![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
With Biomechanics: Motion, Flow, Stress, and Growth, the premier bioengineering scientist Y.C. Fung concludes a discussion first introduced in his seminal work, Biomechanics: Mechanical Properties of Living Tissues, and further articulated in Biomechanics: Circulation. This third volume not only stands alone as a comprehensive survey of the broad field of biomechanics, but also complements the explorations of the first two volumes, maintaining its emphasis on methods of classical engineering as applied to biological and physiological phenomena. While consistently recognizing the importance of historical precedence and perspective, Fung presents the most contemporary literature and the latest thinking in biomechanics in thei increasingly complex interdisciplinary subject. Considered here are 1.) the mechanics of body movement; 2.) the flow external to an animal in motion, and the internal flow of blood, gas, water, and other body fluids; 3.) the stress and strain, and the strength, trauma, and tolerance limits of tissues and organs; and 4.) the growth and change in living organisms in response to biomechanical principles. A generous number of problems to be solved and a carefully selected list of references are especially useful and should help to stimulate thought and discussion among advanced undergraduates, graduate students, and others with an interest in bioengineering and medicine.
Immunoassay procedures (isotopic and non-isotopic) have become one of the single most important techniques in present-day diagnostic medicine. This book is designed as an introductory test for the staff of clinical research laboratories who conduct or intend to conduct such techniques, and will be of great value to the clinicians who make use of such services. The volume takes a three-pronged approach in it's in-depth presentation: explanation of the basic principles and applications of radioimmunoassays and non-isotopic immunoassays; practical illustrations of the various steps involved in immunoassays; discussion of the problems and pitfalls in immunoassays and how to avoid them. This fifth revised edition is a worthy successor to it's predecessors in this famous "Laboratory Techniques" series.
Based on a graduate course in biochemical engineering, this title provides the basic knowledge needed for the efficient design of bioreactors and offers the relevant principles and data required for practical process engineering, with an emphasis on enzyme reactors and aerated reactors for microorganisms.
Presents an interdisciplinary approach, integrating biochemistry, biology, genetics, and engineering for the effective production of protein pharmaceuticals. This title offers a biological perspective of large-scale animal cell culture. It examines diverse processing strategies and process management.
Global industrial growth has resulted in numerous pollutants being introduced into the environment. It has additionally caused decreased water availability for agricultural activity in developing countries, which, in turn, has compelled farmers to use wastewater irrigation. In advanced agricultural systems, farmers are adapting various strategies to achieve a higher yield and thus sustain crop productivity. Consequent to the introduction of contaminants in the environment, soil pollutants have become a critical issue. Selection of disease-resistant, high-yielding crop varieties, and extensive fertilizer applications are quite common among farming communities. This book provides insight into environmental pollutants with special reference to their interference with plant nutrition. It additionally discusses the physiological aspects of plant nutrition. This book enhances current knowledge of the effects of pollutants on plant growth and physiology.
This book will expound the latest information on the current state of persimmon genomics and transcriptomics, with a particular focus on the latest findings and analysis in relation to the most important agronomic traits. The genus Diospyros contains about 400 species distributed all continents of the globe. Most of Diospyros species are distributed in the tropical and subtropical regions, while cultivated persimmon or simply kaki (Diospyros kaki) originates in East Asia and has been grown in China, Japan and Korea for many years. World production of persimmon has been increasing continuously since 1990s, with China being the most producer. Outside Asia, kaki production has been rapidly increasing in Spain in recent years. Because kaki is mostly hexaploid (2n = 6x =90) and its genome size is quite large with the flow cytometric analysis estimation of about 900 Mb, genetic and molecular studies in persimmon are quite complicated. Diploid close relatives of kaki, D. lotus and D. oleifera have been recently used as model species of kaki. Utilizing these species, molecular basis of several economically molecular basis of important traits such as sexuality and astringency has been studied, giving important information for kaki breeding.
This new volume introduces the applications of microfluidic systems to facilitate biotechnological and biomedical processes. It provides an overview on cutting-edge technologies, summarizes traditional and modern fabrication methods and highlights recent advances regarding the application of lab-on-a-chip (LoC) systems for bioanalytical purposes. This book is ideal for research scientists and students interested at the cross-section between biotechnology, chemistry and chemical engineering.
This book presents latest work in the field of plant biotechnology regarding high-efficiency micropropagation for commercial exploitation at low labor and equipment costs. The book consists of 18 chapters on establishing advanced culture systems, techniques as well as latest modification protocols on a variety of crops. It also discusses new methods such as nylon film culture system, light-emitting diode and wireless light-emitting diode system, stem elongation, wounding manipulation and shoot tip removal, in vitro hydroponic and microponic culture system, thin cell layer culture system etc. Plant cell tissue has been developed more than fifty years ago. Since then applications of in vitro plant propagation expanded rapidly all around the world and played as an important role in agricultural and horticultural systems. This book will be of interest to teachers, researchers, scientists, capacity builders and policymakers. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences.
This edited book discusses how effective soil carbon management plans and policies will ultimately make agriculture more secure against climate change and soil degradation. It is focused on initiatives to enhance soil organic carbon (SOC) and sequestration by launching different schemes and programs. An approach based on practical aspects of managing SOC in agriculture is provided with clear and concise descriptions. It has more attention to successfully implement plans and policies to meet the required level of SOC restoration. The book is covering the urgent needs of plans and policies for soil management and C restoration in agricultural ecosystems which can be beneficial to food, nutrition, environment, and economy security. There is also providing a roadmap on SOC policies to encourage the use of best management practices (BMPs) for soil health and C stock restoration, and achieve the Sustainable Development Goals of the United Nations. The book is suitable for teachers, researchers, government planners and policymakers, undergraduate and graduate students of soil science, soil microbiology, agronomy, ecology, and environmental sciences.
This book highlights the recent advances in the field of microbial engineering and its application in human healthcare. It underscores the systemic and synthetic biology approaches for engineering microbes and discusses novel treatments for inflammatory bowel diseases based on engineered probiotics. The book also reviews the different options and methods for engineering microbes, ranging from recombinant DNA technology to designing microbes for targeting specific sites and delivering therapeutics. Further, it discusses genetically engineered microorganisms for smart diagnostics and describes current approaches in microbial gene editing using CRISPR-Cas9-based tools. Lastly, it summarizes the potential applications of human microbiome engineering in improving human health and explores potential strategies for scaling-up the production of engineered microbial strains for commercial purposes, as well as the challenges. Given its scope, this book is a valuable resource for students, researchers, academics and entrepreneurs interested in understanding microbial engineering for the production of commercial products.
This textbook provides a thorough introduction and overview of the design and engineering of state-of-the-art prosthetics and assistive technologies. Innovations in prosthetics are increasingly made by cross-disciplinary thinking, and the author introduces the application of biomedical, mechanical, electrical, computer, and materials engineering principles to the design of artificial limbs. Coverage includes the fundamentals of biomechanics, biomechanical modeling and measurements, the basics of anatomy and physiology of limb defects, and the historical development of prosthetic design. This book stimulates the innovative thinking necessary for advancing limb restoration, and will be essential reading for students, as well as researchers, professional engineers, and prosthetists involved in the design and manufacture of artificial limbs. Learning enhanced by the exercises, including physical modeling with MATLAB and Simulink; Includes appendices with relevant equations and parameters for reference; Introduction to the design and engineering of prosthetics and assistive technologies.
This book reviews the advances in data gathering and processing in the biotech laboratory environment, and it sheds new lights on the various aspects that are necessary for the implementation of intelligent laboratory architecture and infrastructure. Smart technologies are increasingly dominating our everyday lives and have become an indispensable part of the industrial environment. The laboratory environment, which has long been rather conservative, has also set out to adapt smart technologies with regards to Industry 4.0 and the Internet of Things (IoT) for the laboratory. Due to the heterogeneity of the existing infrastructure and the often complex work processes, standardization is slow, e.g. to implement device interfaces or standardized driver protocols, which are urgently needed to generate standardized data streams that would be immanent for post-processing of data. Divided into 9 chapters, this book offers an authoritative overview of the diverse aspects in the generation and recording of uniform data sets in the laboratory, and in the processing of the data and enabling seamless processing towards machine learning and artificial intelligence. In the first part of the book, readers will find more about high throughout systems, automation, robotics, and the evolution of technology in the laboratory. The second part of the book is devoted to standardization in lab automation, in which readers will learn more about some regulatory aspects, the SiLA2 standards, the OPC LADS (Laboratory and Analytical Device Standard), and FAIR Data infrastructure
Bio-based materials, including those containing wood, will become increasingly important as we move to a bio-based economy. Among their many attributes, it is vitally important that these materials are renewable, sustainable with proper management and environmentally benign. Wood remains one of our most important bio-based materials. While it is an amazing material, wood still has negative attributes and drawbacks that can affect performance, including dimensional instability when wetted, vulnerability to fire and high temperatures, and susceptibility to biodeterioration. A variety of treatments have been developed to overcome these weaknesses. Among the most exciting of these treatments are nanomaterials. These materials have some exceptionally attractive properties for improving timber performance and have been the subject of intensive research over the past decade. There is a tremendous need for a single comprehensive source of information on this rapidly emerging subject with tremendous potential to enhance the performance of a variety of bio-based materials. This book contains 10 chapters, each compiled by different author(s) who are considered the top researcher(s) in their respective fields. The chapters begin with some basic background on nanomaterials and their synthesis, then explore different areas for potential applications and conclude with a review of the emerging questions about nanomaterial safety. The book is designed to provide the latest information and know-how on application and utilization of different nanomaterials to improve the properties of wood and wood-based composite panels. The contents cover some main topics in the industry including improving physical and mechanical properties, increasing resistance to biodegradation (including fungi and insects), developing wood-plastic composites (WPC), applying nanomaterials in paper and board industry, and emergence of transparent wood and radiation shielding. It also covers the use of nanomaterials to improve the performance of paints and finishes used for forest products. The book provides a single location for those interested in the field to begin.
This book provides fundamentals, highlights recent developments and offers new perspectives relating to the use of electrolyzed water (EW) as an emerging user- and environmental-friendly broad-spectrum sanitizer, with particular focus on the food industry. It addresses the generation, inactivation, pesticide degradation and safety of food by EW, illustrates the mechanism of the germicidal action of EW and its antimicrobial efficacy against a variety of microorganisms in suspensions. In addition, the sanitizing effects of combining EW with various chemical and physical sanitizing technologies have been evaluated, and recent developments and applications of EW in various areas including fruits and vegetables, meat, aquatic products, environment sterilization, livestock and agriculture has been described. The book can be a go-to reference book of EW for: (1) Researchers who need to understand the role of various parameters in its generation, the bactericidal mechanism of EW and its wide applications for further research and development; (2) Equipment producers who need comprehensive understanding of various factors (e.g. type of electrolyte, flow rates of water and electrolyte) which govern the efficacy of EW and developing its generators; (3) Food processors who need good understanding of EW in order to implement it in the operations and supervisors who need to balance the advantages and limitations of EW and ensuring its safe use.
Oxides for Medical Applications reviews the most important advances of oxides with optical, magnetic and electronic properties for biomedical applications. Owing to their unusual properties, oxides are expected to play a significant role in the prevention or early treatment of diseases. In addition to catalytically active artificial enzymes based on oxide materials-the book provides comprehensive coverage of the most relevant categories of oxide materials and their properties and applications. Since magnetic oxides are used extensively for a wide range of medical applications, there are numerous chapters that address these materials, including LSMO nanoparticles, ferrites, nanocatalysts, and more. Finally, practical considerations for the translation of these materials from the lab to the clinic are reviewed, including biocompatibility and toxicity of oxide nanoparticles, making this a suitable resource for researchers and practitioners in materials science and engineering in academia and the clinic.
Nanotechnology has shown great potential in all spheres of life. With the increasing pressure to meet the food demands of rapidly increasing population, thus, novel innovation and research are required in agriculture. The principles of nanotechnology can be implemented to meet the challenges faced by agricultural demands. Major challenges include the loss of nutrients in the soil and nutrient-deficient plants, which result in a lower crop yield and quality. Subsequently, consumption of such crops leads to malnourishment in humans, especially in underprivileged and rural populations. One convenient approach to tackle nutrient deficiency in plants is via the use of fertilizers; however, this method suffers from lower uptake efficiency in plants. Another approach to combat nutrient deficiency in humans is via the use of supplements and diet modifications; however, these approaches are less affordably viable in economically challenged communities and in rural areas. Therefore, the use of nano-fertilizers to combat this problem holds the greatest potential. Additionally, nanotechnology can be used to meet other challenges in agriculture including enhancing crop yield, protection from insect pests and animals, and by use of nano-pesticides and nano-biosensors to carry out the remediation of polluted soils. The future use of nanomaterials in soil ecosystems will be influenced by their capability to interact with soil constituents and the route of nanoparticles into the environment includes both natural and anthropogenic sources. The last decade has provided increasing research on the impact and use of nanoparticles in plants, animals, microbes, and soils, and yet these studies often lacked data involving the impact of nanoparticles on biotic and abiotic stress factors. This book provides significant recent research on the use of nano-fertilizers, which can have a major impact on components of an ecosystem. This work should provide a basis to further study these potential key areas in order to achieve sustainable and safe application of nanoparticles in agriculture.
This work is the first compilation of comprehensive deliberations on botany, cytogenetics and sex determination, genetic resources and diversity, classical breeding, molecular markers and genome sequence resources, and application of omics technology including transcriptomics, proteomics, and metabolomics resources in the multipurpose medicinal plant seabuckthorn. The book also presents a detailed narrative on antioxidative, radioprotective nutraceutical, and medicinal applications of seabuckthorn products. A detailed treatment has been included on analytical techniques and processing technologies. Altogether, the book contains about 300 pages over 17 chapters contributed by globally reputed experts on the relevant field in this important plant species. This book will be useful to the research students, teachers, and scientists in the academia and private sector engaged in horticulture, genetics, breeding, molecular biology, biotechnology, and breeding. The book will also be a useful source for workers involved in the development of plant-based medicines, nutraceuticals, therapeutics, and cosmeceuticals and extension workers involved in the development of rural farmers and small-scale industries.
A reference is needed that addresses the recent progress in aspects of PK/PD methods and developments of nanoparticles for novel drug delivery systems. No other consolidated published reference discusses the PK/PD study of nanoparticle drug delivery systems. This book discusses the advantages of nanoparticle drug delivery systems (NPDDS) in enhancing the pharmacokinetics of many drugs that are not easily metabolized or that obtain the desired therapeutic effect with minimum toxicity. The authors provide an overview of biodistribution with a focus on polymer and lipid nanoparticles. This thorough reference is divided into three parts: Modelling, Specific carries and their potential to treat specific diseases.
In recent years, biotechnology research and development (R&D) in China has been receiving increasing attention from the world. With the open-door policy of the Chinese government, many international publications (for academia) and large market potential (for industry) constitute the two big reasons for the above phen- enon. Biotechnology has become one of the priorities in Mainland China for so- ing many important problems, such as food supply, health care, environment protection, and even energy. The central government has been implementing a c- ple of programs which cover a wide spectrum in basic research, high-tech devel- ment and industrialization, such as Basic Research Program (973 Plan), Hi-Tech R&D Program (863 Plan), Key Science & Technology Problem Solving Program (Gong-guan Plan), as well as the establishment of centers of excellence - Key Laboratories and Engineering Centers, etc. The funding from various local gove- ments and industry for R&D has also been increasing continuously. Biotechnology centers in Shenzhen, Shanghai and Beijing have been established. There are more than 400 universities, research institutes and companies and a total of over 20,000 researchers involved in biotechnology in the Mainland. The number of research papers published internationally and patent applications is also increasing rapidly. In addition, the huge market potential with about 1. 4 billion population, which is already open to the outside world, has provided numerous opportunities for int- national and domestic companies to invest in biotechnology, which pushes forward the biotechnology industrialization in China.
This review of recent developments in our understanding of the role of microbes in sustainable agriculture and biotechnology covers a research area with enormous untapped potential. Chemical fertilizers, pesticides, herbicides and other agricultural inputs derived from fossil fuels have increased agricultural production, yet growing awareness and concern over their adverse effects on soil productivity and environmental quality cannot be ignored. The high cost of these products, the difficulties of meeting demand for them, and their harmful environmental legacy have encouraged scientists to develop alternative strategies to raise productivity, with microbes playing a central role in these efforts. One application is the use of soil microbes as bioinoculants for supplying nutrients and/or stimulating plant growth. Some rhizospheric microbes are known to synthesize plant growth-promoters, siderophores and antibiotics, as well as aiding phosphorous uptake. The last 40 years have seen rapid strides made in our appreciation of the diversity of environmental microbes and their possible benefits to sustainable agriculture and production. The advent of powerful new methodologies in microbial genetics, molecular biology and biotechnology has only quickened the pace of developments. The vital part played by microbes in sustaining our planet's ecosystems only adds urgency to this enquiry. Culture-dependent microbes already contribute much to human life, yet the latent potential of vast numbers of uncultured-and thus untouched-microbes, is enormous. Culture-independent metagenomic approaches employed in a variety of natural habitats have alerted us to the sheer diversity of these microbes, and resulted in the characterization of novel genes and gene products. Several new antibiotics and biocatalysts have been discovered among environmental genomes and some products have already been commercialized. Meanwhile, dozens of industrial products currently formulated in large quantities from petrochemicals, such as ethanol, butanol, organic acids, and amino acids, are equally obtainable through microbial fermentation. Edited by a trio of recognized authorities on the subject, this survey of a fast-moving field-with so many benefits within reach-will be required reading for all those investigating ways to harness the power of microorganisms in making both agriculture and biotechnology more sustainable."
This book is the first comprehensive compilation describing the importance of sandalwood in national and international markets, genetic resources, molecular markers, whole genome sequencing, and pathway genes involved in oil biosynthesis, aroma and fragrance. Application of various "omics" approaches in delineating genome architecture and annotation of genes is highlighted. This book comprises 10 chapters covered over 200 pages authored by the researchers involved in sandalwood genomics. The sandalwood, Santalum album is known for its unique fragrance and finest wood available for carving. Also, sandalwood is intertwined with Indian culture and it is the second most valuable and expensive tree in the world.
This book presents basic principles and discusses the state-of-the-art methods of sperm sexing in livestock. It reviews the challenges and critical opinions on the conventional sperm sexing methods and characteristic features of spermatozoa of farm animals which could help to develop novel methods of sperm sexing. The book also presents principles and applications of flow cytometry for sperm separation. The chapters of the book elucidate methods and difficulties in developing sperm sexing methods. Notably, it covers recent research on immunological and nanotechnology-based sperm sexing methods. The book also provides information on the development of semen extenders. Towards the end, the book examines ethical and commercial aspects of sperm sexing. It is an ideal reference book for students, researchers and professionals working towards improving livestock production.
Biotic stresses cause yield loss of 31-42% in crops in addition to 6-20% during post-harvest stage. Understanding interaction of crop plants to the biotic stresses caused by insects, bacteria, fungi, viruses, and oomycetes, etc. is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomics-assisted breeding and the recently emerging genome editing for developing resistant varieties in vegetable crops is imperative for addressing FPNEE (food, health, nutrition. energy and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing have facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The nine chapters each dedicated to a vegetable crop or crop-group in this volume will deliberate on different types of biotic stress agents and their effects on and interaction with crop plants; will enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; will brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; will enunciate the success stories of genetic engineering for developing biotic stress resistant varieties; will discuss on molecular mapping of genes and QTLs underlying biotic stress resistance and their marker-assisted introgression into elite varieties; will enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery and gene pyramiding for developing resistant crop varieties with higher quantity and better quality; and will also elaborate some case studies on genome editing focusing on specific genes for generating disease and insect resistant crops.
This book discusses different approaches for successful pest-management through biotechnological interventions. Pest management is directly associated with the agricultural productivity. The book introduces the reader to various kinds of biopesticides that have been developed and are being developed for field application. Chemical pesticides have been widely used to control pests, and these induce pesticide resistance as well as other environmental problems. This book discusses the necessity to develop alternate pest control strategies, especially environment-friendly and target-specific biopesticides against destructive pests. The book describes important aspects such as microbial biopesticides, plant-based biopesticides, natural products that act against pests and the various other biotechnological advances and limitations of these biopesticides. It provides an in-depth knowledge of the latest research and development in the area of biopesticides. This informative book is meant for students and researchers in the fields of biotechnology, agriculture and applied microbiology. |
You may like...
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R3,974
Discovery Miles 39 740
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,463
Discovery Miles 34 630
De Novo Peptide Design - Principles and…
Vibin Ramakrishnan, Kirti Patel, …
Paperback
R2,941
Discovery Miles 29 410
Frontiers in Aquaculture Biotechnology
W. S. Lakra, Mukunda Goswami, …
Paperback
R3,925
Discovery Miles 39 250
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
|