![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
Structural Biomaterials: Properties, Characteristics, and Selection serves as a single point of reference to digest current research and develop a deeper understanding in the field of biomaterials engineering. This book uses a materials-focused approach, allowing the reader to quickly access specific, detailed information on biomaterials characterization and selection. Relevant to a range of readers, this book provides holistic coverage of the broad categories of structural biomaterials currently available and used in medical applications, highlighting the property requirements for structural biomaterials, their biocompatibility performance and their safety regulation in key categories such as metals, ceramics and polymers. The materials science perspective of this text ensures the content is accessible even to those without an extensive background in applied medicine, positioning this text not just for students, but as an overview and reference for researchers, scientists and engineers entering the field from related materials science disciplines.
Sustainable Biofuels: Opportunities and challenges, a volume in the "Applied Biotechnology Reviews" series, explores the state-of-the-art in research and applied technology for the conversion of all types of biofuels. Its chapters span a broad spectrum of knowledge, from fundamentals and technical aspects to optimization, combinations, economics, and environmental aspects. They cover various facets of research, production, and commercialization of bioethanol, biodiesel, biomethane, biohydrogen, biobutanol, and biojet fuel. This book discusses biochemical, thermochemical, and hydrothermal conversion of unconventional feedstocks, including the role of biotechnology applications to achieve efficiency and competitiveness. Through case studies, techno-economic analysis and sustainability assessment, including life cycle assessment, it goes beyond technical aspects to provides actual resources for better decision-making during the development of commercially viable technology by researchers, PhD students, and practitioners in the field of bioenergy. It is also a useful resource for those in adjacent areas, such as biotechnology, industrial microbiology, chemical engineering, environmental engineering, and sustainability science, who are working on solutions for the bioeconomy. The ability to compare different technologies and their outcome that this book provides is also beneficial for energy analysts, consultants, planners, and policy-makers. The "Applied Biotechnology Reviews" series highlights current development and research in biotechnology-related fields, combining in single-volume works the theoretical aspects and real-world applications for better decision-making.
Nanobiotechnology Applications in Plant Protection: Volume 2 continues the important and timely discussion of nanotechnology applications in plant protection and pathology, filling a gap in the literature for nano applications in crop protection. Nanobiopesticides and nanobioformulations are examined in detail and presented as powerful alternatives for eco-friendly management of plant pathogens and nematodes. Leading scholars discuss the applications of nanobiomaterials as antimicrobials, plant growth enhancers and plant nutrition management, as well as nanodiagnostic tools in phytopathology and magnetic and supramagnetic nanostructure applications for plant protection. This second volume includes exciting new content on the roles of biologically synthesized nanoparticles in seed germination and zinc-based nanostructures in protecting against toxigenic fungi. Also included is new research in phytotoxicity, nano-scale fertilizers and nanomaterial applications in nematology and discussions on Botyris grey mold and nanobiocontrol. This book also explores the potential effects on the environment, ecosystems and consumers and addresses the implications of intellectual property for nanobiopesticides. Further discussed are nanotoxicity effects on the plant ecosystem and nano-applications for the detection, degradation and removal of pesticides.
Toxic substances threatens aquatic and terrestrial ecosystems and ultimately human health. The book is a thoughtful effort in bringing forth the role of biotechnology for bioremediation and restoration of the ecosystems degraded by toxic and heavy metal pollution. The introductory chapters of the book deal with the understanding of the issues concerned with the pollution caused by toxic elements and heavy metals and their impacts on the different ecosystems followed by the techniques involved in monitoring of the pollution. These techniques include use of bio-indicators as well as modern techniques for the assessment and monitoring of toxicants in the environment. Detailed chapters discussing the role of microbial biota, aquatic plants, terrestrial plants to enhance the accumulation efficiency of these toxic and heavy metals are followed by remediation techniques involving myco-remediation, bio-pesticides, bio-fertilizers, phyto-remediation and rhizo-filtration. A sizable portion of the book has been dedicated to the advanced bio-remediation techniques which are finding their way from the laboratory to the field for revival of the degraded ecosystems. These involve bio-films, micro-algae, genetically modified plants and filter feeders. Furthermore, the book is a detailed comprehensive account for the treatment technologies from unsustainable to sustainable. We believe academicians, researchers and students will find this book informative as a complete reference for biotechnological intervention for sustainable treatment of pollution.
Advances in Trichoderma Biology for Agricultural Applications covers the beneficial properties of Trichoderma in enhancing global agricultural productivity. Trichoderma are biotechnologically significant fungi, being widely used both agriculturally and industrially. In many cases Trichoderma are also a potential drug source of clinical importance. In recent years, driven by advances in genetics and genomics, research on these fungi has opened new avenues for its various applications. This book covers i) Current state of Trichoderma taxonomy, and species identification, ii) Trichoderma and plant-pathogenic fungi interactions, iii) Trichoderma interactions with plants, including rhizosphere competence of Trichoderma, antagonistic potentials, plant growth promotion, and management of various abiotic stresses in plants, iv) Practical aspects of Trichoderma commercialization in agriculture, v) Biosynthesis of metal-based nanoparticles and its application, and vi) Negative impact of Trichoderma strains in the environments. Reading this book should kindle further discussions among researchers working in fungal biotechnology, microbiology, agriculture, environmental science, forestry, and other allied subjects and thus lead to a broader scope of Trichoderma-based products and technologies. The knowledge shared in this book should also provide a warning on the potential risks associated with Trichoderma.
This edited book highlights the gravity and efficacy of next-generation breeding tools for the enhancement of stress-resilience in cereals, especially in the context of climate change, pests, diseases, and abiotic stresses. The content of the book helps in understanding the application of emerging genetic concepts and neoteric genomic approaches in cereal breeding. It collates all the latest information about enhancing the stress resilience in cereal crops for overcoming food security issues. Cereals have predominantly been used as a staple food since time immemorial and contribute more than 50% of the caloric requirement of the global population. However, in cereals, the yield losses due to various stresses are very high, considering the crop growth stage and stress sensitivity. Therefore, to feed and nourish the generations in the era of climate change, it is imperative to develop stress-resilient cereal cultivars. This book explores newly developed next-generation breeding tools, viz., genome-wide association studies, genomic prediction, genome editing, and accelerated generation advancement methodologies, which revealed promising outcomes by enhancing the stress resilience in cereals with yield potential. This book is useful for postgraduate students specializing in plant breeding, plant stress physiology, plant genomics, agriculture, and agronomy. It is of immense value to scientific community involved in teaching, research, and extension activities related to cereal cultivation.
Biofertilizers, Volume One: Advances in Bio-inoculants provides state-of-the-art descriptions of various approaches, techniques and basic fundamentals of BI used in crop fertilization practices. The book presents research within a relevant theoretical framework to improve our understanding of core issues as applied to natural resource management. Authored by renowned scientists actively working on bio-inoculant, biofertilizer and bio-stimulant sciences, the book addresses the scope of inexpensive and energy neutral bio-inoculant technologies and the impact regulation has on biofertilizer utilization. This book is a valuable reference for agricultural/environmental scientists in academic and corporate environments, graduate and post-graduate students, regulators and policymakers.
Microbial production: From genome design to cell surface engineering affords a comprehensive review of novel technology and approaches being implemented for manufacturing microorganisms, written by specialists in both academia and industry. This book is divided into three sections: the first includes technology for improvement of fermentation strains and many supporting technologies and information; the second examines novel technology useful for analysis of cell activities, analyzing gene function, and designing genomes of producer strains; and finally, a discussion of the practical application of the techniques and success case studies in many fields of bio-production, such as microbiological production, pharmaceuticals, chemicals, foods and cosmetics.
A Mechanistic Approach to Medicines for Tuberculosis Nanotherapy examines drug carrier development for controlled, targeted, pH and stimuli responsive drug releases for tuberculosis. The book provides in-depth information about mycobacterium tuberculosis, tuberculosis formation, and synthetic procedures for carrier synthesis, characterizations and mechanistic approaches. Key topics include the properties and functions of nanomedicines and how they might be applied for clinical diagnosis and treatment. Emphasis is placed on the basic fundamentals, biomaterial formulations, design principles, fabrication techniques, and transitioning bench-to-bed clinical applications. This book is useful for new researchers who focus on nanomedicine, stem cell therapy and bone tissue engineering. In addition, it introduces experienced researchers and clinicians to key trends, thus increasing their knowledge in drug discovery for tuberculosis and nanomedicine.
Advances in Polymeric Nanomaterials for Biomedical Applications examines advanced polymer synthetic strategies for developing novel biomaterials for use in medicine. With a strong focus on fundamentals and structure, the authors also explore their fabrication, along with their current and potential biomedical applications. The book begins with a look at the fundamentals of polymeric nanomaterials and their properties and then discusses the design of biomaterials and their applications in drug delivery. Further chapters explore important applications, such as imaging and regenerative medicine, including current challenges and future trends. This valuable resource is especially useful for materials and polymer scientists, and bioengineers wishing to broaden their knowledge of polymeric nanobiomaterials.
This book offers a comprehensive analysis of the application level for various agricultural biotechnologies across Sub-Saharan Africa. The authors examine the capacity available as well as the enabling environment, including policy and investments, for facilitating agricultural biotechnology development and use in the region. For each Sub-Saharan country, the status of biotechnology application is assessed in four major sectors; Crops, Livestock, Forestry and Aquaculture. Examples such as the number and requisite skill levels of trained personnel, biosafety frameworks and public awareness are surfaced in these chapters. This work also discusses the impact of push-pull factors on research, training and food security and identifies opportunities for investment in biotechnology and local agribusiness. Development partners, policy makers, agricultural consultants as well as scientists and private sector investors with an interest in biotechnology initiatives in Sub-Saharan Africa will find this collection an important account to identify key gaps in capacity and policy, as well as priority areas going forward. The volume highlights ways to develop technology and increase agricultural production capacity through international cooperation and inclusive economic growth, making it a valuable practice guide in line with the UN Sustainable Development Goals, in particular SDG 2 Zero Hunger and SDG 8 Decent Work and Economic Growth. Clear case studies round off the reading experience.
Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.
This detailed book explores techniques for understanding and engineering programs that naturally control and drive formation of tissues and organs in order to open powerful opportunities to produce physiologically relevant tissues of interest, generate models to study human disease, and set the path for the manufacturing of advanced tissue and organs. Beginning with chapters to help understand signaling events and patterns in morphogenetic systems, the volume continues by covering programming signaling events and patterns to drive morphogenesis, techniques for engineering organoids, tissue barriers, and disease models, as well as in vivo therapeutic applications. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Programmed Morphogenesis: Methods and Protocols aims not only to communicate knowledge but also to inspire approaches to new challenges and to empower readers with the capability to approach those challenges.
This book explains how peptide-based drug design works, what steps are needed to develop a peptide-based therapeutic, and challenges in synthesis as well as regulatory issues. It covers the design concept of peptide therapeutics from fundamental principles using structural biology and computational approaches. The chapters are arranged in a linear fashion. A fresh graduate or a scientist who works on small molecules can use this to follow the design and development of peptide therapeutics to use as understanding the basic concepts. Each chapter is written by experts from academia as well as industry. Rather than covering extensive literature, the book provides concepts of design, synthesis, delivery, as well as regulatory affairs and manufacturing of peptides in a systematic way with examples in each case. The book can be used as a reference for a pharmaceutical or biomedical scientist or graduate student who wants to pursue their career in peptide therapeutics. Some chapters will be written as a combination of basic principles and protocol so that scientists can adopt these methods to their research work. The examples provided can be used to perform peptide formulation considerations for the designed peptides. The book has nine chapters, and each chapter can be read as an independent unit on a particular concept.
A behind-the-scenes look at the most lucrative discipline within
biotechnology
"The field of Biomarkers and Precision Medicine in drug development is rapidly evolving and this book presents a snapshot of exciting new approaches. By presenting a wide range of biomarker applications, discussed by knowledgeable and experienced scientists, readers will develop an appreciation of the scope and breadth of biomarker knowledge and find examples that will help them in their own work." -Maria Freire, Foundation for the National Institutes of Health Handbook of Biomarkers and Precision Medicine provides comprehensive insights into biomarker discovery and development which has driven the new era of Precision Medicine. A wide variety of renowned experts from government, academia, teaching hospitals, biotechnology and pharmaceutical companies share best practices, examples and exciting new developments. The handbook aims to provide in-depth knowledge to research scientists, students and decision makers engaged in Biomarker and Precision Medicine-centric drug development. Features: Detailed insights into biomarker discovery, validation and diagnostic development with implementation strategies Lessons-learned from successful Precision Medicine case studies A variety of exciting and emerging biomarker technologies The next frontiers and future challenges of biomarkers in Precision Medicine Claudio Carini, Mark Fidock and Alain van Gool are internationally recognized as scientific leaders in Biomarkers and Precision Medicine. They have worked for decades in academia and pharmaceutical industry in EU, USA and Asia. Currently, Dr. Carini is Honorary Faculty at Kings's College School of Medicine, London, UK. Dr. Fidock is Vice President of Precision Medicine Laboratories at AstraZeneca, Cambridge, UK. Prof.dr. van Gool is Head Translational Metabolic Laboratory at Radboud university medical school, Nijmegen, NL.
Agriculture is one of the oldest and most global human enterprises, and as the world struggles with sustainable practices and policies, agricultural chemistry has a clear role to play. This book highlights the ways in which science in agriculture is helping to achieve global sustainability in the 21st century, and demonstrates that this science can and should be a leading contributor in discussion on environmental science and chemistry. The four drivers of this subject are presented, those being economic, environmental, regulatory and scientific, and help showcase agricultural chemistry as a dynamic subject that is contributing to this necessity of global sustainability in the 21st century.
Osseoconductive Surface Engineering for Orthopedic Implants provides a comprehensive overview of the state of the art of osseointegration based on surface-mediated engineering. It offers a practical approach to the design and development of implant surface engineering, by reviewing and discussing the usability and efficacy of each processing technique. The reader can learn about the variety, characteristics, advantages, challenges, and optimum parameters for each process-enabling targeted selection of coatings and technologies to enhance long-term implant-bone integration.
Modeling, Optimization and Control of Zinc Hydrometallurgical Purification Process provides a clear picture on how to develop a mathematical model for complex industrial processes, how to design the optimization strategy, and how to apply control methods in order to achieve desired production target. This book shares the authors' recent ideas/methodologies/algorithms on the intelligent manufacturing of complex industry processes, e.g., how to develop a descriptive framework which could enable the digitalization and visualization of a process and how to develop the controller when the process model is not available.
Plant Breeding and Cultivar Development features an optimal balance between classical and modern tools and techniques related to plant breeding. Written for a global audience and based on the extensive international experience of the authors, the book features pertinent examples from major and minor world crops. Advanced data analytics (machine learning), phenomics and artificial intelligence are explored in the book's 28 chapters that cover classical and modern plant breeding. By presenting these advancements in specific detail, private and public sector breeding programs will learn about new, effective and efficient implementation. The insights are clear enough that non-plant breeding majoring students will find it useful to learn about the subject, while advanced level students and researchers and practitioners will find practical examples that help them implement their work.
The book is a comprehensive treatment of the field, covering fundamental theoretical principles and new technological advancements, state-of-the-art device design, and reviewing examples encompassing a wide range of related sub-areas. In particular, the first area focuses on the recent development of novel wearable and implantable antenna concepts and designs including metamaterial-based wearable antennas, microwave circuit integrated wearable filtering antennas, and textile and/or fabric material enabled wearable antennas. The second set of topics covers advanced wireless propagation and the associated statistical models for on-body, in-body, and off-body modes. Other sub-areas such as efficient numerical human body modeling techniques, artificial phantom synthesis and fabrication, as well as low-power RF integrated circuits and related sensor technology are also discussed. These topics have been carefully selected for their transformational impact on the next generation of body-area network systems and beyond.
Provides an international focus to assistive technology assessment and service delivery Utilizes an evidence-based assessment process Introduces the reader to the MPT and MATCH-ACES assessment model and process Discusses the use of the assessment in case scenarios represented by eight different countries Explores the use of outcome measures to establish a standard process to measure effectiveness in AT use
This review series covers trends in modern biotechnology.
The 'Advances in Plant Biopesticides' comprises 19 chapters on different important issues of developing biopesticides from promising botanicals and its phytomolecules based on the research reviews in the area concern. The book is written by reputed scientists and professors of both developed and developing countries namely Australia, Canada, Czech Republic, Egypt, Greece, India, Kenya, Thailand, Turkey, United Kingdom, and USA represented by almost 53 contributors. The book is organized and presented in such a form that the readers can acquire and enhance their knowledge in plant biopesticide bioresources, its application in different areas to manage pests and diseases of field crops, stored products with status of exploring in Africa, non-target effects on beneficial arthropods, control of arthropods of veterinary and vectors of communicable diseases, efficacy in controlling honeybee mite pests, prospect of applying new tools to enhance the efficacy of plant biopesticides through use of nanotechnology, most important plant derived active principle as source of biopesticides, possible mode of action of phytochemicals against arthropods, limitation, production status, consumption, formulation, registration and quality regulation of plant biopesticides and have been cited by important scientific references. Most importantly, the book also highlights a unique example for developing biopesticides based on the research on Annonaceae as potential source of plant biopesticide, exploiting phytochemicals for developing green technology for sustainable crop protection strategies to withstand climate change with example in Africa, and overview in developing insect resistance to plant biopesticides. Most of the chapter contributing authors are internationally reputed researchers and possess experiences of more than three to four decades in the area of plant biopesticides. The contributing and corresponding authors of the book - Advances in Plant Biopesticides proposed and identified by the editor (Dwijendra Singh) include distinguished professors and reputed scientists from different continents of the world namely MB Isman (Canada), Nadia Z Dimetry (Egypt), Zeaur R Khan (Kenya), John A Pickett (UK), Gadi VP Reddy (USA), S Gopalakrishnan (India), Anand Prakash (India), Chirantan Chattopadyay (India), Christos G Athanassiou (Greece), Philip C. Stevenson (UK), S Raguraman (India), S Ghosh (India), Mir S Mulla (USA), Apiwat Tawatsin (Thailand), Dwijendra Singh (India), K Sahayaraj (India), Suresh Walia (India), T Shivanandappa (India), Roman Pavela (Czeck Republic), Errol Hasan (Australia), Ayhan Gokce (Turkey), SK Raza (India), and their colleague co-contributors. This book would certainly provide the updated knowledge to global readers on plant biopesticides as one of the important reference source and would stimulate to present and future researchers, scientists, student, teachers, entrepreneurs, and government & non-government policy makers interested to develop new & novel environmentally safe plant biopesticides world over. |
![]() ![]() You may like...
|