![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
< p=""> This monograph is based on pollution control technologies available to deal with water and air pollution. It includes removal of variety of pollutants including arsenic, chromium, uranium, pesticides and arsenic from water using adsorption technique. In addition, this book deals with the sampling and removal of microplastics using various techniques. The contents also focus on the role of membrane technology in water and wastewater treatment, and particulate matter air pollution and its control techniques. This volume will be a useful guide for researchers, academics and scientists. ^
My professional interest in antimicrobial agents and contamination control goes back 50 years to my tour as a microbiologist in a field hospital in Europe during World War II. With no experience and relying solely on a military handbook, I prepared thermometer trays with jars of blue bichloride of mercury and pink isopropyl alcohol. A preliminary typhoid diagnosis of one of our cooks resulted in the need for lab testing. His stool specimen and its subsequent disposal was my problem. My handbook said bum it. So burn it T did, in a five-gallon can with gasoline. Flames shot up almost six feet, and my next mistake was to extinguish them with carbon tetrachloride. This resulted in the production of lethal phosgene gas. The hospital had a near disaster. I could say that at that moment I vowed to write a how-to book so that such stupidities could be avoided. Nevertheless, when I was offered the opportunity to edit this book I thought back on the need for a real, practical treatment of my subject. This book, then, is a practical handbook for technical service personnel and scientists who are not necessarily specialists in microbiology. It provides information on suitable antimicrobial agents appropriate to their particular problem-solving needs and information on the microbial groups contributing to the specific problem, their ecologies, and strategies for controlling their access to the area or material of interest.
Drug Delivery Systems examines the current state of the field within pharmaceutical science and concisely explains the history of drug delivery systems, including key developments. The book translates the physicochemical properties of drugs into drug delivery systems administered via various routes, such as oral, parenteral, transdermal and inhalational. Regulatory and product development topics are also explored. Written by experts in the field, this volume in the Advances in Pharmaceutical Product Development and Research series deepens our understanding of drug delivery systems within the pharmaceutical sciences industry and research, as well as in chemical engineering. Each chapter delves into a particular aspect of this fundamental field to cover the principles, methodologies and technologies employed by pharmaceutical scientists. This book provides a comprehensive examination that is suitable for researchers and advanced students working in pharmaceuticals, cosmetics, biotechnologies, and related industries.
Computational biology drives discovery through its use of high-throughput informatics approaches. This book provides a road map of the current drug development process and how computational biology approaches play a critical role across the entire drug discovery pipeline. Through the use of previously unpublished, real-life case studies the impact of a range of computational approaches are discussed at various phases of the pipeline. Additionally, a focus section provides innovative visualisation approaches, from both the drug discovery process as well as from other fields that utilise large datasets, recognising the increasing use of such technology. Serving the needs of early career and more experienced scientists, this up-to-date reference provides an essential introduction to the process and background of drug discovery, highlighting how computational researchers can contribute to that pipeline.
Fungi are an important link in the food webs of all ecosystems. They have immense potential and comprise a myriad of useful bioactive compounds. Fungi feature in a wide range of diverse processes and applications in modern agriculture, the food science industry, and the pharmaceutical industry. In the food and drink arena, the role of fungi is historically important in the form of mushrooms and in fermented foods as yeasts for baking and brewing. These roles are supplemented by the use of fungal food processing enzymes and additives, and more recently in the development of protein-based foodstuffs from fungi. Additionally, they are used in the formulation of biofertilizers and biopesticides used as biostimulants and bioprotectants of crops. The practical use of newer techniques such as genetic recombination and robotics have revolutionized the modem agricultural biotechnology industry, and have created an enormous range of possible further applications of fungal products. Myco-materials created from mycelia (the root-like parts of fungi) are gaining attention as a sustainable alternative for a wide range of materials. They are being used as insulation, sustainable packaging, foam inserts, and even "eco-leather." In fact, mycelium bricks are pound-for-pound stronger than concrete. In addition, medicinal uses of fungal species have been historically recorded as important agents in the pharmaceutical sciences. The potential for myco-materials seems limitless. The field of mycology and its application has become an increasingly important component in the education of industrial biotechnology. This book on applied mycology provides information helpful for developing entrepreneurial opportunities with fungi. This volume explains both the basic science and the applications of mycology and bio-resource technology with special emphasis on entrepreneurial applications. It offers a complete, one-stop resource for those interested in microbiology, food and agricultural science, medical mycology, and for those in industrial biotechnology.
Biomechanics of Coronary Atherosclerotic Plaque: From Model to Patient, First Edition, is the first comprehensive text to focus on important biomechanical studies conducted in the last decade that have increased our understanding of coronary atherosclerotic plaque initiation, growth, and rupture, as well as improving the design of medical devices and clinical interventions, including surgical procedures. The book provides students, researchers, engineers, clinicians, and interventional cardiologists with an overview of the main topics related to the biomechanics of atherosclerosis, in a single volume written by several experts in the field. This volume is part of the Biomechanics of Living Organs book series. The biomechanics of human soft tissues and organs has been an emerging research field since the publication of Y.C. Fung's original book series in the 1990s. The publication of such books entirely dedicated to a specific biomechanical subject is necessary to advance scientific research in the field of biomechanics and to transfer important knowledge to future generations. Therefore, this series of volumes on the biomechanics of living organs has been created. This series began in July 2017 with the publication of a first volume on the fundamentals of Hyperelastic Constitutive Laws for Finite Element Modeling of Living Organs. The current volume on the Biomechanics of Coronary Atherosclerotic Plaque, is the latest in this new series.
This book explores recent advances in the microbial production of xylitol and its applications in food and medical sector. Xylitol is an important biomolecule from lignocellulose biorefinery which is produced from the xylose by chemical reactions or microbial fermentation methods. Currently, the demand of xylitol at commercial scale is being met through chemical methods. However, recent breakthroughs made in plant cell wall destruction, genetic engineering to develop the designer microorganisms, fermentation methods and media formulations and downstream processing have led the ways for sustainable production of xylitol at commercial scale in lignocellulose biorefineries. Microbial production of xylitol is preferred over the chemical processes as it is environmentally friendly, higher process efficiency with the desired product yield, and product recovery with minimum impurities. This book is a unique compilation of 11 book chapters written by experts in their respective fields. These chapters present critical insights and discuss the current progress and future progress in this area into fermentative xylitol production. Chapter 9 is licensed under the terms of the Creative Commons Attribution 4.0 International License. For further details see license information in the chapter.
NMR has become the most diverse spectroscopic tool available to date in biomedical research. It is now routinely used to study biomolecular structure and dynamics particularly as a result of recent developments of a cascade of highly sophisticated multidimensional NMR pulse sequences, and of advances in genetic engineering to produce biomolecules, uniformly or selectively enriched with 13C, 15N and 2H. Features of this book: - Provides an up-to-date treatment of NMR techniques and their application to problems of biomedical interest - Most refined multidimensional pulse sequences including the basic aspects are covered by leading NMR spectroscopists. The book will be useful to NMR spectroscopists, biochemists, and to molecular biologists interested in the use of NMR techniques for solving biological problems.
This book will serve as a primer for readers to understand recent advances, applications, and current challenges in the field of Engineered Living Materials. The chapters cover core science and engineering research areas, including (1) advances in synthetic biology and genetic programmability for Engineered Living Materials, (2) functional Engineered Living Material for application in energy, electronics, and construction, and (3) novel manufacturing approaches for Engineered Living Materials at multiple scales. The emerging field of Engineered Living Materials represents a significant paradigm shift in materials design and synthesis, in which living cells are used to impart biologically active functionalities to manmade materials. The result is a genetically programmable augmentation of non-living matter to exhibit unprecedented life-like (i.e., living) capabilities. At the intersection of synthetic biology and materials science, the field of Engineered Living Materials exhibits unprecedented promise and potential to alter the way we synthesize new materials and design medical devices, fabrics, robotics, commodity polymers, and construction materials. Materials with attributes of living systems can be engineered with an ability to respond to their environment and designed to self-repair in response to physical or other stresses or detect the presence of specific stimuli, such as light, heat, pressure, or hazardous chemical compounds. Although nascent, scientists and researchers in the field of Engineered Living Materials have made marked advances in demonstrating a potential to revolutionize a multitude of science and engineering disciplines. This volume will define the current state of the art of Engineered Living Materials, and highlight grand opportunities and challenges that abound at the nexus of synthetic biology and materials science and engineering.
Applications of microbial nanotechnology are currently emerging with new areas being explored. Biosynthesis of nanomaterials by microorganisms is a recently attracting interest as a new, exciting approach towards the development of 'greener' nanomanufacturing compared to traditional chemical and physical approaches. This book will cover recent advances of microbial nanotechnology in agriculture, industry, and health sectors.
Biointegration of Medical Implant Materials, Second Edition, provides a unique and comprehensive review of recent techniques and research into material and tissue interaction and integration. New sections discuss soft tissue integration, with chapters on the biocompatibility of engineered stem cells, corneal tissue engineering, and vascular grafts. Other sections review tissue regeneration, inorganic nanoparticles for targeted drug delivery, alginate based drug delivery devices, and design considerations, with coverage of the biocompatibility of materials and their relevance to drug delivery and tissue engineering. With its distinguished editor and team of international contributors, this book is ideal for medical materials scientists and engineers in industry and academia.
Microfluidics is a young and rapidly expanding scientific
discipline, which deals with fluids and solutions in miniaturized
systems, the so-called lab-on-a-chip systems. It has applications
in chemical engineering, pharmaceutics, biotechnology and medicine.
As the lab-on-a-chip systems grow in complexity, a proper
theoretical understanding becomes increasingly important.
Systems Simulation and Modelling for Cloud Computing and Big Data Applications provides readers with the most current approaches to solving problems through the use of models and simulations, presenting SSM based approaches to performance testing and benchmarking that offer significant advantages. For example, multiple big data and cloud application developers and researchers can perform tests in a controllable and repeatable manner. Inspired by the need to analyze the performance of different big data processing and cloud frameworks, researchers have introduced several benchmarks, including BigDataBench, BigBench, HiBench, PigMix, CloudSuite and GridMix, which are all covered in this book. Despite the substantial progress, the research community still needs a holistic, comprehensive big data SSM to use in almost every scientific and engineering discipline involving multidisciplinary research. SSM develops frameworks that are applicable across disciplines to develop benchmarking tools that are useful in solutions development.
This book is a compilation of the bench experience of leading experts from various research labs involved in the cutting edge area of research. The authors describe the use of stem cells both as part of the combinatorial therapeutic intervention approach and as tools (disease model) during drug development, highlighting the shift from a conventional symptomatic treatment strategy to addressing the root cause of the disease process. The book is a continuum of the previously published book entitled "Stem Cells: from Drug to Drug Discovery" which was published in 2017.
Real-Time Data Analytics for Large-Scale Sensor Data covers the theory and applications of hardware platforms and architectures, the development of software methods, techniques and tools, applications, governance and adoption strategies for the use of massive sensor data in real-time data analytics. It presents the leading-edge research in the field and identifies future challenges in this fledging research area. The book captures the essence of real-time IoT based solutions that require a multidisciplinary approach for catering to on-the-fly processing, including methods for high performance stream processing, adaptively streaming adjustment, uncertainty handling, latency handling, and more.
Genome Engineering via CRISPR-Cas9 Systems presents a compilation of chapters from eminent scientists from across the globe who have established expertise in working with CRISPR-Cas9 systems. Currently, targeted genome engineering is a key technology for basic science, biomedical and industrial applications due to the relative simplicity to which they can be designed, used and applied. However, it is not easy to find relevant information gathered in a single source. The book contains a wide range of applications of CRISPR in research of bacteria, virus, algae, plant and mammalian and also discusses the modeling of drosophila, zebra fish and protozoan, among others. Other topics covered include diagnosis, sensor and therapeutic applications, as well as ethical and regulatory issues. This book is a valuable source not only for beginners in genome engineering, but also researchers, clinicians, stakeholders, policy makers, and practitioners interested in the potential of CRISPR-Cas9 in several fields.
This handbook is an edited and updated version of the final report of the IEA Bioenergy sponsored Pyrolysis Activity - PYRA - that officially finished in 1998 and accomplished many valuable contributions to the science and technology of fast pyrolysis. It is intended that this handbook will provide a useful guide both to newcomers to the subject area as well as those already involved in research, development and implementation. The IEA Bioenergy Pyrolysis Task is continuing this work as a collaborative project with the European Commission network on fast pyrolysis of biomass which is now known as PyNe. The European Network was first formed in 1995 as an EC sponsored project in the AIR Programme (AIR3-CT94-1857). At the end of the three-year lives of the Networks in 1997, both sponsoring organisations recognised the benefits from their integration. This led to the present PyNe Network, which is co-sponsored by the European Commission FAIR Programme (FAIR-CT97-3409) and IEA Bioenergy, and which itself is sponsoring the publication of this book as a contribution to the technology.
This book offers valuable insights into the principles, mechanisms of action and applications of traditional and novel enzymes involved in the degradation of wastes. Enzymes are biological catalysts that play an important role in various biochemical reactions. The generation of value-added products by means of these biological processes is also discussed. This book covers the use of in silico and computational methods in understanding the biodegradation processes, and reveals the importance of enzymes in various biochemical reactions and kinetics. The book's target audience includes undergraduate and graduate students, faculty members at colleges and universities, research students, scientists and industry professionals.
The only book that covers in detail a broad range of cutting-edge topics within motor rehabilitation technology Neural engineering is a discipline that uses engineering techniques to understand, repair, replace, enhance, or treat diseases of neural systems. This book describes state-of-the-art methods within this field, from brain-computer interfaces to spinal and cortical plasticity. Touching on electrode design, signal processing, the neurophysiology of movement, robotics, and much more, this innovative book presents the latest information for readers working in biomedical engineering. Each section of "Introduction to Neural Engineering for Motor Rehabilitation "begins with an overview of techniques before moving on to provide information on the most recent findings. Topics include: INJURIES OF THE NERVOUS SYSTEM--including diseases and injuries of the central nervous system leading to sensory-motor impairment; peripheral and spinal plasticity after nerve injuries; and motor control modules of human movement in health and diseaseSIGNAL DETECTION AND CONDITIONING--including progress in peripheral neural interfaces; multi-modal, multi-site neuronal recordings for brain research; methods for non-invasive electroencephalograph detection; wavelet denoising and conditioning of neural recordingsFUNCTION REPLACEMENT (Prostheses and Orthosis)--including an introduction to upper limb prosthetics; controlling prostheses using peripheral nerve stimulation invasive interfaces for amputees; and exoskeletal robotics for functional substitutionFUNCTION RESTORATION--including methods for movement restoration; advanced user interfaces for upper limb functional electrical stimulation; and selectivity of peripheral neural interfacesREHABILITATION THROUGH NEUROMODULATION--including brain-computer interface applied to motor recovery after brain injury; functional electrical therapy of upper extremities; and robotic assisted neurorehabilitation "Introduction to Neural Engineering for Motor Rehabilitation" is an important textbook and reference for graduate students and researchers in the fields of biomedical and neural engineering.
Mycology has an integral role to play in the development of the biotechnology and biomedical sectors. It has become a subject of increasing importance as new fungi and their associated biomolecules are identified. As this discipline comes to the forefront of research in these sectors, the requirement for a consolidation of available research approaches is required. The First Edition of this book has a few basic and applied protocols. With the Second Edition, this book provides consolidated information on recent developments and the most widely used mycological methods available in the fields of biochemistry, biotechnology and microbiology. The methods outlined offer clear and concise directions to the reader and covers both standard protocols and more applied mycological methods. This book provides useful information for undergraduates, post-graduates, and specialists and researchers studying fungal biology.
Drug Delivery Aspects reviews additional features of drug delivery systems, along with the standard formulation development, like preclinical testing, conversion into solid dosage forms, roles of excipients and polymers used on stability and sterile processing. There is a focus on formulation engineering and related large scale (GMP) manufacturing, regulatory, and functional aspects of drug delivery systems. A detailed discussion on biologics and vaccines gives insights to readers on new developments in this direction. The series Expectations and Realities of Multifunctional Drug Delivery Systems examines the fabrication, optimization, biological aspects, regulatory and clinical success of wide range of drug delivery carriers. This series reviews multifunctionality and applications of drug delivery systems, industrial trends, regulatory challenges and in vivo success stories. Throughout the volumes discussions on diverse aspects of drug delivery carriers, such as clinical, engineering, and regulatory, facilitate insight sharing across expertise area and form a link for collaborations between industry-academic scientists and clinical researchers. Expectations and Realities of Multifunctional Drug Delivery Systems connects formulation scientists, regulatory experts, engineers, clinical experts and regulatory stake holders. The wide scope of the book ensures it as a valuable reference resource for researchers in both academia and the pharmaceutical industry who want to learn more about drug delivery systems.
The first and only book on Spray-freeze-drying" which is a relatively recent drying technique, that provides the signature advantages of spray-drying and freeze-drying, while overcoming the limitations of both. Provides examples and case studies of nuances and intricacies associated with each stage of the spray-freeze-drying process Contains 200+ illustrations and tabulations Highlights the applications of spray-freeze-drying in the production of food products including soluble coffee, dairy powders, probiotics, and flavors.
High-Density Integrated Electrocortical Neural Interfaces provides a basic understanding, design strategies and implementation applications for electrocortical neural interfaces with a focus on integrated circuit design technologies. A wide variety of topics associated with the design and application of electrocortical neural implants are covered in this book. Written by leading experts in the field- Dr. Sohmyung Ha, Dr. Chul Kim, Dr. Patrick P. Mercier and Dr. Gert Cauwenberghs -the book discusses basic principles and practical design strategies of electrocorticography, electrode interfaces, signal acquisition, power delivery, data communication, and stimulation. In addition, an overview and critical review of the state-of-the-art research is included. These methodologies present a path towards the development of minimally invasive brain-computer interfaces capable of resolving microscale neural activity with wide-ranging coverage across the cortical surface.
Single-cell Omics, Volume 2: Advances in Applications provides the latest single-cell omics applications in the field of biomedicine. The advent of omics technologies have enabled us to identify the differences between cell types and subpopulations at the level of the genome, proteome, transcriptome, epigenome, and in several other fields of omics. The book is divided into two sections: the first is dedicated to biomedical applications, such as cell diagnostics, non-invasive prenatal testing (NIPT), circulating tumor cells, breast cancer, gliomas, nervous systems and autoimmune disorders, and more. The second focuses on cell omics in plants, discussing micro algal and single cell omics, and more. This book is a valuable source for bioinformaticians, molecular diagnostic researchers, clinicians and several members of biomedical field interested in understanding more about single-cell omics and its potential for research and diagnosis.
Pan-genomics: Applications, Challenges, and Future Prospects covers current approaches, challenges and future prospects of pan-genomics. The book discusses bioinformatics tools and their applications and focuses on bacterial comparative genomics in order to leverage the development of precise drugs and treatments for specific organisms. The book is divided into three sections: the first, an "overview of pan-genomics and common approaches," brings the main concepts and current approaches on pan-genomics research; the second, "case studies in pan-genomics," thoroughly discusses twelve case, and the last, "current approaches and future prospects in pan-multiomics", encompasses the developments on omics studies to be applied on bacteria related studies. This book is a valuable source for bioinformaticians, genomics researchers and several members of biomedical field interested in understanding further bacterial organisms and their relationship to human health. |
You may like...
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R78,910
Discovery Miles 789 100
Computer Modelling of Microporous…
C.Richard A. Catlow, Berend Smit, …
Hardcover
R4,306
Discovery Miles 43 060
Flow Induced Alignment in Composite…
T.D. Papathanasiou, D.C. Guell
Hardcover
R4,669
Discovery Miles 46 690
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,549
Discovery Miles 55 490
The Routledge International Handbook of…
Susanne C. Knittel, Zachary J Goldberg
Paperback
R1,520
Discovery Miles 15 200
How Countries Count Crime - An Exercise…
John A. Eterno, Arvind Verma, …
Paperback
R1,615
Discovery Miles 16 150
|