![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
Although one of the oldest microbial technologies used in food processing, solid-state fermentation (SSF) had, until recently, fallen out of favor. However, based on a series of established mathematical models, new design concepts for SSF bioreactors and process control strategies have been proposed, allowing SSF technology to reach new levels. Solid State Fermentation for Foods and Beverages covers these new technologies and their application to food and beverage production. The book systematically describes the production of solid-state fermented food and beverage in terms of the history and development of SSF technology and SSF foods, bio-reactor design, fermentation process, various substrate origins and sustainable development. It emphasizes Oriental traditional foods produced by SSF such as sufu, vinegar, soy sauce, Chinese distilled spirit, and rice wine. The authors address such engineering issues as mass and heat transfer and energy equation calculation of solid-state fermentation, dynamic modeling of solid-state fermentation, and process control of solid-state fermentation. Covering the latest developments and achievements in the field of SSF, the book provides a detailed introduction to various solid-state fermented foods and beverages, including product category, characteristics, functionalities, safety issues, and consumer perception. It explores real advantages of SSF processes and how their application at real scale for high quality production that is more and less costly.
The fourth International Symposium of the International Society for Environmental Biotechnology was held on the campus of Queen's University, Belfast, Northern Ireland, on June 20-25, 1998, with an attendance of several hundred people. This meeting included technical presentations of state-of-the-art research which were integrated with tutorials and workshops by practising technologists in the broad field of environmental biotechnology. The meeting was designed to be, in every respect, truly global. For example, presentations were heard from technical workers in Southeast Asia, Iran, China, many countries in Europe, India, and the United States. By having these selected presenters, as well as experienced tutors with focused workshops, all participants benefited from this interactive symposium, and from an informal exchange of ideas, discussions of technical problems, and exploration of new applications. Environmental biotechnology is an emerging field of scientific and technological investigations that is truly global. Furthermore, popular recognition is high for the environmental problems being faced and solved by biotechnology methods. The papers in this book cover the following topics: (i) Metals: Mine Drainage, Removal, Toxicity; (ii) Waste Treatment/Monitoring; (iii) Integrated Systems; (iv) Bioremediation: In situ/Reactors/Basic Studies; (v) Water Quality; (vi) Biodegradation; (vii) Local/National/International Issues.
Attention has recently turned to using plants as hosts for the production of commercially important proteins. The twelve case studies in this volume present successful strategies for using plants to produce industrial and pharmaceutical proteins and vaccine antigens. They examine in detail projects that have commercial potential or products that have already been commercialized, illustrating the advantages that plants offer over bacterial, fungal or animal cell-culture hosts. There are many indications that plant protein production marks the beginning of a new paradigm for the commercial production of proteins that, over the next decade, will expand dramatically.
Part I The Nano-Scale Biological Systems in Nature; Molecular bio-motors in living cells - by T. Nishizaka; The form designed by viral genome - by K. Onodera; Part II Detection and Characterization Technology; Atomic force microscopy applied to nano-mechanics of the cell - by A. Ikai; Design, synthesis and biological application of fluorescent sensor molecules for cellular imaging - by K. Kikuchi; Dynamic visualization of cellular signaling - by Q. Ni and J. Zhang; Part III Fabrication Technology; Surface acoustic wave atomizer and electrostatic deposition - by Y. Yamagata; Electrospray deposition of biomolecules by V.N. Morozov; Part IV Processing Technology; Droplet handling - by T.Torii; Integrated microfluidic systems - by S. Kaneda and T. Fujii; Part V Applications; A novel non-viral gene delivery system: Multifunctional envelope-type nano device - by H. Hatakeyama, H. Akita, K. Kogure, and H. Harashima; Biosensors - by M. Saito, H.M. Hiep, N. Nagatani, and E.Tamiya; Micro bioreactors - by Sato and T. Kitamori
The biotechnology business in India with an increase from USD 500 million in 1997 and reaching an estimated USD 1 billion next year health related prod ucts accounting for 60%, agro and veterinary products together 15%, and con tract R&D, reagents, devices and supplies adding up to the remaining 25% of which the diagnostics share was about 10% of the total surely presented an encouraging picture even five years ago. While volumes have increased, the pat tern has not. According to a report, prepared by McKinsey & Co, India's Phar maceutical industry including domestic and export sales and contract services totals nearly USD 5 billion. Furthermore, the company optimistically projects the growth to a factor of five fold only if both the industry and the government are able to put in place achievable solutions that must take care of the formida ble obstacles preventing further growth. If this assessment is correct, then the established transformation made by IT growth should also provide the confi dence required by the high expectations for biotechnology which have arisen in the country in recent years. Some contributors to this are overenthusiastic these are bureaucrats, some retired scientists and of course the complacent politicians who have the least knowledge of what the new biotechnology is all about. However, there are clear indications of biotechnology growth demon strated by a few but rapidly expanding biotech companies such as Biocon Ltd, Shantha Biotech (P) Ltd, Dr.
This volume covers recent developments in both fundamental and applied research in biological nitrogen fixation. It emphasizes the application of biological nitrogen fixation for sustainable agriculture, which should lead to poverty alleviation, environmental protection, and good agricultural practices generally. The roles of, and advances in, plant breeding, plant molecular biology, nodule physiology, and symbiotic and associative interactions between plants and microbes in sustaining agricultural productivity and soil fertility are described. The evolution of symbioses and nitrogen fixation are also covered in this volume. To ensure high agricultural productivity, while protecting the environment (both soil and water resources), requires plant cultivars that also respond to beneficial microbes. The volume, therefore, describes the physiology and genomics of nitrogen-fixing bacteria together with the biochemistry and molecular genetics of the nitrogenase enzyme that actually fixes atmospheric nitrogen to a usable form. This volume, which covers the most recent data on the role of nitrogen fixation in agriculture and forestry and on the biology of both plants and nitrogen-fixing microbes, is intended to serve as a useful reference for students and researchers, both in the laboratory (academic and commercial) and in the field.
This book explores microbial symbiosis, with a particular focus on soil microorganisms, highlighting their application in enhancing plant growth and yield. It addresses various types of bacterial and fungal microbes associated with symbiotic phenomena, including rhizobium symbiosis, arbuscular mycorrhizal symbiosis, ectomycorrhizal symbiosis, algal/lichen symbiosis, and Archeal symbiosis. Presenting strategies for employing a diverse range of bacterial and fungal symbioses in nutrient fortification, adaptation of plants in contaminated soils, and mitigating pathogenesis, it investigates ways of integrating diverse approaches to increase crop production under the current conventional agroecosystem. Providing insights into microbial symbioses and the challenges of adopting a plant-microbe synergistic approach towards plant health, this book is a valuable resource for researchers, graduate students and anyone in industry working on bio-fertilizers and their agricultural applications.
Highlights the impact of Covid 19 on science, health and health care system Includes evolution, structure, and mode of infection by virus as well as strategies to attack various organs in the body. Describes emergence of various strains of virus Emphasis new techniques to detect and control the virus Discusses vaccine development to control the pandemic
Diazotrophic bacteria convert atmospheric nitrogen to plant-useable form and this input of nitrogen through biological fixation is of great agronomic importance. The contributions presented in this volume relate to free-living nitrogen fixers and the diazotrophs associated with plants. Symbiotic association of Frankia with non-legumes and cyanobacterial associations are also discussed. Research topics covered in this volume include the biochemistry and genetics of diazotrophs, recent developments in improvement of plant-microbe interactions and their molecular basis, the use of molecular probes in taxonomy and ecology of diazotrophs and reports on field applications, agronomic importance and improvement in methodologies for assessing their contribution to plants. This book provides valuable information not only for researchers working in the field of biological nitrogen fixation but also for biochemistry, molecular biologists, microbiologists and agronomists.
As with any rapid technological development, the biotechnology revolution is putting great strains on the ability of law to adapt to new challenges and threats. Although there is general agreement on the need to regulate biotechnology in many different fields of human activity (agriculture, life sciences, forensic science) domestic law remains deeply divided over the best approach to take. This book is the first attempt at covering the most pressing legal issues raised by the impact of biotechnologies on different categories of international norms. Through the contribution of a selected group of international scholars and experts from international organizations, the book addresses 1) the international status of genetic resources, both in areas of national jurisdiction and in common spaces such as the international sea bed area and Antarctica; 2) the relevance of environmental principles in the governance of modern biotechnologies; 3) the impact of biotechnologies on trade rules, including intellectual property law; 4) the human rights implications, especially in the field of human genetics; and 5) the intersection between general international law and regional systems, especially those developed in Europe and Latin America. The overall objective of the book is to provide an up-to-date picture of international law as it stands today and to stimulate critical reflection and further research on the solutions that will be required in years to come.
Concern for the environment has become one of the big issues in modern society, and one of the chief concerns is the environmental impact of modern industrial production. A particularly sensitive issue is the possibility of accidents in industries where there may be severe consequences for people, property and the environment. At one time the nuclear industry was seen as the most likely to be the cause of significant environmental damage, but after the occurrence of several major accidents such as Seveso, Flixborough and Bhopal, that concern extends to much of the chemicals industry. Pressure from society, reflected by strong legislation, coupled with a greater understanding of the impact that chemical processing operations can have, has led to the adoption of higher profile safety and environmental management programs within the chemical industry. Under these programmes existing and new processes are rigorously examined to determine the possible causes and consequences of failure, and the results used to improve the process to make failure less likely. Any process audit, aimed at improving safety or lessening the environmental impact, cannot be carried out using intuition or experience alone, so the discipline of risk analysis has grown as a collection of tools and methods which can be utilized to give a quantitative assessment of the risks involved in operating any given process. In this new book the authors present risk analysis and reduction in a clear and unified way, emphasizing the various different methods which can be used together in a global approach to risk analysis in the chemical process industries. Originally conceived as a text book for graduate level courses in chemical engineering, the clear presentation and thorough coverage will ensure that anyone involved in risk assessment, environmental impact assessment or safety planning will find this book an invaluable source of reference.
An In-Depth Resource for Understanding the Foundational Concepts and Clinical Applications in the Field of Biomechanics Winter's Biomechanics and Motor Control of Human Movement is highly suitable as a textbook for today's biomechanics students who may come from many diverse academic programs and professional sectors. The work covers foundational theoretical and mathematical concepts in biomechanics, as well as up-to-date data collection, interpretation, and storage techniques. It also highlights the contemporary clinical applications of biomechanical research. New case studies related to cerebral palsy, patellar femoral pain syndrome, knee osteoarthritis, and ulnar collateral ligament reconstruction are also included. The work appeals to a broad audience within the field of biomechanics, an interdisciplinary field with applications in mechanical engineering, medicine, physical therapy, sports and exercise, and product development. Authors at leading universities guide the reader through the latest advancements in the field while also imparting critical foundational knowledge to allow for subject matter mastery and more precise practical application. Concepts covered in the book include: Biomechanical signal processing, anthropometry, kinematics and kinetics, muscle mechanics, and kinesiological electromyography Forward simulations and muscle-actuated simulations, static and dynamic balance, and the role of the central nervous system in biomechanics Movement sequencing and the kinetic chain concept, electromagnetic systems, inertial sensors, clinical measures of kinematics, and the advantages and disadvantages of different types of force plates Markerset design and event detection for gait and athletic motions like jumping, landing, and pitching Guidance on setting up a motion lab and access to online Excel spreadsheets with kinematic and kinetic marker data By providing a combination of theoretical and practical knowledge, Winter's Biomechanics and Motor Control of Human Movement will appeal to biomedical engineers working in the field of biomechanics and allied professionals in the medical, rehabilitation, and sports industries. Its comprehensive overall insight into the field of biomechanics also makes the work a highly useful resource for students and teachers of biomechanics at all levels of experience and expertise.
Mushrooms are fleshy fungi with a high prospective for the production of secondary metabolites including extracellular enzymes with high agricultural and biotechnological significance. Worldwide, they are well recognized as supplementary foods due to their high nutritional values and their medicinal importance, which includes their uses in exhibiting antioxidant and antimicrobial activities, immune enhancer, and to be effective for the treatment of several diseases including diabetes and few types of cancers as well. According to recent studies, extracellular enzymes produced by several white-rot fungal strains such as Phanerochaete chrysosporium, Pleurotus sajor-caju and several mushrooms have shown a high capacity to decolorize dyes that are very harmful for the environment. Moreover, wild macrofungi have the capability to synthesize nanoparticles which are more useful for the treatment of cancer, gene therapy, DNA analysis and biosensors. Wild macrofungi are extremely important model for basic biology and commercial manufacture.
Two of the recent books in the Methods in Molecular Biology series, Yeast Protocols and Pichia Protocols, have been narrowly focused on yeasts and, in the latter case, particular species of yeasts. Food Microbiology Pro- cols, of necessity, covers a very wide range of microorganisms. Our book treats four categories of microorganisms affecting foods: (1) Spoilage organisms; (2) pathogens; (3) microorganisms in fermented foods; and (4) microorganisms p- ducing metabolites that affect the flavor or nutritive value of foods. Detailed information is given on each of these categories. There are several chapters devoted to the microorganisms associated with fermented foods: these are of increasing importance in food microbiology, and include one bacteriophage that kills the lactic acid bacteria involved in the manufacture of different foods-cottage cheese, yogurt, sauerkraut, and many others. The other nine chapters give procedures for the maintenance of lactic acid bacteria, the isolation of plasmid and genomic DNA from species of Lac- bacillus, determination of the proteolytic activity of lactic acid bacteria, det- mination of bacteriocins, and other important topics.
This book presents specific key natural and artificial systems that are promising biocatalysts in the areas of health, agriculture, environment and energy. It provides a comprehensive account of the state of the art of these systems and outlines the significant progress made in the last decade using these systems to develop innovative, sustainable and environmentally friendly solutions. Chapters from expert contributors explore how natural enzymes and artificial systems tackle specific targets such as: climate change, carbon footprint and economy and carbon dioxide utilisation; nitrogen footprint and fixation and nitrous oxide mitigation; hydrogen production, fuel cells and energy from bacteria; biomass transformation and production of added-value compounds, as well as biosensors development. This book provides an important and inspiring account for the designing of new natural and artificial systems with enhanced properties, and it appeals not only to students and researchers working in the fields of energy, health, food and environment, but also to a wider audience of educated readers that are interested in these up-to-date and exciting subjects.Chapter "Carbon Dioxide Utilisation-The Formate Route" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This Volume addresses the pros and cons of oligonucleotide probes, primers and primer combinations, and importantly considers how to design the best tools for the microbial taxa and/or processes being investigated. Individual chapters focus on the design of primers targeting genes that code for enzymes associated with the following functions: degradation of aromatic, aliphatic and chlorinated hydrocarbons under aerobic and anaerobic conditions, methanogenesis, methane oxidation, and the nitrogen cycle. Hydrocarbon and Lipid Microbiology Protocols There are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes.
Automated Measurement and Monitoring of Bioprocesses: Key Elements of the M3C Strategy, by Bernhard Sonnleitner Automatic Control of Bioprocesses, by Marc Stanke, Bernd Hitzmann An Advanced Monitoring Platform for Rational Design of Recombinant Processes, by G. Striedner, K. Bayer Modelling Approaches for Bio-Manufacturing Operations, by Sunil Chhatre Extreme Scale-Down Approaches for Rapid Chromatography Column Design and Scale-Up During Bioprocess Development, by Sunil Chhatre Applying Mechanistic Models in Bioprocess Development, by Rita Lencastre Fernandes, Vijaya Krishna Bodla, Magnus Carlquist, Anna-Lena Heins, Anna Eliasson Lantz, Gurkan Sin and Krist V. Gernaey Multivariate Data Analysis for Advancing the Interpretation of Bioprocess Measurement and Monitoring Data, by Jarka Glassey Design of Pathway-Level Bioprocess Monitoring and Control Strategies Supported by Metabolic Networks, by Ines A. Isidro, Ana R. Ferreira, Joao J. Clemente, Antonio E. Cunha, Joao M. L. Dias, Rui Oliveira Knowledge Management and Process Monitoring of Pharmaceutical Processes in the Quality by Design Paradigm, by Anurag S Rathore, Anshuman Bansal, Jaspinder Hans The Choice of Suitable Online Analytical Techniques and Data Processing for Monitoring of Bioprocesses, by Ian Marison, Siobhan Hennessy, Roisin Foley, Moira Schuler, Senthilkumar Sivaprakasam, Brian Freeland
This book is the lasting product, a resource of up-to-date information in the scientific literature for the field of animal cell technology, as it was presented during a pleasant and stimulating meeting in TylAsand, Sweden, in June 2001. The title of the meeting, From Target to Market, indicates the usefulness of Animal Cell Technology during all steps in the pharmaceutical development process. Following the biotech products reaching the market, it shows an upward trend in the contribution of biotech products to total New Molecular Entity output in the nineties, which continued until 1996 when biotech represented 25% of the annual output. Since then the proportion has been decreasing. A perceived hurdle from a market perspective is that a protein per definition is biodegradable and thus requires intravenous, or for some drugs subcutaneous administration. New promising administration technologies such as pulmonary delivery were highlighted at this meeting. The emphasis on project selection prior to entry in the development phase has triggered a portfolio management using more extensive preclinical data before a development decision is taken. Animal cells have become a very important tool in the drug discovery process. The next generation of products will evolve from applications such as gene therapy, novel vaccines, cell therapy, and gene regulation. Animal cell technology has a major role to play in the post-sequence era.
This volume contains the papers presented at the Sixth International Ion Exchange Conference organised by the SCI and held at Churchill College, Cambridge, UK, in July 1992. As on previous occasions, most recently in 1988, the organising committee did not engage plenary speakers but decided to solicit state-of-the-art contributions from the ion exchange community. This book contains the refereed papers presented at the meeting, whether in poster or oral form. Extra papers were presented at the meeting as posters because they were not available in time for refereeing purposes. The subject matter of the meeting and therefore the contents of the book is subdivided into seven separate topic areas as follows: resin developments; water treatment; fundamentals; biotechnology, food and pharmaceuticals; environmental and pollution control; membranes, inorganic materials and nuclear; and hydrometallurgy. The coverage of the meeting is similar to 1988 although there are fewer subdivisions on this occasion. The more restricted coverage this time reflects the smaller number of papers offered by authors. This is probably due to the world wide industrial recession which has affected commercial development and exploitation of the technology and restricts the ability of practitioners and academics to contribute to and attend international meetings. Nevertheless, the advances in biotechnology, growing concern about the environment and the. need for novel separation processes have provided sufficient impetus to stimulate a sufficient number of workers in the field.
An Introduction to Environmental Biotechnology provides an introduction to the subject of environmental biotechnology. Environmental biotechnology refers to the use of micro-organisms and other living systems to solve current environmental problems such as the detoxification of pollutants and clean-up of oil tanker spills. Additionally, it refers to the biotechnology of the agricultural environment, as well as the use of biopesticides and the application of microorganisms to the mining, metal recovery and paper industries. This is the only comprehensive introductory account of this subject matter. Beginning with an introduction to microbial growth, An Introduction to Environmental Biotechnology aims to provide the non-specialist with a complete overview of environmental biotechnology. It is presented in an easy to read style with illustrations and includes frequent references to the use of higher plants as well as micro-organisms in environmental biotechnology. An Introduction to Environmental Biotechnology is geared toward a non-specialist audience, including engineers and environmental chemists, and environmental scientists who have limited knowledge of microbiology and biotechnology.
Nanotechnology and nucleic acid based therapies are two emerging fields in science whose combination has the potential to improve quality of life for patients suffering from various diseases that can so far only be treated in an unsatisfactory way. Nucleic acids offer the potential for highly selective treatment of such diseases or the highly specific modulation of gene expression with RNA interference. A key issue for successful nucleic acid therapies is the availability of a suitable delivery system. Here, the field of nanotechnology offers a multitude of possibilities to develop nanosized delivery vectors tailor-made for various local and systemic approaches. In "Nanotechnology for Nucleic Acid Delivery: Methods and Protocols," experts in the field cover the area of nanoparticulate delivery of nucleic acids in terms of biosafety, particle synthesis as well as its application in cell culture. Written in the successful "Methods in Molecular Biology " series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Nanotechnology for" "Nucleic Acid Delivery: Methods and Protocols" seeks to serve both professionals and novices with its well-honed methodologies."
Computational intelligence techniques are gaining momentum in the medical prognosis and diagnosis. This volume presents advanced applications of machine intelligence in medicine and bio-medical engineering. Applied methods include knowledge bases, expert systems, neural networks, neuro-fuzzy systems, evolvable systems, wavelet transforms, and specific internet applications. The volume is written in view of explaining to the practitioner the fundamental issues related to computational intelligence paradigms and to offer a fast and friendly-managed introduction to the most recent methods based on computer intelligence in medicine.
|
![]() ![]() You may like...
System Level Hardware/Software Co-Design…
Joris Van Den Hurk, Jochen A. G Jess
Hardcover
R4,364
Discovery Miles 43 640
Modeling, Verification and Exploration…
Filip Thoen, Francky Catthoor
Hardcover
R4,613
Discovery Miles 46 130
Recent Advances in Soft Computing and…
Radek Matousek, Jakub Kudela
Hardcover
R4,634
Discovery Miles 46 340
Data Access and Storage Management for…
Francky Catthoor, K. Danckaert, …
Hardcover
R4,534
Discovery Miles 45 340
|