![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
This book reviews the advances in data gathering and processing in the biotech laboratory environment, and it sheds new lights on the various aspects that are necessary for the implementation of intelligent laboratory architecture and infrastructure. Smart technologies are increasingly dominating our everyday lives and have become an indispensable part of the industrial environment. The laboratory environment, which has long been rather conservative, has also set out to adapt smart technologies with regards to Industry 4.0 and the Internet of Things (IoT) for the laboratory. Due to the heterogeneity of the existing infrastructure and the often complex work processes, standardization is slow, e.g. to implement device interfaces or standardized driver protocols, which are urgently needed to generate standardized data streams that would be immanent for post-processing of data. Divided into 9 chapters, this book offers an authoritative overview of the diverse aspects in the generation and recording of uniform data sets in the laboratory, and in the processing of the data and enabling seamless processing towards machine learning and artificial intelligence. In the first part of the book, readers will find more about high throughout systems, automation, robotics, and the evolution of technology in the laboratory. The second part of the book is devoted to standardization in lab automation, in which readers will learn more about some regulatory aspects, the SiLA2 standards, the OPC LADS (Laboratory and Analytical Device Standard), and FAIR Data infrastructure
Bio-based materials, including those containing wood, will become increasingly important as we move to a bio-based economy. Among their many attributes, it is vitally important that these materials are renewable, sustainable with proper management and environmentally benign. Wood remains one of our most important bio-based materials. While it is an amazing material, wood still has negative attributes and drawbacks that can affect performance, including dimensional instability when wetted, vulnerability to fire and high temperatures, and susceptibility to biodeterioration. A variety of treatments have been developed to overcome these weaknesses. Among the most exciting of these treatments are nanomaterials. These materials have some exceptionally attractive properties for improving timber performance and have been the subject of intensive research over the past decade. There is a tremendous need for a single comprehensive source of information on this rapidly emerging subject with tremendous potential to enhance the performance of a variety of bio-based materials. This book contains 10 chapters, each compiled by different author(s) who are considered the top researcher(s) in their respective fields. The chapters begin with some basic background on nanomaterials and their synthesis, then explore different areas for potential applications and conclude with a review of the emerging questions about nanomaterial safety. The book is designed to provide the latest information and know-how on application and utilization of different nanomaterials to improve the properties of wood and wood-based composite panels. The contents cover some main topics in the industry including improving physical and mechanical properties, increasing resistance to biodegradation (including fungi and insects), developing wood-plastic composites (WPC), applying nanomaterials in paper and board industry, and emergence of transparent wood and radiation shielding. It also covers the use of nanomaterials to improve the performance of paints and finishes used for forest products. The book provides a single location for those interested in the field to begin.
Recent technological advances have led to a rapid acceleration in our ability to gather genetic data. The complete genetic sequences are now known to several organisms and accelerated programmes are in place for sequencing many other genomes, including human. The speed with which complete sequencing can be accomplished will continue to increase as new technologies come online. In principle, the scope for developing new diagnostic techniques and drugs is now greater than at any time in human history, but the pathway from genetic information to usable drug is a long and complex one. This exciting book brings together a high-calibre group of experts to discuss the practical application of genomic information to the development of drugs. The subjects covered include the current state of the art in sequencing technology, the applications of these new technologies to sequencing the genomes of various organisms, and the challenge of proteomics. Additional contributions deal with legal and ethical implications of the new uses of genetic data, and functional genomes from the point of view of the pharmaceutical industry.
This book provides fundamentals, highlights recent developments and offers new perspectives relating to the use of electrolyzed water (EW) as an emerging user- and environmental-friendly broad-spectrum sanitizer, with particular focus on the food industry. It addresses the generation, inactivation, pesticide degradation and safety of food by EW, illustrates the mechanism of the germicidal action of EW and its antimicrobial efficacy against a variety of microorganisms in suspensions. In addition, the sanitizing effects of combining EW with various chemical and physical sanitizing technologies have been evaluated, and recent developments and applications of EW in various areas including fruits and vegetables, meat, aquatic products, environment sterilization, livestock and agriculture has been described. The book can be a go-to reference book of EW for: (1) Researchers who need to understand the role of various parameters in its generation, the bactericidal mechanism of EW and its wide applications for further research and development; (2) Equipment producers who need comprehensive understanding of various factors (e.g. type of electrolyte, flow rates of water and electrolyte) which govern the efficacy of EW and developing its generators; (3) Food processors who need good understanding of EW in order to implement it in the operations and supervisors who need to balance the advantages and limitations of EW and ensuring its safe use.
Oxides for Medical Applications reviews the most important advances of oxides with optical, magnetic and electronic properties for biomedical applications. Owing to their unusual properties, oxides are expected to play a significant role in the prevention or early treatment of diseases. In addition to catalytically active artificial enzymes based on oxide materials-the book provides comprehensive coverage of the most relevant categories of oxide materials and their properties and applications. Since magnetic oxides are used extensively for a wide range of medical applications, there are numerous chapters that address these materials, including LSMO nanoparticles, ferrites, nanocatalysts, and more. Finally, practical considerations for the translation of these materials from the lab to the clinic are reviewed, including biocompatibility and toxicity of oxide nanoparticles, making this a suitable resource for researchers and practitioners in materials science and engineering in academia and the clinic.
Nanotechnology has shown great potential in all spheres of life. With the increasing pressure to meet the food demands of rapidly increasing population, thus, novel innovation and research are required in agriculture. The principles of nanotechnology can be implemented to meet the challenges faced by agricultural demands. Major challenges include the loss of nutrients in the soil and nutrient-deficient plants, which result in a lower crop yield and quality. Subsequently, consumption of such crops leads to malnourishment in humans, especially in underprivileged and rural populations. One convenient approach to tackle nutrient deficiency in plants is via the use of fertilizers; however, this method suffers from lower uptake efficiency in plants. Another approach to combat nutrient deficiency in humans is via the use of supplements and diet modifications; however, these approaches are less affordably viable in economically challenged communities and in rural areas. Therefore, the use of nano-fertilizers to combat this problem holds the greatest potential. Additionally, nanotechnology can be used to meet other challenges in agriculture including enhancing crop yield, protection from insect pests and animals, and by use of nano-pesticides and nano-biosensors to carry out the remediation of polluted soils. The future use of nanomaterials in soil ecosystems will be influenced by their capability to interact with soil constituents and the route of nanoparticles into the environment includes both natural and anthropogenic sources. The last decade has provided increasing research on the impact and use of nanoparticles in plants, animals, microbes, and soils, and yet these studies often lacked data involving the impact of nanoparticles on biotic and abiotic stress factors. This book provides significant recent research on the use of nano-fertilizers, which can have a major impact on components of an ecosystem. This work should provide a basis to further study these potential key areas in order to achieve sustainable and safe application of nanoparticles in agriculture.
This book gives a comprehensive overview of recent advances in the valorization of agri-food waste and discusses the main process conditions needed to overcome the difficulties of using waste as alternative raw materials. It also discusses specific methodologies, opportunistic microbes for biomass valorization, the sustainable production of agri-food waste, as well as examines the assessment and management of bioactive molecules production from microbial-valorization of agri-food waste. The authors provide technical concepts on the production of various bio-products and their commercial interest including agri-food waste utilization in the microbial synthesis of proteins, the valorization of horticulture waste, the sustainable production of pectin via microbial fermentation, as well as other food and pharmacological applications. This book is intended for bioengineers, biologists, biochemists, biotechnologists, microbiologists, food technologists, enzymologists, and related professionals and researchers. Explores recent advances in the valorization of agri-food waste Provides technical concepts on the production of various bio-products of commercial interest Discusses the main process conditions to overcome the difficulties of using waste as alternative raw materials Introduces technical-economic details on the advantages and disadvantages of exploring the waste recovery chain Explores the main technological advances in the recovery of residues in functional products
Microbes are widely used in large-scale industrial processes due to their versatility, easy growing cultivation, kinetic potential, and the ability to generate metabolites with a wide range of potential applications to various commercial sectors, such as the food, pharmaceutical and cosmetic industries, in addition to the potential for agriculture, biomedical, and several others. Among the metabolites of greatest commercial interest, and many obtained on an industrial scale, the wide range of enzymes, biofuels, organic acids, amino acids, vitamins, biopolymers, and many other classes of metabolites. This book is intended for Bioengineers, Biologist, Biochemist, Biotechnologists, microbiologist, food technologist, enzymologist, and related Professionals/ researchers. Explores recent advances in the valorization of agri-food waste Provides technical concepts on the production of various bio-products of commercial interest Discusses the main process conditions to overcome the difficulties of using waste as alternative raw materials Introduces technical-economic details on the advantages and disadvantages of exploring the waste recovery chain Explores the main technological advances in the recovery of residues in functional products
Explores recent advances in the valorization of agri-food waste Provides technical concepts on the production of various bio-products of commercial interest Discusses the main process conditions to overcome the difficulties of using waste as alternative raw materials Introduces technical-economic details on the advantages and disadvantages of exploring the waste recovery chain Explores the main technological advances in the recovery of residues in functional products
The goal of this book is to present recent advances in the production of food ingredients from agro-industrial residues, as well as to explore the technological advances made to make these ingredients a commercial reality for the food industry, such as peptides, food pigments, and organic acids, among others, thereby expanding the potential of bioprocesses in the valorization of agro-industrial residues for the production of molecules of industrial importance. This book is intended for bioengineers, biologists, biochemists, biotechnologists, microbiologists, food technologists, enzymologists, and related professionals/researchers. Explores recent advances in the valorization of agri-food waste into food ingredients; Provides technical concepts on the production of various food ingredients of commercial interest Explore nonel technological advanced strategies of extraction of bioactive compounds from food wastes Presents important classes of food ingredients obtained from alternative raw materials Sustainable food waste resources and management strategies Different pretraetment technologies and green extraction methodologies to support green environment in circular economy concept. Challenges in applications of re-derived bioactive compounds from food wastes in food formulations
This work is the first compilation of comprehensive deliberations on botany, cytogenetics and sex determination, genetic resources and diversity, classical breeding, molecular markers and genome sequence resources, and application of omics technology including transcriptomics, proteomics, and metabolomics resources in the multipurpose medicinal plant seabuckthorn. The book also presents a detailed narrative on antioxidative, radioprotective nutraceutical, and medicinal applications of seabuckthorn products. A detailed treatment has been included on analytical techniques and processing technologies. Altogether, the book contains about 300 pages over 17 chapters contributed by globally reputed experts on the relevant field in this important plant species. This book will be useful to the research students, teachers, and scientists in the academia and private sector engaged in horticulture, genetics, breeding, molecular biology, biotechnology, and breeding. The book will also be a useful source for workers involved in the development of plant-based medicines, nutraceuticals, therapeutics, and cosmeceuticals and extension workers involved in the development of rural farmers and small-scale industries.
In recent years, biotechnology research and development (R&D) in China has been receiving increasing attention from the world. With the open-door policy of the Chinese government, many international publications (for academia) and large market potential (for industry) constitute the two big reasons for the above phen- enon. Biotechnology has become one of the priorities in Mainland China for so- ing many important problems, such as food supply, health care, environment protection, and even energy. The central government has been implementing a c- ple of programs which cover a wide spectrum in basic research, high-tech devel- ment and industrialization, such as Basic Research Program (973 Plan), Hi-Tech R&D Program (863 Plan), Key Science & Technology Problem Solving Program (Gong-guan Plan), as well as the establishment of centers of excellence - Key Laboratories and Engineering Centers, etc. The funding from various local gove- ments and industry for R&D has also been increasing continuously. Biotechnology centers in Shenzhen, Shanghai and Beijing have been established. There are more than 400 universities, research institutes and companies and a total of over 20,000 researchers involved in biotechnology in the Mainland. The number of research papers published internationally and patent applications is also increasing rapidly. In addition, the huge market potential with about 1. 4 billion population, which is already open to the outside world, has provided numerous opportunities for int- national and domestic companies to invest in biotechnology, which pushes forward the biotechnology industrialization in China.
This review of recent developments in our understanding of the role of microbes in sustainable agriculture and biotechnology covers a research area with enormous untapped potential. Chemical fertilizers, pesticides, herbicides and other agricultural inputs derived from fossil fuels have increased agricultural production, yet growing awareness and concern over their adverse effects on soil productivity and environmental quality cannot be ignored. The high cost of these products, the difficulties of meeting demand for them, and their harmful environmental legacy have encouraged scientists to develop alternative strategies to raise productivity, with microbes playing a central role in these efforts. One application is the use of soil microbes as bioinoculants for supplying nutrients and/or stimulating plant growth. Some rhizospheric microbes are known to synthesize plant growth-promoters, siderophores and antibiotics, as well as aiding phosphorous uptake. The last 40 years have seen rapid strides made in our appreciation of the diversity of environmental microbes and their possible benefits to sustainable agriculture and production. The advent of powerful new methodologies in microbial genetics, molecular biology and biotechnology has only quickened the pace of developments. The vital part played by microbes in sustaining our planet's ecosystems only adds urgency to this enquiry. Culture-dependent microbes already contribute much to human life, yet the latent potential of vast numbers of uncultured-and thus untouched-microbes, is enormous. Culture-independent metagenomic approaches employed in a variety of natural habitats have alerted us to the sheer diversity of these microbes, and resulted in the characterization of novel genes and gene products. Several new antibiotics and biocatalysts have been discovered among environmental genomes and some products have already been commercialized. Meanwhile, dozens of industrial products currently formulated in large quantities from petrochemicals, such as ethanol, butanol, organic acids, and amino acids, are equally obtainable through microbial fermentation. Edited by a trio of recognized authorities on the subject, this survey of a fast-moving field-with so many benefits within reach-will be required reading for all those investigating ways to harness the power of microorganisms in making both agriculture and biotechnology more sustainable."
This book is the first comprehensive compilation describing the importance of sandalwood in national and international markets, genetic resources, molecular markers, whole genome sequencing, and pathway genes involved in oil biosynthesis, aroma and fragrance. Application of various "omics" approaches in delineating genome architecture and annotation of genes is highlighted. This book comprises 10 chapters covered over 200 pages authored by the researchers involved in sandalwood genomics. The sandalwood, Santalum album is known for its unique fragrance and finest wood available for carving. Also, sandalwood is intertwined with Indian culture and it is the second most valuable and expensive tree in the world.
This book presents basic principles and discusses the state-of-the-art methods of sperm sexing in livestock. It reviews the challenges and critical opinions on the conventional sperm sexing methods and characteristic features of spermatozoa of farm animals which could help to develop novel methods of sperm sexing. The book also presents principles and applications of flow cytometry for sperm separation. The chapters of the book elucidate methods and difficulties in developing sperm sexing methods. Notably, it covers recent research on immunological and nanotechnology-based sperm sexing methods. The book also provides information on the development of semen extenders. Towards the end, the book examines ethical and commercial aspects of sperm sexing. It is an ideal reference book for students, researchers and professionals working towards improving livestock production.
Biotic stresses cause yield loss of 31-42% in crops in addition to 6-20% during post-harvest stage. Understanding interaction of crop plants to the biotic stresses caused by insects, bacteria, fungi, viruses, and oomycetes, etc. is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomics-assisted breeding and the recently emerging genome editing for developing resistant varieties in vegetable crops is imperative for addressing FPNEE (food, health, nutrition. energy and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing have facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The nine chapters each dedicated to a vegetable crop or crop-group in this volume will deliberate on different types of biotic stress agents and their effects on and interaction with crop plants; will enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; will brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; will enunciate the success stories of genetic engineering for developing biotic stress resistant varieties; will discuss on molecular mapping of genes and QTLs underlying biotic stress resistance and their marker-assisted introgression into elite varieties; will enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery and gene pyramiding for developing resistant crop varieties with higher quantity and better quality; and will also elaborate some case studies on genome editing focusing on specific genes for generating disease and insect resistant crops.
This book discusses different approaches for successful pest-management through biotechnological interventions. Pest management is directly associated with the agricultural productivity. The book introduces the reader to various kinds of biopesticides that have been developed and are being developed for field application. Chemical pesticides have been widely used to control pests, and these induce pesticide resistance as well as other environmental problems. This book discusses the necessity to develop alternate pest control strategies, especially environment-friendly and target-specific biopesticides against destructive pests. The book describes important aspects such as microbial biopesticides, plant-based biopesticides, natural products that act against pests and the various other biotechnological advances and limitations of these biopesticides. It provides an in-depth knowledge of the latest research and development in the area of biopesticides. This informative book is meant for students and researchers in the fields of biotechnology, agriculture and applied microbiology.
Known as one of the world's major industrial chemicals natural soda ash plays a critical role in glass and ceramics industries, production of chemicals, cleansing and bleaching, and metallurgy. Natural soda ash is also preferable to synthetic types because its production is purer and requires less energy with virtually no harmful environmental effects. Essential data on the properties, sources, processing requirements, and applications of natural soda ash fill this guide, making it valuable to both manufacturers and users. The formation, occurrence and history of natural soda ash deposits are covered along with specific chemical, physical and mineralogical characteristics. Explanations of processing techniques demonstrate how to convert soda ash into commercial products. Included are new methods and technologies for large-scale soda ash production, safe handling procedures and marketing strategies.
This detailed volume provides state-of-the-art methodologies and reviews of important topics in the field of homology modeling. From homology modeling in the twilight zone and improving accuracy through sequence space analysis to approaches to construct multi-protein complex models, the book explores a wide variety of uses and applications of this valuable technique. Written for the highly successful Methods in Molecular Biology series, the chapters include introductions to their respective topics, lists of the necessary programs, webservers, and databases, step-by-step and readily reproducible protocols, as well as tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Homology Modeling: Methods and Protocols serves as an ideal guide to recent homology modeling procedures, assumptions made, and model quality assessment that will illuminate the black box of homology modeling for novice readers and broaden the knowledge of this methodology for professionals.
This new volume introduces the applications of microfluidic systems to facilitate biotechnological and biomedical processes. It provides an overview on cutting-edge technologies, summarizes traditional and modern fabrication methods and highlights recent advances regarding the application of lab-on-a-chip (LoC) systems for bioanalytical purposes. This book is ideal for research scientists and students interested at the cross-section between biotechnology, chemistry and chemical engineering.
By covering both the general principles of bioconversion and the specific characteristics of the main groups of waste materials amenable to bioconversion methods, this new book provides the chemical, biochemical, agrochemical and process engineer with clear guidance on the use of these methods in devising a solution to the problem of industrial waste products.
The practice of biotechnology, though different in style, scale and substance in globalizing science for development involves all countries. Investment in biotechnology in the industrialised, the developing, and the least developed countries, is now amongst the widely accepted avenues being used for economie development. The simple utilization of kefir technology, the detoxification of injurious chemical pesticides e.g. parathion, the genetic tailoring of new crops, and the production of a first of a kind of biopharmaceuticals illustrate the global scope and content of biotechnology research endeavour and effort. In the developing and least developed nations, and in which the 9 most populous countries. are encountered, problems concerning management of the environment, food security, conservation of human health resources and capacity building are important factors that influence the path to sustainable development. Long-term use of biotechnology in the agricultural, food, energy and health sectors is expected to yield a windfall of economic, environmental and social benefits. Already the prototypes of new medicines and of prescription fruit vaccines are available. Gene based agriculture and medieine is increasingly being adopted and accepted. Emerging trends and practices are reflected in the designing of more efficient bioprocesses, and in new research in enzyme and fermentation technology, in the bioconversion of agro industrial residues into bio-utility products, in animal healthcare, and in the bioremediation and medical biotechnologies. Indeed, with each new day, new horizons in biotechnology beckon." |
You may like...
De Novo Peptide Design - Principles and…
Vibin Ramakrishnan, Kirti Patel, …
Paperback
R2,941
Discovery Miles 29 410
Molecular Medical Microbiology
Yi-Wei Tang, Musa Hindiyeh, …
Mixed media product
R14,897
Discovery Miles 148 970
Cyanobacterial Lifestyle and its…
Prashant Kumar Singh, Maria F. Fillat, …
Paperback
R3,925
Discovery Miles 39 250
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R3,974
Discovery Miles 39 740
|