superelasticity. SMA elements integrated within composite beams or plates can be used for active modification of structure properties e.g. by affecting their natural frequencies. Finite amplitude, resonant, forced dynamics of sagged, horizontal or inclined, elastic cables have recently undergone meaningful research advances concerned with modelling, analysis, response, and nonlinear/nonregular phenomena. A variety of features of nonlinear multimodal interaction in different resonance conditions are comparatively addressed. Non-smooth systems are very common in engineering practice. Three mechanical engineering problems are presented: (i) a vibro-impact system in the form of a moling device, (ii) the influence of the opening and closing of a fatigue crack on the host system dynamics, and (iii) nonlinear interactions between a rotor and snubber ring system. This book is aimed at a wide audience of engineers and researchers working in the field of nonlinear structural vibrations and dynamics, and undergraduate and postgraduate students reading mechanical, aerospace and civil engineering.
Systems engineering is a mandatory approach in some industries, and is gaining wider acceptance for complex projects in general. However, under the imperative of delivering these projects on time and within budget, the focus has been mainly on the management aspects, with less attention to improving the core engineering activity - design. This book addresses the application of the system concept to design in several ways: by developing a deeper understanding of the system concept, by defining design and its characteristics within the process of engineering, and by applying the system concept to the early stage of design, where it has the greatest impact. A central theme of the book is that the purpose of engineering is to be useful in meeting the needs of society, and that therefore the ultimate measure of the benefit of applying the system concept should be the extent to which it advances the achievement of that purpose. Consequently, any consistent, top-down development of the functionality required of a solution to the problem of meeting a defined need must proceed from such a measure, and it is agued that a generalised form of Return on Investment is an appropriate measure. A theoretical framework for the development of functionality based on this measure and utilising the system concept is presented, together with some examples and practical guidelines.
Featuring original research from well-known experts in the field of sliding mode control, this book presents new design schemes for a useful and practical optimal control with very few impractical assumptions. The results presented allow optimal control theory to grow in its applicability to real-world systems. On the cutting-edge of optimal control research, this book is an excellent resource for both graduate students and researchers in engineering, mathematics, and optimal control.
III European Conference on Computational Mechanics: Solids, Structures and Coupled Problem in Engineering Computational Mechanics in Solid, Structures and Coupled Problems in Engineering is today a mature science with applications to major industrial projects. This book contains the edited version of the Abstracts of Plenary and Keynote Lectures and Papers, and a companion CD-ROM with the full-length papers, presented at the III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering (ECCM-2006), held in the National Laboratory of Civil Engineering, Lisbon, Portugal 5th - 8th June 2006. The book reflects the state-of-art of Computation Mechanics in Solids, Structures and Coupled Problems in Engineering and it includes contributions by the world most active researchers in this field. |
![]() ![]() You may like...
Energy-Efficient Retrofit of Buildings…
Thomas Stahl, Karim Ghazi Wakili
Paperback
R6,473
Discovery Miles 64 730
Mastercam 2023 Black Book - 3rd Edition
Gaurav Verma, Matt Weber
Hardcover
R2,533
Discovery Miles 25 330
Geometry, Algebra, Number Theory, and…
Amir Akbary, Sanoli Gun
Hardcover
R4,448
Discovery Miles 44 480
Advanced Technologies in Robotics and…
Sergey Yu. Misyurin, Vigen Arakelian, …
Hardcover
R5,652
Discovery Miles 56 520
Fault-Tolerant Parallel and Distributed…
Dimiter R. Avresky, David R. Kaeli
Hardcover
R4,589
Discovery Miles 45 890
|