![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
This book focuses on various types of bioactive compounds, including secondary metabolites, oligosaccharides, polysaccharides, flavonoids, peptides/proteins, carotenoid pigments, quinones, terpenes, and polyunsaturated fatty acids, and presents an overview of their nutraceutical activities. It covers the current status and future potential of food compounds, as well as extraction technologies for bioactives derived from plant, fungi and marine-derived bioactive agents. Finally, health-promoting effects of plant, fungi and marine-derived bioactive agents are discussed. Chapters come from top researchers in this area from around the globe. The volume caters to the needs of undergraduate and post-graduate students in the area of food biotechnology, food bioprocessing, biotechnology, food engineering, etc., and also contains information pertinent to researchers.
Biohydrogen is considered the most promising energy carrier and its utilization for energy storage is a timely technology. This book presents latest research results and strategies evolving from an international research cooperation, discussing the current status of Biohydrogen research and picturing future trends and applications.
This detailed volume provides background on recent new technology developments highlighting the potential of the genomic era in wheat breeding with invaluable instruction on the methodology, which is complemented by overview chapters on the status of new technology application in major wheat production countries. The topics, addressed by internationally renowned scientists active in the field, cover methods underpinning the latest developments in the field of wheat biotechnology. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Wheat Biotechnology: Methods and Protocols serves as a vital resource for scientists working to breed future high-yielding wheat varieties to sustain a growing population in an increasingly unpredictable world.
Coronavirus Drug Discovery, Volume Two: Antiviral Agents from Natural Products and Nanotechnological Applications presents detailed information on drug discovery against COVID-19. Sections in this volume present chapters that focus on the various antiviral agents from natural products that have the propensity to be used as chemical scaffolds for the development of drugs against COVID-19. Also captured are the dietary sources of antioxidant bioactives that may help boost the immune system for the management of COVID-19. Other chapters describe the application of nanotechnology for efficient and effective delivery of drugs against COVID-19. Written by global team of experts, this book is an excellent resource for drug developers, medicinal chemists, pharmaceutical companies in R&D and research institutes in both academia and industry.
Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Building Biotechnology helps readers start and manage biotechnology companies and understand the business of biotechnology. This acclaimed book describes the convergence of scientific, policy, regulatory, and commercial factors that drive the biotechnology industry and define its scope. In addition to its popularity among business professionals and scientists seeking to apply their skills to biotechnology, Building Biotechnology has also been adopted as a course text in dozens of advanced biotechnology programs. This fourth edition significantly expands upon the foundation laid by the first three, updating case law and business models in this dynamic industry and adding significantly more case studies, informative figures and tables. Most importantly, Building Biotechnology enables seasoned business professionals and entrepreneurial scientists alike to understand the drivers of biotechnology businesses and apply their established skills for commercial success.
"Cardiac Tissue Engineering: Methods and Protocols "presents a collection of protocols on cardiac tissue engineering from pioneering and leading researchers around the globe. These include methods and protocols for cell preparation, biomaterial preparation, cell seeding, and cultivation in various systems. Written in the highly successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, "Cardiac Tissue Engineering: Methods and Protocols "highlights the major techniques, both experimental and computational, for the study of cardiovascular tissue engineering.
Arbuscular Mycorrhiza (AM) is the most common mycorrhizal type involved in agricultural systems, and the most widespread plant root symbiosis. The fungi involved (Glomales) are known to promote plant growth and health by acting as biofertilizers, bioprotectors and bioregulators. The main aim of this book is to provide readers with theoretical and applied knowledge essential for the use of AM fungi in improving plant health and fitness, production of high quality food and in conservation of natural resources. The different chapters target understanding the role of AM fungi in sustainable crop production, discussing ways to improve biological equilibria between microorganisms in the mycorrhizosphere, analysing genetic, physiological, cellular and molecular bases of AM functioning and establishing technologies for inoculum production, according to the regulatory guidelines for application.
Biotechnology for Beginners, Third Edition presents the latest developments in the evolving field of biotechnology which has grown to such an extent over the past few years that increasing numbers of professional's work in areas that are directly impacted by the science. This book offers an exciting and colorful overview of biotechnology for professionals and students in a wide array of the life sciences, including genetics, immunology, biochemistry, agronomy and animal science. This book will also appeals to lay readers who do not have a scientific background but are interested in an entertaining and informative introduction to the key aspects of biotechnology. Authors Renneberg and Loroch discuss the opportunities and risks of individual technologies and provide historical data in easy-to-reference boxes, highlighting key topics. The book covers all major aspects of the field, from food biotechnology to enzymes, genetic engineering, viruses, antibodies, and vaccines, to environmental biotechnology, transgenic animals, analytical biotechnology, and the human genome.
The tobacco BY-2 cell system is a unique model cell line for the study of dynamic features of plant cells. As extension of Volume 53, Tobacco BY-2 Cells, which presented basic aspects of the cell system, this present volume provides a wealth of new approaches. Topics include: various aspects of the cell cycle and cellular dynamics using BY-2 cells; physiological and developmental aspects of BY-2 cells; recent developments in the knowledge of intracellular traffic of BY-2 cells; BY-2 cells as hosts for infectious diseases; dynamic features of mitochondrial fusion and division; BY-2 cells as tools to elucidate the biosynthesis of isoprenoids; recent developments in the omics of BY-2 cells; and novel techniques for handling BY-2 cells. This latest volume in the series is an invaluable source of information for scientists in basic and applied plant biology.
For many years the use of chemical agents such as pesticides and
herbicides has been effective in controlling the many varieties of
pests that infest both agricultural crops and backyard gardens.
However, these pests are gradually becoming resistant to these
agents, because the agents themselves are acting as selective
factors making the pests better and better able to resist and
persist. As a result, the use of biological controlling agents is
increasing.
My journey into this fascinating field of biotechnology started about 26 years ago at a small biotechnology company in South San Francisco called Genentech. I was very fortunate to work for the company that begat the biotech industry during its formative years. This experience established a solid foundation from which I could grow in both the science and business of biotechnology. After my fourth year of working on Oyster Point Boulevard, a close friend and colleague left Genentech to join a start-up biotechnology company. Later, he approached me to leave and join him in of all places - Oklahoma. He persisted for at least a year before I seriously considered his proposal. After listening to their plans, the opportunity suddenly became more and more intriguing. Finally, I took the plunge and joined this ent- preneurial team in cofounding and growing a start-up biotechnology company. Making that fateful decision to leave the security of a larger company was extremely difficult, but it turned out to be the beginning of an entrepreneurial career that forever changed how I viewed the biotechnology industry. Since that time, I have been fortunate to have cofounded two other biotechnology com- nies and even participated in taking one of them public. During my career in these start-ups, I held a variety of positions, from directing the science, operations, regulatory, and marketing components, to subsequently becoming CEO.
This book discusses the recent innovations in the development of various advanced biopolymeric systems, including gels, in situ gels, hydrogels, interpenetrating polymer networks (IPNs), polyelectrolyte complexes (PECs), graft co-polymers, stimuli-responsive polymers, polymeric nanoparticles, nanocomposites, polymeric micelles, dendrimers, liposomes and scaffolds. It also examines their applications in drug delivery.
This book provides a comprehensive review of biosynthetic approaches to the production of industrially important chemicals and the environmental challenges involved. Its 19 chapters discuss different aspects of biosynthetic technology from the perspective of leading experts in the field. It covers various biorefinery approaches, including the use of microbes, metabolically engineered plants, biomass-based and green technology methods. Further, it examines important research in the areas of organic and hazardous waste composting, management and recovery of nutraceuticals from agro-industrial waste, biosynthesis and technological advancements of biosurfactants and waste water bioremediation. This book contributes to the scientific literature on biosynthetic technologies and the related environmental challenges for researchers and academics working in this area around the globe.
This book provides an overview of the Ocimum genus from its genetic diversity to genome sequences, metabolites and their therapeutic utilities. Tulasi, Ocimum tenuiflorum, as a member of the family Lamiaceae, is a sacred plant in India. The plants of this genus Ocimum are collectively referred to as Basil and holy basil is worshipped in the Hindu religion. Basils are reservoirs of diverse terpenoids, phenylpropanoids and flavonoids, in addition to commercially important aromatic essential oils. In 2016, two working groups in India published the genome sequence in two different genotypes of Ocimum tenuiflorum. To help the readers understand the complexities of the genus and different chemotypes, this book accumulates all the available information on this medicinal plant including the genome. The complete knowledge may enable researchers to generate specific chemotypes in basil either through conventional breeding or development of transgenic lines. It also makes it possible to investigate the medicinal nature of holy basil compared to different species of the same genus.
Hands-on experts in nanomaterial synthesis and application describe in detail the key experimental techniques currently employed in novel materials synthesis, dynamic cellular imaging, and biological assays. The author's emphasize diverse strategies to synthesize and functionalize the use of nanoparticles for biological applications. Additional chapters focus on the use of biological components (peptides, antibodies, and DNA) to synthesize and organize nanoparticles to be used a building block in larger assemblies. These new materials make it possible to image cellular processes for longer durations, leading to high throughput cellular-based screens for drug discovery, drug delivery, and diagnostic applications. Highlights include overview chapters on quantum dots and DNA nanotechnology, and cutting-edge techniques in the emerging nanobiotachnology arena.
Defined as, "The science about the development of an embryo from the fertilization of the ovum to the fetus stage," embryology has been a mainstay at universities throughout the world for many years. Throughout the last century, embryology became overshadowed by experimental-based genetics and cell biology, transforming the field into developmental biology, which replaced embryology in Biology departments in many universities. Major contributions in this young century in the fields of molecular biology, biochemistry and genomics were integrated with both embryology and developmental biology to provide an understanding of the molecular portrait of a "development cell." That new integrated approach is known as stem-cell biology; it is an understanding of the embryology and development together at the molecular level using engineering, imaging and cell culture principles, and it is at the heart of this seminal book. Stem Cells and Regenerative Medicine: From Molecular Embryology to Tissue Engineering is completely devoted to the basic developmental, cellular and molecular biological aspects of stem cells as well as their clinical applications in tissue engineering and regenerative medicine. It focuses on the basic biology of embryonic and cancer cells plus their key involvement in self-renewal, muscle repair, epigenetic processes, and therapeutic applications. In addition, it covers other key relevant topics such as nuclear reprogramming induced pluripotency and stem cell culture techniques using novel biomaterials. A thorough introduction to stem-cell biology, this reference is aimed at graduate students, post-docs, and professors as well as executives and scientists in biotech and pharmaceutical companies.
This volume deals with "Microbial Production of L-Amino Acids" and presents five comprehensive, expert and actual review articles on the modern production of Amino Acids by application of biotechnologically optimized microorganisms. This includes not only the modern techniques of enzyme, metabolic and transport engineering but also sophisticated analytical methods like metabolic flux analysis and subsequent pathway modeling. A general review about industrial processes of Amino Acid production provides a comprehensive overview about recent strain development as well as fermentation technologies. It was our special interest to focus the other articles on the most important and best selling amino acids on the world market i.e. L-Glutamate, L-Lysine and L-Threonine. The authors of this special volume have contributed significantly to the progress of Amino Acid biotechnology in the last decades and earn our special gratitude and admiration for their expert review articles.
Assisting Oxidative Protein Folding: How Do Protein Disulphide-Isomerases Couple Conformational and Chemical Processes in Protein Folding?, by A. Katrine Wallis and Robert B. Freedman Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins, by Cordelia Schiene-Fischer, Tobias Aumuller and Gunter Fischer Small Heat-Shock Proteins: Paramedics of the Cell, by Gillian R. Hilton, Hadi Lioe, Florian Stengel, Andrew J. Baldwin und Justin L. P. Benesch Allostery in the Hsp70 Chaperone Proteins, by Erik R. P. Zuiderweg, Eric B. Bertelsen, Aikaterini Rousaki, Matthias P. Mayer, Jason E. Gestwicki and Atta Ahmad Hsp90: Structure and Function, by Sophie E. Jackson Extracellular Chaperones, by Rebecca A. Dabbs, Amy R. Wyatt, Justin J. Yerbury, Heath Ecroyd and Mark R. Wilson"
The scope of opportunities in chemical and biomolecular engineering has grown tremendously in recent years. Careers in Chemical and Biomolecular Engineering conveys the breadth and depth of today's chemical and biomolecular engineering practice, and describes the intellectually enriching, socially conscious and financially lucrative opportunities available for such graduates in an ever-widening array of industries and applications. This book aims to help students interested in studying chemical engineering and biomolecular engineering to understand the many potential career pathways that are available in these dynamic fields - and is an indispensable resource for the parents, teachers, advisors and guidance counselors who support them, In addition to 10 chapters that discuss the roles such graduates play in many diverse industries, this book also features 25 Profile articles that share in-depth, first-person insight from industry-leading chemical and biomolecular engineers. These technical professionals discuss their work and educational experiences (in terms of both triumphs and challenges), and share wisdom and recommendations for students pursuing these two dynamic engineering disciplines.
Nano-enabled Sustainable and Precision Agriculture is the first single-volume resource to cover this important field using a whole systems approach that considers both opportunities and challenges. The book provides a comprehensive understanding of the role of nanotechnology in agriculture from broad aspects, but also includes a comprehensive view of the interaction of nanomaterials with soil-plant systems. It highlights aspects not described in previous books, including the application of nanoinformatics and artificial intelligence in nano-enabled sustainable agriculture, the application of nanotechnology in alternative forms of agriculture such as hydroponics, and regulatory frameworks for this research field. The book addresses all these aspects by including sections on enhanced sustainability, reduced pollution and enhanced ecosystems' health, and the role of nanoinformatics and machine learning.
|
![]() ![]() You may like...
The Oxford Handbook of John Donne
Jeanne Shami, Dennis Flynn, …
Hardcover
R4,841
Discovery Miles 48 410
Women Constructing Men - Female…
Sarah S. G. Frantz, Katharina Rennhak
Paperback
R1,319
Discovery Miles 13 190
Encyclopedia of American War Literature
Mark A. Graves, Philip K. Jason
Hardcover
R2,490
Discovery Miles 24 900
|