![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
This second edition volume provides an overview of some of the types of nanostructures commonly used in nanobiomedicine. The chapters in this book discuss practical information on the synthesis and characterization of a variety of solution-phase and surface-bound nanomaterials, with examples of how they can be used in sensing, imaging, and therapeutics. Specific topics include the synthesis and characterization of molecule and biomolecule-functionalized nanoconjugates with gold, iron oxide, or polymeric cores; the development of biosensing, imaging, and therapeutic applications of multicomponent/multifunctional nanostructures; and the application of flow cytometry in nanobiomedicine. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.< Thorough and comprehensive, Biomedical Nanotechnology: Methods and Protocols, Second Edition is a useful resource for scientists and researchers at all levels who are interested in working in a new area of nanoscience and technology, or in expanding their knowledge base in their current field.
The potential of stem cells for healing and disease prevention in all fields of medicine is tremendous and has revolutionized the high-tech biomedical research. In this book, many of the most prominent researchers discuss the challenging topics of stem cell engineering, for example: Ethical issues of stem cell research; technological challenges, stem cell growth and differentiation, therapeutic applications, bioreactors and bioprocesses, high throughput and microfluidic screening platforms, stem cell identification and sorting, intercellular signaling and engineered niches, novel approaches for embryonic and adult stem cell growth and differentiation, stem cells and drug discovery, screening platforms. Stem Cell Engineering offers valuable background and reference for both the public and professionals including industrial staffers, faculty, researchers, engineers, students and scientific journalists.
The generation of tridimensional tissues, assembled from scaffolding materials populated with biologically functional cells, is the great challenge and hope of tissue bioengineering and regenerative medicine. The generation of biomaterials capable of harnessing the immune system has been particularly successful. This book provides a comprehensive view of how immune cells can be manipulated to suppresses inflammation, deliver vaccines, fight cancer cells, promote tissue regeneration or inhibit blood clotting and bacterial infections by functionally engineered biomaterials. However, long-lived polymers, such as those employed in orthopedic surgery or vascular stents, can often induce an immune reaction to their basic components. As a result, this book is also an important step towards coming to understand how to manipulate biomaterials to optimize their beneficial effects and downplay detrimental immune responses.
Man's use of enzymes dates back to the earliest times of civilization. Important human activities such as the production of certain types of foods and beverages, and the tanning of hides and skins to produce leather for garments, serendipitously took advantage of enzymes. Important advances in our understanding of the nature of enzymes and their action were made in the late 19th and early 20th centuries, seeding the explosive expansion from the 1950s and 60s onward to the present billion dollar enzyme industry. Recent developments in the fields of genetic engineering and protein chemistry are bringing ever more powerful means of analysis to bear on the study of enzyme structure and function that will undoubtedly lead to the rational modification of enzymes to match specific requirements and also the design of new enzymes with novel properties.
This collection of 14 essays written by leading researchers on a variety of topics related to biotechnology focuses on the social, ethical, economic, legal, and political aspects of biotechnological applications. Usually defined as any technique that uses living organisms or processes to make or modify products, to improve plants or animals, or to develop micro-organisms, biotechnology has political characteristics similar to those of other technological advances, such as applications of artificial intelligence in manufacturing or new procedures in medicine. In all of these innovations, the rapid application of new scientific knowledge challenges existing social values, legal and political protections, and production processes. In presenting some of the technically and politically complex policy issues that need to be faced by local, state, and national-level policy makers, as well as academic, business, agricultural, and medical institutions during the next decade, these chapters anticipate an array of social, economic, and institutional consequences that will occur if biotechnology gains wide acceptance. The volume is divided into four sections that assess various facets of the biotechnological phenomenon. In Part I, biotechnology's social and political dimensions are probed in three chapters that examine the subject from three very different perspectives. American universities, agricultural cooperatives, and developing countries are the focus of Part II which investigates the response of institutions to biotechnological development. In Part III, biotechnology's potential impacts are gauged in three chapters that analyze economic and legal influences, inquire into the dairy industry and regulation of genetically engineered organisms, and evaluate regulatory experience with food safety. The final section is devoted to a presentation of public policy responses to biotechnology and includes four chapters that center on issue development and responsibilities, economic development and public policy as they relate to biotechnology, and a challenge to congressional policy makers and policy analysts. A real groundbreaker with substantial implications for the 21st century, this collection of essays must be read by all public policy makers and by scientists working to further biotechnological development. This work is suitable as a textbook in upper level and graduate courses in public policy, interdisciplinary biotechnology, and science and technology courses.
Biotechnology is a rapidly growing research area which is immediately translated into industrial applications. Although over 1000 research papers have emerged on various aspects of red beet and the chemistry of betalaines pigments, surprisingly no comprehensive book is available. The proposed Red Beet book encompasses a scholarly compilation of recent biotechnological research developments made in basic science, biochemistry of the chief components, technological developments in augmenting and recovery of such useful compounds and value-added products with discussions on future perspectives. The book will provide detailed information of the chemistry of the main components of normal and genetically engineered beetroot.
Biotechnology is in many respects shaping our life and affecting our means of production and the creation of jobs. Progress in the applications of biotechnology depends on a wide base of basic as well as applied sciences. The output of biotechnology has already proved itself in many diverse fields from health to biomining and from agriculture to enzyme "breeding." It is therefore difficult to follow all of the current as well as the potential applications of biotechnology.
This book shows the various sandwich assays that are constructed from recognition molecules, such as antibodies, oligonucleotide sequences and aptamers, developed as a result of nano- and biotechnology advances. It consists of ten chapters presenting interesting examples of these assays, organized according to the type of analytic methods (colorimetric, fluorescence, electrochemical, etc.) and detected objects (protein, nucleic acid, small-molecule, ion, etc.). It also includes a chapter discussing the introduction of sandwich assays as biosensors for the detection of a range of targets. It is an interesting and useful resource for a wide readership in various fields of chemical science and nanotechnology.
At the end of the 20th century, a tremendous progress was made in biotechnology in its widest sense. This progress was largely possible as a result of joint efforts of top academic researchers in both pure fundamental sciences and applied research. The surplus value of such interdisciplinary approaches was clearly highlighted during the 9th European Congress on Biotechnology that was held in Brussels, Belgium (11-15 July, 1999). The present volume in the 'Focus on Biotechnology' series, entiteld 'Physics and Chemistry Basis for Biotechnology' contains selected presentations from this meeting, A collection of experts has made serious efforts to present some of the latest developments in various scientific fields and to unveil prospective evolutions on the threshold of the new millenium. In all contributions the emphasis is on emerging new areas of research in which physicochemical principles form the foundation. In reading the different chapters, it appears that more than ever significant advances in biotechnology very often depend on breakthroughs in the biotechnology itself (e.g.
Biotechnology is in many aspects shaping our life and affecting our
means
Arbuscular Mycorrhiza (AM) is the most common mycorrhizal type involved in agricultural systems, and the most widespread plant root symbiosis. The fungi involved (Glomales) are known to promote plant growth and health by acting as biofertilizers, bioprotectors and bioregulators. The main aim of this book is to provide readers with theoretical and applied knowledge essential for the use of AM fungi in improving plant health and fitness, production of high quality food and in conservation of natural resources. The different chapters target understanding the role of AM fungi in sustainable crop production, discussing ways to improve biological equilibria between microorganisms in the mycorrhizosphere, analysing genetic, physiological, cellular and molecular bases of AM functioning and establishing technologies for inoculum production, according to the regulatory guidelines for application.
The tobacco BY-2 cell system is a unique model cell line for the study of dynamic features of plant cells. As extension of Volume 53, Tobacco BY-2 Cells, which presented basic aspects of the cell system, this present volume provides a wealth of new approaches. Topics include: various aspects of the cell cycle and cellular dynamics using BY-2 cells; physiological and developmental aspects of BY-2 cells; recent developments in the knowledge of intracellular traffic of BY-2 cells; BY-2 cells as hosts for infectious diseases; dynamic features of mitochondrial fusion and division; BY-2 cells as tools to elucidate the biosynthesis of isoprenoids; recent developments in the omics of BY-2 cells; and novel techniques for handling BY-2 cells. This latest volume in the series is an invaluable source of information for scientists in basic and applied plant biology.
This volume deals with "Microbial Production of L-Amino Acids" and presents five comprehensive, expert and actual review articles on the modern production of Amino Acids by application of biotechnologically optimized microorganisms. This includes not only the modern techniques of enzyme, metabolic and transport engineering but also sophisticated analytical methods like metabolic flux analysis and subsequent pathway modeling. A general review about industrial processes of Amino Acid production provides a comprehensive overview about recent strain development as well as fermentation technologies. It was our special interest to focus the other articles on the most important and best selling amino acids on the world market i.e. L-Glutamate, L-Lysine and L-Threonine. The authors of this special volume have contributed significantly to the progress of Amino Acid biotechnology in the last decades and earn our special gratitude and admiration for their expert review articles.
Building Biotechnology helps readers start and manage biotechnology companies and understand the business of biotechnology. This acclaimed book describes the convergence of scientific, policy, regulatory, and commercial factors that drive the biotechnology industry and define its scope. In addition to its popularity among business professionals and scientists seeking to apply their skills to biotechnology, Building Biotechnology has also been adopted as a course text in dozens of advanced biotechnology programs. This fourth edition significantly expands upon the foundation laid by the first three, updating case law and business models in this dynamic industry and adding significantly more case studies, informative figures and tables. Most importantly, Building Biotechnology enables seasoned business professionals and entrepreneurial scientists alike to understand the drivers of biotechnology businesses and apply their established skills for commercial success.
For many years the use of chemical agents such as pesticides and
herbicides has been effective in controlling the many varieties of
pests that infest both agricultural crops and backyard gardens.
However, these pests are gradually becoming resistant to these
agents, because the agents themselves are acting as selective
factors making the pests better and better able to resist and
persist. As a result, the use of biological controlling agents is
increasing.
Assisting Oxidative Protein Folding: How Do Protein Disulphide-Isomerases Couple Conformational and Chemical Processes in Protein Folding?, by A. Katrine Wallis and Robert B. Freedman Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins, by Cordelia Schiene-Fischer, Tobias Aumuller and Gunter Fischer Small Heat-Shock Proteins: Paramedics of the Cell, by Gillian R. Hilton, Hadi Lioe, Florian Stengel, Andrew J. Baldwin und Justin L. P. Benesch Allostery in the Hsp70 Chaperone Proteins, by Erik R. P. Zuiderweg, Eric B. Bertelsen, Aikaterini Rousaki, Matthias P. Mayer, Jason E. Gestwicki and Atta Ahmad Hsp90: Structure and Function, by Sophie E. Jackson Extracellular Chaperones, by Rebecca A. Dabbs, Amy R. Wyatt, Justin J. Yerbury, Heath Ecroyd and Mark R. Wilson"
My journey into this fascinating field of biotechnology started about 26 years ago at a small biotechnology company in South San Francisco called Genentech. I was very fortunate to work for the company that begat the biotech industry during its formative years. This experience established a solid foundation from which I could grow in both the science and business of biotechnology. After my fourth year of working on Oyster Point Boulevard, a close friend and colleague left Genentech to join a start-up biotechnology company. Later, he approached me to leave and join him in of all places - Oklahoma. He persisted for at least a year before I seriously considered his proposal. After listening to their plans, the opportunity suddenly became more and more intriguing. Finally, I took the plunge and joined this ent- preneurial team in cofounding and growing a start-up biotechnology company. Making that fateful decision to leave the security of a larger company was extremely difficult, but it turned out to be the beginning of an entrepreneurial career that forever changed how I viewed the biotechnology industry. Since that time, I have been fortunate to have cofounded two other biotechnology com- nies and even participated in taking one of them public. During my career in these start-ups, I held a variety of positions, from directing the science, operations, regulatory, and marketing components, to subsequently becoming CEO.
The scope of opportunities in chemical and biomolecular engineering has grown tremendously in recent years. Careers in Chemical and Biomolecular Engineering conveys the breadth and depth of today's chemical and biomolecular engineering practice, and describes the intellectually enriching, socially conscious and financially lucrative opportunities available for such graduates in an ever-widening array of industries and applications. This book aims to help students interested in studying chemical engineering and biomolecular engineering to understand the many potential career pathways that are available in these dynamic fields - and is an indispensable resource for the parents, teachers, advisors and guidance counselors who support them, In addition to 10 chapters that discuss the roles such graduates play in many diverse industries, this book also features 25 Profile articles that share in-depth, first-person insight from industry-leading chemical and biomolecular engineers. These technical professionals discuss their work and educational experiences (in terms of both triumphs and challenges), and share wisdom and recommendations for students pursuing these two dynamic engineering disciplines.
"Cardiac Tissue Engineering: Methods and Protocols "presents a collection of protocols on cardiac tissue engineering from pioneering and leading researchers around the globe. These include methods and protocols for cell preparation, biomaterial preparation, cell seeding, and cultivation in various systems. Written in the highly successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, "Cardiac Tissue Engineering: Methods and Protocols "highlights the major techniques, both experimental and computational, for the study of cardiovascular tissue engineering.
Hands-on experts in nanomaterial synthesis and application describe in detail the key experimental techniques currently employed in novel materials synthesis, dynamic cellular imaging, and biological assays. The author's emphasize diverse strategies to synthesize and functionalize the use of nanoparticles for biological applications. Additional chapters focus on the use of biological components (peptides, antibodies, and DNA) to synthesize and organize nanoparticles to be used a building block in larger assemblies. These new materials make it possible to image cellular processes for longer durations, leading to high throughput cellular-based screens for drug discovery, drug delivery, and diagnostic applications. Highlights include overview chapters on quantum dots and DNA nanotechnology, and cutting-edge techniques in the emerging nanobiotachnology arena.
Biohydrogen is considered the most promising energy carrier and its utilization for energy storage is a timely technology. This book presents latest research results and strategies evolving from an international research cooperation, discussing the current status of Biohydrogen research and picturing future trends and applications.
This detailed volume provides background on recent new technology developments highlighting the potential of the genomic era in wheat breeding with invaluable instruction on the methodology, which is complemented by overview chapters on the status of new technology application in major wheat production countries. The topics, addressed by internationally renowned scientists active in the field, cover methods underpinning the latest developments in the field of wheat biotechnology. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Wheat Biotechnology: Methods and Protocols serves as a vital resource for scientists working to breed future high-yielding wheat varieties to sustain a growing population in an increasingly unpredictable world.
In an ever-increasing domain of activity Amino Acids Peptides and Proteins provides an annual compilation of the world's research effort into this important area of biological chemistry. Volume 29 provides a review of literature published during 1996. Comprising a comprehensive review of significant developments at this biology/chemistry interface each volume opens with an overview of amino acids and their applications. Work on peptides is reviewed over several chapters ranging from current trends in their synthesis and conformational and structural analysis to peptidomimetics and the discovery of peptide-related molecules in nature. The application of advanced techniques in structural elucidation is incorporated into all chapters whilst periodic chapters on metal complexes of amino acids, peptides and beta-lactams extend the scope of coverage. Efficient searching of specialist topics is facilitated by the sub-division of chapters into discrete subject areas allowing annual trends to be monitored. All researchers in the pharmaceutical and allied industries and at the biology/chemistry interface in academia will find this an indispensable reference source. |
You may like...
Molecular Medical Microbiology
Yi-Wei Tang, Musa Hindiyeh, …
Mixed media product
R14,897
Discovery Miles 148 970
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R3,974
Discovery Miles 39 740
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,463
Discovery Miles 34 630
De Novo Peptide Design - Principles and…
Vibin Ramakrishnan, Kirti Patel, …
Paperback
R2,941
Discovery Miles 29 410
Frontiers in Aquaculture Biotechnology
W. S. Lakra, Mukunda Goswami, …
Paperback
R3,925
Discovery Miles 39 250
|