![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
This well-established textbook on biocatalysis provides a basis for undergraduate and graduate courses in modern organic chemistry, as well as a condensed introduction into this field. After a basic introduction into the use of biocatalysts-principles of stereoselective transformations, enzyme properties and kinetics-the different types of reactions are explained according to the 'reaction principle', such as hydrolysis, reduction, oxidation, C-C bond formation, etc. Special techniques, such as the use of enzymes in organic solvents, immobilization techniques, artificial enzymes and the design of cascade-reactions are treated in a separate section. A final chapter deals with the basic rules for the safe and practical handling of biocatalysts. The use of biocatalysts, employed either as isolated enzymes or whole microbial cells, offers a remarkable arsenal of highly selective transformations for state-of-the-art synthetic organic chemistry. Over the last two decades, this methodology has become an indispensable tool for asymmetric synthesis, not only at the academic level, but also on an industrial scale. In this 7th edition new topics have been introduced which include alcohol and amine oxidases, amine dehydrogenases, imine reductases, haloalkane dehalogenases, ATP-independent phosphorylation, Michael-additions and cascade reactions. This new edition also emphasizes the use of enzymes in industrial biotransformations with practical examples.
General compendium of HDAC inhibitors with deep emphasis on toxicity issues of synthetic HDAC inhibitors Various groups of natural HDAC inhibitors, their representatives and premier sources Cyclic tetrapeptides of natural origin and their importance as cancer chemotherapeutic agents Hydroxamates and depsipeptides from natural sources and their promising role in cancer therapy Natural Flavonoids, their HDAC inhibitory tendency and marvellous anticancer activity Non-flavonoid natural HDAC inhibitors and their pleasing cytotoxic effects towards cancer models Combined therapy involving natural flavonoids with other anticancer molecules for synergistic and additive benefits against cancer models Non-flavonoid HDAC inhibitors and conventional drugs in collaborative mode against aggressive malignancies Nanotechnology based delivery of natural HDAC inhibitors for greater therapeutic efficacy over traditional combinatorial therapy
Fish Vaccines: Health Management for Sustainable Aquaculture is a timely reference book that highlights the role of vaccination in the fast-growing aquaculture industry. It discusses topics such as vaccine formulation, vaccine delivery and enhancing the immune response of fish using nanoparticles. Information related to vaccine safety, ethical approval and regulations is also discussed, together with dissemination of vaccines to fish farms across the globe. This cutting-edge book presents novel strategies to meet the growing demand for vaccines in finfish aquaculture. The book is useful to students, academics, clinicians, and professionals in the field of fisheries sciences, aquaculture, and veterinary sciences.
Mineralized Collagen Bone Graft Substitutes presents a comprehensive study of biomimetic mineralized collagen, synthesized in vitro, a next generation biomaterial for bone regeneration. By focusing both on fundamental research and the clinical use of this novel material, the book provides a complete examination, from bench to bedside. Chapters discuss natural bone and familiar biomaterials for bone repair, the preparation and safety of mineralized collagen, products made of mineralized collagen, and present clinical case studies. This book is an invaluable and unique resource for researchers, clinicians, students and industrialists in the area of orthopedics and dentistry.
This book offers a comprehensive overview of the development and application of microfluidics and biosensors in cancer research, in particular, their applications in cancer modeling and theranostics. Over the last decades, considerable effort has been made to develop new technologies to improve the diagnosis and treatment of cancer. Microfluidics has proven to be a powerful tool for manipulating biological fluids with high precision and efficiency and has already been adopted by the pharmaceutical and biotechnology industries. With recent technological advances, particularly biosensors, microfluidic devices have increased their usefulness and importance in oncology and cancer research. The aim of this book is to bring together in a single volume all the knowledge and expertise required for the development and application of microfluidic systems and biosensors in cancer modeling and theranostics. It begins with a detailed introduction to the fundamental aspects of tumor biology, cancer biomarkers, biosensors and microfluidics. With this knowledge in mind, the following sections highlight important advances in developing and applying biosensors and microfluidic devices in cancer research at universities and in the industry. Strategies for identifying and evaluating potent disease biomarkers and developing biosensors and microfluidic devices for their detection are discussed in detail. Finally, the transfer of these technologies into the clinical environment for the diagnosis and treatment of cancer patients will be highlighted. By combining the recent advances made in the development and application of microfluidics and biosensors in cancer research in academia and clinics, this book will be useful literature for readers from a variety of backgrounds. It offers new visions of how this technology can influence daily life in hospitals and companies, improving research methodologies and the prognosis of cancer patients.
Biomass, Biofuels and Biochemical: Biohydrogen, Second Edition, provides general information, basic data and knowledge on one of the most promising renewable energy sources, including its production and applications. The book describes a green technology for abating environmental crisis and enabling the transformation into a sustainable future. Researchers, students and science enthusiasts alike will appreciate this holistic view of biohydrogen production, which details the functional mechanisms employed, operational configurations, influencing factors and integration strategies. With 50% more content, this new edition outlines the scaling of processes and features material from experienced international researchers working at the interface of biotechnology and engineering. Hydrogen is an energy carrier and is available in chemically combined forms in water, fossil fuels and biomass. About 95 % of current hydrogen requirements are produced through fossil fuel sources. Being a clean energy source, its future widespread use as a fuel is likely to be in the transportation and distributed power generation sectors.
Numerical PDE Analysis of Retinal Neovascularization Mathematical Model Computer Implementation in R provides a methodology for the analysis of neovascularization (formation of blood capillaries) in the retina. It describes the starting point-a system of three partial differential equations (PDEs)-that define the evolution of (1) capillary tip density, (2) blood capillary density and (3) concentration of vascular endothelial growth factor (VEGF) in the retina as a function of space (distance along the retina), x, and time, t, the three PDE dependent variables for (1), (2) and (3), and designated as u1(x, t), u2(x, t), u3(x, t), amongst other topics.
This thesis builds on recent innovations in multi-phase emulsion droplet design to demonstrate that emulsion morphologies enable a useful variety of dynamic optical phenomena. Despite the highly dynamic nature of fluid morphologies and their utility for stimuli-responsive, dynamic optical materials and devices, fluid matter is underrepresented in optical technology. Using bi-phase emulsion droplets as refractive micro-optical components, this thesis realizes micro-scale fluid compound lenses with optical properties that vary in response to changes in chemical concentrations, structured illumination, and thermal gradients. Theoretical considerations of emulsions as optical components are used to explain a previously unrecognized total internal reflection-enabled light interference phenomenon in emulsion droplets that results in rich structural coloration. While this work is focused on the fundamental optics of emulsion droplets, it also facilitates the use of light-emitting emulsion morphologies as chemo-optical transducers for early-stage food-borne pathogen detection. This thesis beautifully demonstrates the virtue of fundamental interdisciplinary exploration of unconventional material systems at the interface of optics, chemistry, and materials science, and the benefits arising from translation of the acquired knowledge into specific application scenarios.
3D Printing Technology in Nanomedicine provides an integrated and introductory look into the rapidly evolving field of nanobiotechnology. It demystifies the processes of commercialization and discusses legal and regulatory considerations. With a focus on nanoscale processes and biomedical applications, users will find this to be a comprehensive resource on how 3D printing can be utilized in a range of areas, including the diagnosis and treatment of a variety of human diseases.
Since the introduction of recombinant human growth hormone and insulin a quarter century ago, protein therapeutics has greatly broadened the ho- zon of health care. Many patients suffering with life-threatening diseases or chronic dysfunctions, which were medically untreatable not long ago, can attest to the wonder these drugs have achieved. Although the ?rst generation of p- tein therapeutics was produced in recombinant Escherichia coli, most recent products use mammalian cells as production hosts. Not long after the ?rst p- duction of recombinant proteins in E. coli, it was realized that the complex tasks of most post-translational modi?cations on proteins could only be ef?ciently carried out in mammalian cells. In the 1990s, we witnessed a rapid expansion of mammalian-cell-derived protein therapeutics, chie?y antibodies. In fact, it has been nearly a decade since the market value of mammalian-cell-derived protein therapeutics surpassed that of those produced from E. coli. A common characteristic of recent antibody products is the relatively large dose required for effective therapy, demanding larger quantities for the treatment of a given disease. This, coupled with the broadening repertoire of protein drugs, has rapidly expanded the quantity needed for clinical applications. The increasing demand for protein therapeutics has not been met exclusively by construction of new manufacturing plants and increasing total volume capacity. More - portantly the productivity of cell culture processes has been driven upward by an order of magnitude in the past decade.
Sweet Potato: Chemistry, Processing, and Nutrition presents foundational information, including identification, analysis, and use of chemical components from sweet potato in a variety of food and nonfood uses. Sweet potatoes can be easily propagated, are rich source of carbohydrates and functional components, and are highly productive, which makes them most suitable for production of staple and functional foods. With the increasing population and the challenges of providing healthy food to the world, there is an increasing consumer demand for new and better sweet potato products, particularly for those in developing countries. Providing a brief description of the specific sweet potato components, their role during processing and strategies for quality optimization, this book also explores novel methods of sweet potato starch, protein, and pectin modification providing students, researchers, and technologists working in the area of food science and others with the most recent information and state-of-the-art technology for developing new and beneficial uses of sweet potato.
This book presents a comprehensive overview on origin, structure, properties, modification strategies and applications of the biopolymer lignin. It is organized into four themed parts. The first part focuses on the analysis and characterization of the second most abundant biopolymer. The following part is devoted to the biological aspects of lignin such as biosynthesis and degradation. In the third part, chemical modification strategies and the preparation of composites as well as nano- and microparticles are discussed.The final part addresses the industrial application of lignin and its derivatives, as well as lignin materials. The usage for synthesis of biofuels, fine chemicals and in agriculture and food industry is covered. This book is a comprehensive source for researchers, scientists and engineers working in the field of biopolymers as well as renewable materials and sources.
A comprehensive and accessible survey of the best current accomplishments of GMO research in all their complexity and ramifications. The authors introduce the fundamentals of biotechnology as a scientific discipline, show how GMO research is conducted today, discuss the problems that have arisen from genetic technology and the tools needed to resolve them, and describes how GMO-derived technology may impact our lives in the future. On the technical side, the authors examine a wide range of current technologies employed for constructing GMOs, and describe approaches to novel research, appropriate protocols, and the process of constructing and screening a GMO. The discussion of plant and animal cells covers new strategies employed and the large-scale expression and purification of recombinant products in cultured cells. Social political, and legal issues are also discussed.
Advances in Applied Microbiology, Volume 106, continues the comprehensive reach of this widely read and authoritative review source in microbiology. Users will find invaluable references and information on a variety of areas, with this updated volume including chapters covering The role and regulation of the stress activated sigma factor SigB in the saprophytic and host-associated life stages of the pathogen Listeria monocytogenes, Bacterial synthesis of Se nanoparticles, Siderophores in environmental research, Methods to reduce spoilage and microbial contamination of plant produce, Nitrogen cycling during wastewater treatment, Oxalic acid, a molecule at crossroads of bacterial-fungal interactions, and Bacterial spores, from ecology to biotechnology.
This fully revised third edition includes up-to-date topics and developments in the field, which has made tremendous strides since the publication of the second edition in 2004. Many novel techniques based on Next Generation Sequencing have sped up the analysis of fungi and major advances have been made in genome editing, leading to a deeper understanding of the genetics underlying cellular processes as well as their applicability. At the same time, the relevance of fungi is unbroken, both due to the serious threats to human health and welfare posed by fungal pests and pathogens, and to the many benefits that fungal biotechnology can offer for diverse emerging markets and processes that form the basis of the modern bioeconomy. With regard to these advances, the first section of this volume, Genetics, illustrates the basic genetic processes underlying inheritance, cell biology, metabolism and "lifestyles" of fungi. The second section, Biotechnology, addresses the applied side of fungal genetics, ranging from new tools for synthetic biology to the biotechnological potential of fungi from diverse environments. Gathering chapters written by reputed scientists, the book represents an invaluable reference guide for fungal biologists, geneticists and biotechnologists alike.
Novel Nanomaterials for Biomedical, Environmental, and Energy Applications is a comprehensive study on the cutting-edge progress in the synthesis and characterization of novel nanomaterials and their subsequent advances and uses in biomedical, environmental and energy applications. Covering novel concepts and key points of interest, this book explores the frontier applications of nanomaterials. Chapters discuss the overall progress of novel nanomaterial applications in the biomedical, environmental and energy fields, introduce the synthesis, characterization, properties and applications of novel nanomaterials, discuss biomedical applications, and cover the electrocatalytical and photothermal effects of novel nanomaterials for efficient energy applications. The book will be invaluable to academic researchers and biomedical clinicians working with nanomaterials.
EEG Brain Signal Classification for Epileptic Seizure Disorder Detection provides the knowledge necessary to classify EEG brain signals to detect epileptic seizures using machine learning techniques. Chapters present an overview of machine learning techniques and the tools available, discuss previous studies, present empirical studies on the performance of the NN and SVM classifiers, discuss RBF neural networks trained with an improved PSO algorithm for epilepsy identification, and cover ABC algorithm optimized RBFNN for classification of EEG signal. Final chapter present future developments in the field. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need the most recent and promising automated techniques for EEG classification.
Describes technological advancements for bioethanol production from lignocellulosic waste Provides a roadmap for the production and utilization of 2G biofuels Introduces the strategic role of metabolic engineering in the development of 2G biofuels Discusses technological advancements, life cycle assessment and prospects Explores novel potential lignocellulosic biomass for 2G biofuels
Nucleic Acid Nanotheranostics: Biomedical Applications offers a comprehensive overview of improvements and new trends in fabrication of nanostructures as theranostic multifunctional carriers in gene therapy. With a strong focus on medical applications (comprising diagnosis, therapy and imaging), the book also examines gene therapy in an individual patient's cells or tissues to treat genetic diseases. Sections cover Biomedical and Diagnostic applications of Nucleic Acids, Biologic and Synthetic Advanced Nanostructures for nucleic acid delivery, and important considerations of nanomedicine. This book is a valuable guide for materials scientists, physicians, chemists and engineers, but is also ideal for clinicians wishing to expand their knowledge.
This book reviews the development, characterization and applications of aptamers in different areas of biotechnology ranging from therapeutics to diagnostics and protein purification. Hailed as chemical antibodies, these single-stranded nucleic acid receptors were predicted to supersede antibodies in traditional assays, such as ELISA, within a short time. While this has yet to happen, readers will find in this book a deep insight into the progress of aptamer technology and a critical discussion about the limitations that need to be overcome in order to find wider acceptance and use outside of the still relatively small aptamer-community. This book covers all aspects of aptamer generation and application for the aptamer-experienced reader and curious novice alike, with the addition of an industry perspective on the future of aptamer-use in biotechnology.
This detailed volume presents a series of protocols dealing with different aspects of inclusion body (IB) processing, from cloning procedures to purification of refolded product. Commencing with chapters on upstream processing, looking into different expression strategies for IB production, the book continues with downstream applications, highlighting early protein purification and subsequent analytics, as well as success stories of IB-based processes. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Inclusion Bodies: Methods and Protocols serves as an ideal resource for facilitating diverse aspects of IB processing.
Agriculture faces many challenges to fulfil the growing demand for sustainable food production and ensure high-quality nutrition for a rapidly growing population. To guarantee adequate food production, it is necessary to increase the yield per area of arable land. A method for achieving this goal has been the application of growth regulators to modulate plant growth. Plant growth regulators (PGRs) are substances in specific formulations which, when applied to plants or seeds, have the capacity to promote, inhibit, or modify physiological traits, development and/or stress responses. They maintain proper balance between source and sink for enhancing crop yield. PGRs are used to maximize productivity and quality, improve consistency in production, and overcome genetic and abiotic limitations to plant productivity. Suitable PGRs include hormones such as cytokinins and auxins, and hormone-like compounds such as mepiquat chloride and paclobutrazol. The use of PGRs in mainstream agriculture has steadily increased within the last 20 years as their benefits have become better understood by growers. Unfortunately, the growth of the PGR market may be constrained by a lack of innovation at a time when an increase in demand for new products will require steady innovation and discovery of novel, cost-competitive, specific, and effective PGRs. A plant bio-stimulant is any substance or microorganism applied to plants with the aim to enhance nutrition efficiency, abiotic stress tolerance and/or crop quality traits, regardless of its nutrients content. Apart from traditional PGRs, which are mostly plant hormones, there are a number of substances/molecules such as nitric oxide, methyl jasmonate, brassinosteroids, seaweed extracts, strigolactones, plant growth promoting rhizobacteria etc. which act as PGRs. These novel PGRs or bio-stimulants have been reported to play important roles in stress responses and adaptation. They can protect plants against various stresses, including water deficit, chilling and high temperatures, salinity and flooding. This book includes chapters ranging from sensing and signalling in plants to translational research. In addition, the cross-talk operative in plants in response to varied signals of biotic and abiotic nature is also presented. Ultimately the objective of this book is to present the current scenario and the future plan of action for the management of stresses through traditional as well as novel PGRs. We believe that this book will initiate and introduce readers to state-of-the-art developments and trends in this field of study.
This book focuses on the preparation and characterisation of polyvinyl alcohol (PVA)/ halloysite nanotube (HNT) bionanocomposite films with different HNT contents for potential use in food packaging. It examines the effect of material composition and nanofiller content on mechanical, thermal and optical properties in relation to their morphological structures, and also comprehensively describes the water resistance, biodegradation and migration rates of such bionanocomposites, as well as their barrier properties in terms of water vapour transmission, and water vapour, air and oxygen permeabilities. Further, this book discusses the use of Nielsen model and Cussler model to predict the relative permeability of bionanocomposites, demonstrating that Nielsen model is more effective and in better agreement with experimental data obtained. Lastly, it discusses the application of bionanocomposite films in food packaging to prolong the shelf life of freshly cut avocados and peaches. |
You may like...
Statistical, Mapping and Digital…
Gilles Maignant, Pascal Staccini
Hardcover
R2,198
Discovery Miles 21 980
Molecular Medical Microbiology
Yi-Wei Tang, Musa Hindiyeh, …
Mixed media product
R14,897
Discovery Miles 148 970
Frontiers in Aquaculture Biotechnology
W. S. Lakra, Mukunda Goswami, …
Paperback
R3,925
Discovery Miles 39 250
Green Technologies for the Environment
Sherine Obare, Rafael Luque
Hardcover
R5,471
Discovery Miles 54 710
De Novo Peptide Design - Principles and…
Vibin Ramakrishnan, Kirti Patel, …
Paperback
R2,941
Discovery Miles 29 410
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R3,974
Discovery Miles 39 740
|