![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Technology: general issues > Technical design > General
This new edition of Collaborations in Architecture and Engineering explores how to effectively develop creative collaborations among architects and engineers. The authors, an architect and an engineer, share insights gained from their experiences and research on fostering productive communication, engaging in interdisciplinary discussions, and establishing common design goals. Together, they share the tools, methods, and best practices deployed by prominent innovative architects and engineers to provide readers with the key elements for success in interdisciplinary design collaborations. The book offers engaging stories about prominent architect and engineer collaborations--such as those between SANAA and Sasaki and Partners, Adjaye Associates and Silman, Grafton Architects and AKT II, Studio Gang and Arup, Foster + Partners and Buro Happold, Steven Holl Architects and Guy Nordenson and Associates, and among the engineers and architects at SOM. In the second edition, the newly added case studies showcase extraordinary buildings across the globe at a range of scales and typologies, tracing the facets of high-quality collaborations. Through the examples of these remarkable synergies, readers gain insights into innovative design processes that address complex challenges in the built environment. The second edition of Collaborations in Architecture and Engineering is a terrific sourcebook for students, educators, and professionals interested in integrative design practice among the disciplines.
Design is a fundamental creative human activity. This certainly applies to the design of artefacts, the realisation of which has to meet many constraints and ever raising criteria. The world in which we live today, is enormously influenced by the human race. Over the last century, these artefacts have dramatically changed the living conditions of humans. The present wealth in very large parts of the world, depends on it. All the ideas for better and new artefacts brought forward by humans have gone through the minds of designers, who have turned them into feasible concepts and subsequently transformed them into realistic product models. The designers have been, still are, and will remain the leading 'change agents' in the physical world. Manufacturability of artefacts has always played a significant role in design. In pre industrial manufacturing, the blacksmith held the many design and realisation aspects of a product in one hand. The synthesis of the design and manufacturing aspects took, almost implicitly, place in the head of the man. All the knowledge and the skills were stored in one person. Education and training took place along the line of many years of apprenticeship. When the production volumes increased, -'assembling to measure' was no longer tolerated and production efficiency became essential - design, process planning, production planning and fabrication became separated concerns. The designers created their own world, separated from the production world. They argued that restrictions in the freedom of designing would badly influence their creativity in design."
This book contains selected contributions from the 6th CIRP International Seminar on Computer-Aided Tolerancing, which was held on 22-24 March, 1999, at the University of Twente, Enschede, The Netherlands. This volume presents the theory and application of consistent tolerancing. Until recently CADCAM systems did not even address the issue of tolerances and focused purely on nominal geometry. Therefore, CAD data was only of limited use for the downstream processes. The latest generation of CADCAM systems incorporates functionality for tolerance specification. However, the lack of consistency in existing tolerancing standards and everyday tolerancing practice still lead to ill-defined products, excessive manufacturing costs and unexpected failures. Research and improvement of education in tolerancing are hot items today. Global Consistency of Tolerances gives an excellent overview of the recent developments in the field of Computer-Aided Tolerancing, including such topics as tolerance specification; tolerance analysis; tolerance synthesis; tolerance representation; geometric product specification; functional product analysis; statistical tolerancing; education of tolerancing; computational metrology; tolerancing standards; and industrial applications and CAT systems. This book is well suited to users of new generation CADCAM systems who want to use the available tolerancing possibilities properly. It can also be used as a starting point for research activities.
Recent rapid globalisation of manufacturing industries leads to a drive and thirst for rapid advancements in technological development and expertise in the fields of advanced design and manufacturing, especially at their interfaces. This development results in many economical benefits to and improvement of quality of life for many people all over the world. Technically speaking, this rapid development also create many opportunities and challenges for both industrialists and academics, as the design requirements and constraints have completely changed in this global design and manufacture environment. Consequently the way to design, manufacture and realise products have changed as well. The days of designing for a local market and using local suppliers in manufacturing have gone, if enterprises aim to maintain their competitiveness and global expansion leading to further success. In this global context and scenario, both industry and the academia have an urgent need to equip themselves with the latest knowledge, technology and methods developed for engineering design and manufacture. To address this shift in engineering design and manufacture, supported by the European Commission under the Asia Link Programme with a project title FASTAHEAD (A Framework Approach to Strengthening Asian Higher Education in Advanced Design and Manufacture), three key project partners, namely the University of Strathclyde of the United Kingdom, Northwestern Polytechncial University of China, and the Troyes University of Technology of France organised a third international conference.
Geometrical Dimensioning and Tolerancing for Design, Manufacturing and Inspection: A Handbook for Geometrical Product Specification Using ISO and ASME Standards, Third Edition presents the state-of-the art in geometrical dimensioning and tolerancing. The book describes the international standardization in this field while also indicating how it differs from the American Standard ASME Y14.5M. The general principles of geometric dimensioning and tolerancing are described, helping users define precision-related specifications unambiguously and consistently with the constraints of the manufacturing and inspection processes. Principles for the inspection of geometrical deviations are given, along with a basis for tolerancing suitable for inspection. Since publication of the second edition of this book in 2006 more than ten ISO GPS standards have been revised, involving the introduction of new symbols and concepts, and in many cases default interpretation of the tolerance indicators have changed, in addition two new versions of American standard ASME Y14.5 (2009 and 2018) have appeared. This book is an ideal introduction to geometrical dimensioning and tolerancing for students, and an essential reference for researchers and practitioners in the fields of design, manufacturing and inspection.
Process planning determines how a product is to be manufactured and is therefore a key element in the manufacturing process. It plays a major part in determining the cost of components and affects all factory activities, company competitiveness, production planning, production efficiency and product quality. It is a crucial link between design and manufacturing. There are several levels of process planning activities. Early in product engineering and development, process planning is responsible for determining the general method of production. The selected general method of production affects the design constraints. In the last stages of design, the designer has to consider ease of manufacturing in order for it to be economic. The part design data is transferred from engineering to manufacturing and process planners develop the detailed work package for manufacturing a part. Dimensions and tolerances are determined for each stage of processing of the workpiece. Process planning determines the sequence of operations and utilization of machine tools. Cutting tools, fixtures, gauges and other accessory tooling are also specified. Feeds, speeds and other parameters of the metal cutting and forming processes are determined.
This short Introduction into Space Charge E?ects in Semiconductors is designed for teaching the basics to undergraduates and show how space charges are created in semiconductors and what e?ect they have on the el- tric?eldandthe energybanddistributioninsuchmaterials,andconsequently on the current-voltage characteristics in semiconducting devices. Such space charge e?ects were described previously in numerous books, fromtheclassicsofSpenkeandShockleytothemorerecentonesofSeegerand others.Butmanymoredetailedinformationwereonlyavailableintheoriginal literatureandsomeofthemnotatall.Itseemstobeimportanttocollectallin a comprehensive Text that can be presented to students in Physics, Electrical Engineering, and Material Science to create the fundamental knowledge that is now essential for further development of more sophisticated semiconductor devices and solar cells. This book will go through every aspect of space charge e?ects and - scribe them from simple elementaries to the basics of semiconductor devices, systematically and in progressing detail. For simplicity we have chosen this description for a one-dimensional se- conductorthatpermitsasimpledemonstrationoftheresultsgraphicallywi- out requiring sometimes confusing perspective rendering. In order to clarify the principles involved, the book starts with a hy- thetical model, by assuming simple space charge distributions and deriving their e?ects on ?eld and potential distributions, using the Poisson equation. Itemphasizestheimportantsignrelationsoftheinterreactingvariables,space charge, ?eld, and potential (band edges). It then expands into simple semiconductor models that contain an abrupt nn-junction and gives an example of important space chargelimited currents, + as observed in nn -junctions.
The purpose of this book is to survey the state of the art and evolving directions in post-silicon and runtime verification. The authors start by giving an overview of the state of the art in verification, particularly current post-silicon methodologies in use in the industry, both for the domain of processor pipeline design and for memory subsystems. They then dive into the presentation of several new post-silicon verification solutions aimed at boosting the verification coverage of modern processors, dedicating several chapters to this topic. The presentation of runtime verification solutions follows a similar approach. This is an area of processor design that is still in its early stages of exploration and that holds the promise of accomplishing the ultimate goal of achieving complete correctness guarantees for microprocessor-based computation. The authors conclude the book with a look towards the future of late-stage verification and its growing role in the processor life-cycle.
The approach to the solution within the CRC/TR 96 financed by the German Research Foundation DFG aims at measures that will allow manufacturing accuracy to be maintained under thermally unstable conditions with increased productivity, without an additional demand for energy for tempering. The challenge of research in the CRC/TR 96 derives from the attempt to satisfy the conflicting goals of reducing energy consumption and increasing accuracy and productivity in machining. In the current research performed in 19 subprojects within the scope of the CRC/TR 96, correction and compensation solutions that influence the thermo-elastic machine tool behaviour efficiently and are oriented along the thermo-elastic functional chain are explored and implemented. As part of this general objective, the following issues must be researched and engineered in an interdisciplinary setting and brought together into useful overall solutions: 1. Providing the modelling fundamentals to calculate the heat fluxes and the resulting thermo-elastic deformations in a comprehensive manner, 2. Mapping of the structural variability as a result of the relative movement inside the machine tool, 3. Providing the tools for an efficient adjustment of parameters that vary greatly in time and space by means of parameter identification methods as a prerequisite for correction and compensation solutions, 4. Engineering and demonstrating solutions to control-integrated correction of thermo-elastic errors by an inverse position setpoint compensation of the error at the TCP, 5. Engineering and demonstrating solutions based on the material properties to compensate for thermo-elastic effects through a homogeneous propagation of the temperature field, as well as reducing and smoothing the distribution of heat dissipated in supporting structures, 6. Developing metrological fundamentals to record the thermo-elastic errors in special structural areas of machine tools, 7. Engineering a methodological approach to simultaneous and complex evaluation of the CRC/TR 96 solutions, referring to their impact on product quality, production rate, energy consumption and machine tool costs
Computer Aided Tolerancing (CAT) is an important topic in any field of design and production where parts move relative to one another and/or are assembled together. Geometric variations from specified dimensions and form always occur when parts are manufactured. Improvements in production systems can cause the amounts of the variations to become smaller, but their presence does not disappear. To shorten the time from concept to market of a product, it has been increasingly important to take clearances and the tolerancing of manufacturing variations into consideration right from the beginning, at the stage of design. Hence, geometric models are defined that represent both the complete array of geometric variations possible during manufacture and also the influence of geometry on the function of individual parts and on assemblies of them...
The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the Second International Conference on Acoustics and Vibration (ICAV2018), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held March 19-21, in Hammamet, Tunisia. The contributions cover advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others. This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theories with industrial issues, it is expected to facilitate communication and collaboration between different groups of researchers and technology users.
This book presents the integration of new tools, the modification of existing tools, and the combination of different tools and approaches to create new technical resources for assisting the innovation process. It describes the efforts deployed for assisting the transformation of Product-Services Systems and explains the main key success factors or drivers for success of each tool or approach applied to solve an innovation problems. The book presents a set of case studies to illustrate the application of several tools and approaches, mainly in developing countries.
The International Council on Systems Engineering (INCOSE) defines Systems Engineering as an interdisciplinary approach and means to enable the realization of successful systems. Researchers are using intelligence-based techniques to support the practices of systems engineering in an innovative way. This research volume includes a selection of contributions by subject experts to design better systems. "
To predict loading limits for structures and structural elements is one of the oldest and most important tasks of engineers. Among the theoretical and numericalmethodsavailableforthispurpose, so-called"DirectMethods,"- bracing Limit- and Shakedown Analysis, play an eminent role due to the fact that they allow rapid access to the requested information in mathematically constructive manners. The collection of papers in this book is the outcome of a workshop held at Aachen University of Technology in November 2007. The individual c- tributions stem in particular from the areas of new numerical developments renderingthemethodsmoreattractive forindustrialdesign, extensionsofthe general methodology to new horizons of application, probabilistic approaches and concrete technological applications. The papers are arranged according to the order of the presentations in the workshop and give an excellent insight into state-of-the-art developments in this broad and growing ?eld of research. The editors warmly thank all the scientists, who have contributed by their outstanding papers to the quality of this edition. Special thanks go to Jaan Simon for his great help in putting together the manuscript to its ?nal shape.
In the real world the dynamic behavior of a real machine presents either unforeseen or limiting phenomena: both are undesired, and can be therefore be classified as parasitic phenomena - unwanted, unforeseen, or limiting behaviors. Parasitic Phenomena in the Dynamics of Industrial Devices describes the potential causes and effects of these behaviors and provides indications that could minimize their influence on the mechanical system in question. The authors introduce the phenomena and explore them through real cases, avoiding academic introductions, but inserting the entire academic and experimental knowledge that is useful to understand and solve real-world problems. They then examine these parasitic phenomena in the machine dynamics, using two cases that cover the classical cultural division between cam devices and mechanisms. They also present concrete cases with an amount of experimental data higher than the proposed ones and with a modern approach that can be applied to various mechanical devices, acquiring real knowledge superior to one of the mere finite element systems or collections of mechanical devices. Organizes machine dynamics through systems theory to give a comprehensive vision of the design problem Details machine dynamics at an advanced mathematics level and avoids redundancy of fundamental knowledge Introduces real machine cases for solutions to practical problems Covers two broad classes of mechanical devices that are widely used in the construction of instrumental goods Employs a mechatronic approach that can be applied to electro-mechanical, hydro-mechanical, or pneumo-mechanical machines Highlighting industrial devices in the manufacturing industry, including industrial indexing devices and industrial robots, the book offers case studies, advanced models, design methods, and short examples of applications. It is of critical importance for any manufacturing enterprise that produces significant amounts of objects through a process with one or more automated phases.
Pulsed-Power Systems describes the physical and technical foundations for the production and application of high-voltage pulses of very high-power and high-energy character. In the initial chapters, it addresses materials, components and the most common diagnostics. In the second part, three categories of applications with scientific and industrial relevance are detailed: production of strong pulsed electric and magnetic fields, intense radiation sources and pulsed electric (plasma) discharges.
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
This book provides the readers with a timely guide to the application of biomimetic principles in architecture and engineering design. As a result of a combined effort by two internationally recognized authorities, the biologist Werner Nachtigall and the architect Goeran Pohl, the book describes the principles which can be used to compare nature and technology, and at the same time it presents detailed explanations and examples showing how biology can be used as a source of inspiration and "translated" in building and architectural solutions (biomimicry). Even though nature cannot be directly copied, the living world can provide architects and engineers with a wealth of analogues and inspirations for their own creative designs. But how can analysis of natural entities give rise to advanced and sustainable design? By reporting on the latest bionic design methods and using extensive artwork, the book guides readers through the field of nature-inspired architecture, offering an extraordinary resource for professional architects, engineers, designers and urban planners, as well as for university teachers, researchers and students. Natural evolution is seen throughout the book as a powerful resource that can serve architecture and design by providing innovative, optimal and sustainable solutions.
This book covers several bases at once. It is useful as a textbook for a second course in experimental optimization techniques for industrial production processes. In addition, it is a superb reference volume for use by professors and graduate students in Industrial Engineering and Statistics departments. It will also be of huge interest to applied statisticians, process engineers, and quality engineers working in the electronics and biotech manufacturing industries. In all, it provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization, and more.
Covering key topics in the field such as technological innovation, human-centered sustainable engineering and manufacturing, and manufacture at a global scale in a virtual world, this book addresses both advanced techniques and industrial applications of key research in interactive design and manufacturing. Featuring the full papers presented at the 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing, which took place in June 2014 in Toulouse, France, it presents recent research and industrial success stories related to implementing interactive design and manufacturing solutions.
This thesis conceptualizes and implements a new framework for designing materials that are far from equilibrium. Starting with state-of-the-art optimization engines, it describes an automated system that makes use of simulations and 3D printing to find the material that best performs a user-specified goal. Identifying which microscopic features produce a desired macroscopic behavior is a problem at the forefront of materials science. This task is materials design, and within it, new goals and challenges have emerged from tailoring the response of materials far from equilibrium. These materials hold promising properties such as robustness, high strength, and self-healing. Yet without a general theory to predict how these properties emerge, designing and controlling them presents a complex and important problem. As proof of concept, the thesis shows how to design the behavior of granular materials, i.e., collections of athermal, macroscopic identical objects, by identifying the particle shapes that form the stiffest, softest, densest, loosest, most dissipative and strain-stiffening aggregates. More generally, the thesis shows how these results serve as prototypes for problems at the heart of materials design, and advocates the perspective that machines are the key to turning complex material forms into new material functions.
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named "Hybridized Nash-Pareto games". Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with civil aircraft and UAV, UCAV systems are implemented numerically and discussed. Applications of increasing optimization complexity are presented as well as two hands-on test cases problems. These examples focus on aeronautical applications and will be useful to the practitioner in the laboratory or in industrial design environments. The evolutionary methods coupled with games presented in this volume can be applied to other areas including surface and marine transport, structures, biomedical engineering, renewable energy and environmental problems. This book will be of interest to students, young scientists and engineers involved in the field of multi physics optimization.
The 1980s have witnessed a tremendous growth in the field of computer integrated manufacturing systems. The other major areas of development have been computer-aided design, computer-aided manufacturing, industrial robotics, automated assembly, cellular and modular material handling, computer networking and office automation to name just a few. These new technologies are generally capital intensive and do not conform to traditional cost structures. The net result is a tremendous change in the way costs should be estimated and economic analyses performed. The majority of existing engineering economy texts still profess application of traditional analysis methods. But, as was men tioned above, it is clear that the basic trend in manufacturing industries is itself changing. So it is quite obvious that the practice of traditional economic analysis methods should change too. This book is an attempt to address the various issues associated with non-traditional methods for evaluation of advanced computer-integrated technologies. This volume consists of twenty refereed articles which are grouped into five parts. Part one, Economic Justification Methods, consists of six articles. In the first paper, Soni et at. present a new classification for economic justification methods for advanced automated manufacturing systems. In the second, Henghold and LeClair look at strengths and weaknesses of expert systems in general and more specifically, an ap plication aimed at investment justification in advanced technology. The third paper, by Carrasco and Lee, proposes an enhanced economic methodology to improve the needs analysis, conceptual design and de tailed design activities associated with technology modernization." |
You may like...
|