![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
This book is devoted to CO2 capture and utilization (CCU) from a green, biotechnological and economic perspective, and presents the potential of, and the bottlenecks and breakthroughs in converting a stable molecule such as CO2 into specialty chemicals and materials or energy-rich compounds. The use of renewable energy (solar, wind, geothermal, hydro) and non-fossil hydrogen is a must for converting large volumes of CO2 into energy products, and as such, the authors explore and compare the availability of hydrogen from water using these sources with that using oil or methane. Divided into 13 chapters, the book offers an analysis of the conditions under which CO2 utilization is possible, and discusses CO2 capture from concentrated sources and the atmosphere. It also analyzes the technological (non-chemical) uses of CO2, carbonation of basic minerals and industrial sludge, and the microbial-catalytic-electrochemical-photoelectrochemical-plasma conversion of CO2 into chemicals and energy products. Further, the book provides examples of advanced bioelectrochemical syntheses and RuBisCO engineering, as well as a techno-energetic and economic analysis of CCU. Written by leading international experts, this book offers a unique perspective on the potential of the various technologies discussed, and a vision for a sustainable future. Intended for graduates with a good understanding of chemistry, catalysis, biotechnology, electrochemistry and photochemistry, it particularly appeals to researchers (in academia and industry) and university teachers.
This volume covers experimental and theoretical advances on the relationship between composition, structure and macroscopic mechanical properties of novel hydrogels containing dynamic bonds. The chapters of this volume focus on the control of the mechanical properties of several recently discovered gels with the design of monomer composition, chain architecture, type of crosslinking or internal structure. The gels discussed in the different chapters have in common the capability to dissipate energy upon deformation, a desired property for mechanical toughness, while retaining the ability to recover the properties of the virgin material over time or to self-heal when put back in contact after fracture. Some chapters focus on the synthesis and structural aspects while others focus on properties or modelling at the continuum or mesoscopic scale. The volume will be of interest to chemists and material scientists by providing guidelines and general structure-property considerations to synthesize and develop innovative gels tuned for applications. In addition it will provide physicists with a better understanding of the role of weak interactions between molecules and physical crosslinking on macroscopic dissipative properties and self-healing or self-recovering properties.
Focused specifically on Life Science Start-Ups Examines how to determine a company valuation and future "fundable milestones" Explores how to align regulatory and clinical strategies Discusses intellectual property derived from a university or individual through formation to exit. Reviews how start-ups must simultaneously meet the needs of multiple constituencies at once: investors, regulators, customers and exit candidates
Bioethanol Production from Food Crops: Sustainable Sources, Interventions and Challenges comprehensively covers the global scenario of ethanol production from both food and non-food crops and other sources. The book guides readers through the balancing of the debate on food vs. fuel, giving important insights into resource management and the environmental and economic impact of this balance between demands. Sections cover Global Bioethanol from Food Crops and Forest Resource, Bioethanol from Bagasse and Lignocellulosic wastes, Bioethanol from algae, and Economics and Challenges, presenting a multidisciplinary approach to this complex topic. As biofuels continue to grow as a vital alternative energy source, it is imperative that the proper balance is reached between resource protection and human survival. This book provides important insights into achieving that balance.
Value of Connected Things for Healthcare is based on feedback from members of the LLSA Forum, patients, healthcare professionals, Living Labs, industrialists, researchers and institutional actors confronted with the design, development, implementation and use of these types of tools that penetrate health and communicate data. The term connected object refers to devices that continuously collect data through these objects, providing the state of health of people wherever they are and whatever they do. These objects allow clinical researchers to study new phenomena that have hitherto escaped observations in institutions. However, the mobilization of these technologies in this context poses technical questions because the requirements of a remote, continuous operation are high. What is termed connected health emphasizes the human dimension of the subject, i.e., citizens, patients, health professionals, territorial communities, professional networks, institutions and associations. The questions of who benefits and ethical considerations are paramount to this discussion.
This book provides a comprehensive overview of current biosurfactant research and applications. Public awareness of environmental issues has increased significantly over the last decade, a trend that has been accompanied by industry demands for climate-friendly and environmentally friendly renewable raw materials. In the context of household products, biosurfactants could potentially meet this demand in the future due to their low ecotoxicity, excellent biodegradability, and use of renewable raw materials. The diversity of this class of molecules, which has only been marginally tapped to date, offers only an inkling of their future application potential. However, there are two main obstacles to their widespread commercial use on the growing surfactant market: the lack of attractive and competitive production technologies, and the limited structural diversity of commercially available biosurfactants. Addressing both of these core issues, this book will provide readers with a deeper understanding of the role of biosurfactants, including future opportunities and challenges. Chapter "Environmental Impacts of Biosurfactants from a Life Cycle Perspective: A Systematic Literature Review" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Sustainable Bioprocessing for a Clean and Green Environment: Concepts and Applications highlights the importance of waste to health in which waste is safely converted to value-added products via bioprocess technologies. Providing fundamental concepts and applications, this book also offers readers the methodology behind the operation of a variety of biological processes used in developing valuable products from waste. Features: Discusses synthesis and use of environmentally friendly biobased materials, such as biopolymer films and biobased plasticizers Highlights nanotechnology applications in the treatment of pollution and emphasizes the synthesis of biogenic nanomaterials for environmental remediation Describes the use of biosurfactants and emerging algal technologies, such as applications of microalgae in nutraceuticals and biofuel production Details delignification for lignocellulosic biomass This interdisciplinary book offers researchers and practitioners in chemical engineering, environmental engineering, and related fields a broad perspective on fundamentals, technologies, and environmental applications of sustainable bioprocessing.
Antimicrobial resistance is a major global public health problem. This book focuses on the clinical implications of multi-drug resistant pathogens; tracking AMR and its evolutionary significance; antifungal resistance; and current and alternative treatment strategies for AMR, including antivirulent, antibiofilm and antimicrobial resistance breakers, repurposing of drugs, and probiotic therapy. Advances in antimicrobial stewardship, antibiotic policies from a global perspective and their impacts are also discussed. The book also explores the use of omics approaches to gain insights into antibacterial resistance, and includes chapters on the potential benefits of a 'One Health approach' describing the environmental and zoonotic sources of resistant genes and their effects on the global resistance pool.
Data Processing Handbook for Complex Biological Data provides relevant and to the point content for those who need to understand the different types of biological data and the techniques to process and interpret them. The book includes feedback the editor received from students studying at both undergraduate and graduate levels, and from her peers. In order to succeed in data processing for biological data sources, it is necessary to master the type of data and general methods and tools for modern data processing. For instance, many labs follow the path of interdisciplinary studies and get their data validated by several methods. Researchers at those labs may not perform all the techniques themselves, but either in collaboration or through outsourcing, they make use of a range of them, because, in the absence of cross validation using different techniques, the chances for acceptance of an article for publication in high profile journals is weakened.
This book presents the select proceedings of the International Conference on Functional Material, Manufacturing and Performances (ICFMMP) 2019. The book provides the state-of-the-art research, development, and commercial prospective of recent advances in materials science and engineering. The contents cover various synthesis and fabrication routes of functional and smart materials for applications in mechanical engineering, manufacturing, metrology, nanotechnology, physics, chemical and biological sciences, civil engineering, food science among others. It also provides the evolutionary behavior of materials science for industrial applications. This book will be a useful resource for researchers as well as professionals interested in the highly interdisciplinary field of materials science.
A Fractal Analysis of Chemical Kinetics with Applications to Biological and Biosensor Interfaces analyzes the kinetics of binding and dissociation of different analytes by different biosensor techniques, demonstrating, and then comparing each other. Emphasis is on newer instrumentation techniques, such as surface plasmon resonance imaging (SPRi), and classical techniques, such as surface plasmon resonance (SPR), and finally, DNA biosensors and nanobiosensors. In addition, the closing chapter includes discussion of biosensor economics.
This edited book deals with latest comprehensive information on conventional and high throughput techniques and technologies that are recently used to study plant microbial interface for agricultural research and enhancing plant productivity. Plant microbiota are important for many plant growth promotion activity and agricultural productivity and are sustainable green technology for enhancing agricultural productivity under changing environment. The book covers recent information about the plant associated microbiota and their ecology. It discusses technologies to isolate and test microbiota inhabiting in different portion of plants. The book explores the conventional methods as well as the most recently recognized high throughput technologies which are important for productive agroecosystems to feed the growing global population. This book is of interest to teachers, researchers, microbiologist, plant and environmental scientist and those interested in environment stewardship around the world. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences and policy makers to be a useful to read.
This fascinating study describes efforts to define and protect traditional knowledge and the associated issues of access to genetic resources, from the negotiation of the Convention on Biological Diversity to The Declaration on the Rights of Indigenous Peoples and the Nagoya Protocol. Drawing on the expertise of local specialists from around the globe, the chapters judiciously mix theory and empirical evidence to provide a deep and convincing understanding of traditional knowledge, innovation, access to genetic resources, and benefit sharing. Because traditional knowledge was understood in early negotiations to be subject to a property rights framework, these often became bogged down due to differing views on the rights involved. New models, developed around the notion of distributive justice and self-determination, are now gaining favor. This book suggests - through a discussion of theory and contemporary case studies from Brazil, India, Kenya and Canada - that a focus on distributive justice best advances the interests of indigenous peoples while also fostering scientific innovation in both developed and developing countries. Comprehensive as well as nuanced, Genetic Resources and Traditional Knowledge will be of great interest to scholars and students of law, political science, anthropology and geography. National and international policy makers and those interested in the environment, indigenous peoples' rights and innovation will find the book an enlightening resource. Contributors: T. Bubela, J. Carbone, R. Crookshanks, L. DeBusschere, G. Dutfield, E.R. Gold, D.S. Hik, A. Kumbamu, C. Lawson, C. Metcalf, S. Nickels, K. Nnadozie, P.W.B. Phillips, E.B. Rodrigues Jr, T. Williams, S. Zhang
Nanomaterials in Bionanotechnology: Fundamentals and Applications offers a comprehensive treatment of nanomaterials in biotechnology from fundamentals to applications, along with their prospects. This book explains the basics of nanomaterial properties, synthesis, biological synthesis, and chemistry and demonstrates how to use nanomaterials to overcome problems in agricultural, environmental, and biomedical applications. Features Covers nanomaterials for environmental analysis and monitoring for heavy metals, chemical toxins, and water pollutant detection Describes nanomaterials-based biosensors and instrumentation and use in disease diagnosis and therapeutics Discusses nanomaterials for food processing and packaging and agricultural waste management Identifies challenges in nanomaterials-based technology and how to solve them This work serves as a reference for industry professionals, advanced students, and researchers working in the discipline of bionanotechnology.
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in pulse crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The nine chapters each dedicated to a pulse crop in this volume elucidate on different types of abiotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
This book focuses on signaling molecules in plant defense, outlining some of the most important cellular and chemical plant defense strategies during periods of stress and growth. Written by leading experts, it covers topics such as the diversity of plant-growth-promoting fungi, the gene-to-metabolite network of plant-microbe interactions, modulation of plant cellular responses to stress, and how plant nutritional deficiency affects crop production. Together with the companion volume Bioactive Molecules in Plant Defense: Saponins, this book offers an essential source of information for postgraduate students and researchers interested in plant pathology, mycology and sustainable agriculture.
Today's challenge, especially for many newcomers to the regulated industry, is not necessarily to gather regulatory information, but to know how to interpret and apply it. The ability to discern what is important from what is not, and to interpret regulatory documents correctly, provides a valuable competitive advantage to any newcomer or established professional in this field. An Overview of FDA Regulated Products: From Drugs and Medical Devices to Food and Tobacco provides a valuable summary of the key information to unveil the meaning of critical, and often complex, regulatory concepts. Concise and easy to read with practical explanations, key points, summaries and case studies, this book highlights the regulatory processes involved in bringing an FDA regulated product from research and development to approval and market. Although the primary focus will be on the US system, this book also features global perspectives where appropriate. A valuable resource for students, professors and professionals, An Overview of FDA Regulated Products illustrates the most important elements and concepts so that the reader can focus on the critical issues and make the necessary connections to be successful.
Now with a new afterword covering the months-long landmark trials of Elizabeth Holmes and Sunny Balwani. ‘I couldn’t put down this thriller . . . the perfect book to read by the fire this winter.’ Bill Gates Winner of the Financial Times/McKinsey Business Book of the Year Award 2018 The riveting true story of the breathtaking rise and shocking collapse of Theranos, the multibillion-dollar biotech startup founded by Elizabeth Holmes, by the prize-winning journalist who first broke the story and pursued it to the end, despite pressure from its charismatic CEO and threats by her lawyers. In 2014, Theranos founder and CEO Elizabeth Holmes was widely seen as the female Steve Jobs: a brilliant Stanford dropout whose startup ‘unicorn’ promised to revolutionize the medical industry with a machine that would make blood testing significantly faster and easier. Backed by investors such as Larry Ellison and Tim Draper, Theranos sold shares in a fundraising round that valued the company at more than $9 billion, putting Holmes’s worth at an estimated $4.7 billion. There was just one problem: the technology didn’t work. In Bad Blood, John Carreyrou tells the riveting story of the biggest corporate fraud since Enron, a tale of ambition and hubris set amid the bold promises of Silicon Valley. ‘Chilling . . . Reads like a West Coast version of All the President’s Men.’ New York Times Book Review
Highlights the impact of Covid 19 on science, health and health care system Includes evolution, structure, and mode of infection by virus as well as strategies to attack various organs in the body. Describes emergence of various strains of virus Emphasis new techniques to detect and control the virus Discusses vaccine development to control the pandemic
This book comprises a collection of chapters on advances in green nanomaterials. The book looks at ways to establish long-term safe and sustainable forms of nanotechnology through implementation of nanoparticle biosynthesis with minimum impact on the ecosystem. The book looks at synthesis, processing, and applications of metal and metal oxide nanomaterials and also at bio-nanomaterials. The contents of this book will prove useful for researchers and professionals working in the field of nanomaterials and green technology.
Current environmental and energy concerns have led to lignin gaining increased attention in the last decade as a renewable biomass. Due to its structural and functional properties, such as antimicrobial behaviour, biodegradability, biocompatibility and ease of surface modifications, lignin-based materials have gained popularity in the biomedical field with applications ranging from tissue engineering scaffolds and wound dressing materials to drug delivery carriers. Using this book, the reader will learn about the chemistry of lignin, and the characterization, fabrication and properties of lignin-based composites with different matrices (thermosets, thermoplastics, elastomers etc.). In addition, the book illustrates how these materials are used in medical applications, covering drug delivery, wound dressing, tissue engineering, imaging, etc. Providing a neat overview of the current research for the biomaterials science community, this book is a one-stop resource for researchers and practitioners working on lignin-based biomaterials. For those active in the broader fields of materials science and biomedical engineering, this will be a useful reference and study aid.
Modern Vibrational Spectroscopy and Micro-Spectroscopy: Theory, Instrumentation and Biomedical Applications unites the theory and background of conventional vibrational spectroscopy with the principles of microspectroscopy. It starts with basic theory as it applies to small molecules and then expands it to include the large biomolecules which are the main topic of the book with an emphasis on practical experiments, results analysis and medical and diagnostic applications. This book is unique in that it addresses both the parent spectroscopy and the microspectroscopic aspects in one volume. Part I covers the basic theory, principles and instrumentation of classical vibrational, infrared and Raman spectroscopy. It is aimed at researchers with a background in chemistry and physics, and is presented at the level suitable for first year graduate students. The latter half of Part I is devoted to more novel subjects in vibrational spectroscopy, such as resonance and non-linear Raman effects, vibrational optical activity, time resolved spectroscopy and computational methods. Thus, Part 1 represents a short course into modern vibrational spectroscopy. Part II is devoted in its entirety to applications of vibrational spectroscopic techniques to biophysical and bio-structural research, and the more recent extension of vibrational spectroscopy to microscopic data acquisition. Vibrational microscopy (or microspectroscopy) has opened entirely new avenues toward applications in the biomedical sciences, and has created new research fields collectively referred to as Spectral Cytopathology (SCP) and Spectral Histopathology (SHP). In order to fully exploit the information contained in the micro-spectral datasets, methods of multivariate analysis need to be employed. These methods, along with representative results of both SCP and SHP are presented and discussed in detail in Part II. |
You may like...
Information Sharing on the Semantic Web
Heiner Stuckenschmidt, Frank Van Harmelen
Hardcover
R2,682
Discovery Miles 26 820
Shipping Derivatives and Risk Management
A Alizadeh, N. Nomikos
Hardcover
R4,656
Discovery Miles 46 560
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Applications of Machine Learning and…
Ran Yan, Shuaian Wang
Hardcover
Container Port Production and Economic…
T. Wang, K Cullinane, …
Hardcover
R2,642
Discovery Miles 26 420
|