![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
The emergence of nanotechnology has had a profound effect on almost every aspect of the 21st century's daily life. It has had a revolutionary impact from stain-resistant clothing and cosmetics to environmental issues , including energy and medicine and even aerospace engineering. In Oxidative Stress and Nanotechnology: Methods and Protocols, expert researchers in the field detail various aspects of nanotechnology from the oxidative stress point of view. Focusing on synthesis of different antioxidant nanoparticles and antioxidant-loaded nanoparticles, as well as their in vitro/ in vivo mechanisms of action along with their clinical relevance. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Oxidative Stress and Nanotechnology: Methods and Protocols seeks to aid scientists in the further study of techniques for nanotechnology in pathophysiology and protection from the oxidative stress point of view.
"RFK Jr. exposes the decades of lies."--Luc Montagnier, Nobel laureate From the New York Times, Wall Street Journal, USA Today, Publishers Weekly bestselling author of The Real Anthony Fauci comes an explosive exposé of the cover-up behind the true origins of COVID-19. "Gain-of-function" experiments are often conducted to deliberately develop highly virulent, easily transmissible pathogens for the stated purpose of developing preemptive vaccines for animal viruses before they jump to humans. More insidious is the "dual use" nature of this research, specifically directed toward bioweapons development. The Wuhan Cover-Up pulls back the curtain on how the US government's increase in biosecurity spending after the 2001 terror attacks--facilitated by Dr. Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases (NIAID)--set in motion a plan to transform the NIAID into a de facto Defense Department agency. While Dr. Fauci zealously funded and pursued gain-of-function research, concern grew among some scientists and government officials about the potential for accidental or deliberate release of weaponized viruses from labs that might trigger worldwide pandemics. A moratorium was placed on this research, but true to form, Dr. Fauci found ways to continue unperturbed--outsourcing some of the most controversial experiments offshore to China and providing federal funding to Wuhan Institute of Virology's (WIV's) leading researchers for gain-of-function studies in partnership with the Chinese military and the Chinese Communist Party. Robert F. Kennedy Jr., whose meticulously researched and rigorously sourced analysis, leads readers on a staggering journey to learn about: the key enablers and henchmen pushing for gain-of-function research the economic motives behind gain-of-function research successfully engineered "chimeric viruses" that can infect and kill humans the coordinated effort to silence speculation of COVID-19's laboratory genesis the complicity of scientific journals to hide the origins of COVID-19 the role of the Wuhan Institute of Virology in China's biowarfare/biodefense program the relationships between US health, military, and intelligence bureaucracies and scientists and their Chinese counterparts the roles of Bill Gates and Sir Jeremy Farrar in helping to orchestrate China's global cover-up The Wuhan Cover-Up unveils a global conspiracy of epic proportion and lethal consequence.
Various types of secondary agriculture and forestry wastes represent valuable resource materials for developing alternate energy as biofuels and other value added products such as sugars, phenols, furans, organic acids, enzymes and digestible animal feed etc. However, if not managed properly, waste material and environmental contaminants generated by various industries such as food and feed, pulp and paper and textile may lead to severe environmental pollution. The energy, food and feed demand necessitate developing simple and economically viable technologies for environmental management and resource recovery. Microorganisms and their enzymes contribute significantly in utilization of plant residues, resource recovery and eventually in pollution mitigation. "Biotechnology for Environmental Management and Resource Recovery" presents a comprehensive review of selected research topics in a compendium of 16 chapters related to environmental pollution control and developing biotechnologies in agro-ecosystem management and bioconversion of agro-residues (lignocellulosics) into biofuels, animal feed and paper etc. This book provides a valuable resource for reference and text material to graduate and postgraduate students, researchers, scientists working in the area of microbiology, biotechnology, and environmental science and engineering.
The 21st ESACT conference was held in the beautiful surroundings of the CityWest Hotel resort in Dublin, Ireland. For the first time in ESACT history the number of participants exceeded 900: a sign of the ever increasing importance of this area. The conference commenced on Sunday June 5th with two sets of parallel workshops on the subjects listed below. An additional workshop was held on Monday lunchtime of the conferenceProcess Analytical Technology (PAT), Quality by Design (QbD) and other recent regulatory developments. 2. Innovative media products for the 21st century biopharmaceutical industry. 3. The impact of high titre media feed-streams on monoclonal antibody purification. 4. Advances in genomics and proteomics. 5. Stem Cell Technology: new developments and clinical applications.
Metabolic engineering is the practice of genetically optimizing metabolic and regulatory networks within cells to increase production and/or recovery of certain substance from cells. In Microbial Metabolic Engineering: Methods and Protocols expert researchers in the field detail many of the methods which are now commonly used to study metabolic engineering. These include methods and techniques to engineer genes and pathways, use of modern biotechnology tools in microbial metabolic engineering, and examples of metabolic engineering for real world applications such as whole cell biosensors and acetate control in large scale fermentation. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microbial Metabolic Engineering: Methods and Protocols seeks to provide researchers with an overview of key topics on microbial metabolic engineering.
The thesis presents an original and smart way to manipulate liquid and polymeric materials using a "pyro-fluidic platform" which exploits the pyro-electric effect activated onto a ferroelectric crystal. It describes a great variety of functionalities of the pyro-electrohydrodynamic platform, such as droplet self-assembling and dispensing, for manipulating multiphase liquids at the micro- and nanoscale. The thesis demonstrates the feasibility of non-contact self-assembling of liquids in plane (1D) using a micro engineered crystal, improving the dispensing capability and the smart transfer of material between two different planes (2D) and controlling and fabricating three-dimensional structures (3D). The thesis present the fabrication of highly integrated and automated 'lab-on-a-chip' systems based on microfluidics. The pyro-platform presented herein offers the great advantage of enabling the actuation of liquids in contact with a polar dielectric crystal through an electrode-less configuration. The simplicity and flexibility of the method for fabricating 3D polymer microstructures shows the great potential of the pyro-platform functionalities, exploitable in many fields, from optics to biosensing. In particular, this thesis reports the fabrication of optically active elements, such as nanodroplets, microlenses and microstructures, which have many potential applications in photonics. The capability for manipulating the samples of interest in a touch-less modality is very attractive for biological and chemical assays. Besides controlling cell growth and fate, smart micro-elements could deliver optical stimuli from and to cells monitoring their growth in real time, opening interesting perspectives for the realization of optically active scaffolds made of nanoengineered functional elements, thus paving the way to fascinating Optogenesis Studies.
The human ambition to reproduce and improve natural objects and processes has a long history, and ranges from dreams to actual design, from Icarus's wings to modern robotics and bioengineering. This imperative seems to be linked not only to practical utility but also to our deepest psychology. Nevertheless, reproducing something natural is not an easy enterprise, and the actual replication of a natural object or process by means of some technology is impossible. In this book the author uses the term naturoid to designate any real artifact arising from our attempts to reproduce natural instances. He concentrates on activities that involve the reproduction of something existing in nature, and whose reproduction, through construction strategies which differ from natural ones, we consider to be useful, appealing or interesting. The development of naturoids may be viewed as a distinct class of technological activity, and the concept should be useful for methodological research into establishing the common rules, potentialities and constraints that characterize the human effort to reproduce natural objects. The author shows that a naturoid is always the result of a reduction of the complexity of natural objects, due to an unavoidable multiple selection strategy. Nevertheless, the reproduction process implies that naturoids take on their own new complexity, resulting in a transfiguration of the natural exemplars and their performances, and leading to a true innovation explosion. While the core performances of contemporary naturoids improve, paradoxically the more a naturoid develops the further it moves away from its natural counterpart. Therefore, naturoids will more and more affect our relationships with advanced technologies and with nature, but in ways quite beyond our predictive capabilities. The book will be of interest to design scholars and researchers of technology, cultural studies, anthropology and the sociology of science and technology."
Systems biology is changing the way biological systems are studied by allowing us to examine the cell and organism as a whole. Systems biotechnology allows optimal design and development of upstream to downstream bioprocesses by taking a systems-approach. E. coli has been a model organism for almost all biological and biotechnological studies. This book brings together for the first time the state-of-the-art reviews by the world-leading experts on systems biology and biotechnological applications of E. coli. The topics covered include genomics and functional genomics, resources for systems biology, network analysis, genome-scale metabolic reconstruction, modelling and simulation, dynamic modelling and simulation, systems-level analysis of evolution, plasmids and expression systems, protein synthesis, production and export, engineering the central metabolism, synthetic biology, and systems metabolic engineering of E. coli. This book provides readers with guidance on how a complex biological system can be studied using E. coli as a model organism. It also presents how to perform synthetic biology and systems metabolic engineering studies on E. coli with successful examples, the approaches of which can be extended to other organisms. This book will be a complete resource for anyone interested in systems biology and biotechnology.
Adult Stem Cells, second edition, takes a critical look at issues concerning the developmental or differentiation potential for a variety of tissue types and for specific adult stem cell types. Since the first edition appeared a decade ago, our understanding of adult stem cells, and more specifically tissue-specific adult stem cells, has advanced tremendously. And an increased interest in regenerative medicine and potential stem cell applications has driven a quest for better understanding of stem cell biology. In turn, this has spawned much activity on generation and utilization of more and better reagents to identify and isolate stem cells and stem cell-like subpopulations, and on assays elucidating their developmental or differentiation potential and functional integration with host tissues and organs. In this fully updated new edition, chapters cover topics ranging from signaling pathways maintaining stemness in hematopoietic cells to regeneration after injury and endocrine mechanisms underlying the stem cell theory of aging. Other chapters cover stem cells by organ or system including pituitary, cardiac, epithelial, teeth, lung, ovary, prostate, liver, and many more. Importantly, the authors of the chapters have not only summarized their successes, but have also summarized some of the difficulties that each particular field is still facing with respect to maximizing the utility of stem cells in clinical settings. Collectively, they impart both the excitement and challenges facing stem cell utilization for repair and regeneration making this book essential reading for those involved in stem cell research as well as those involved in clinical assays.
Cellulolytic Enzyme Production and Enzymatic Hydrolysis for Second-Generation Bioethanol Production, by Mingyu Wang, Zhonghai Li, Xu Fang, Lushan Wang und Yinbo Qu Bioethanol from Lignocellulosic Biomass, by Xin-Qing Zhao, Li-Han Zi, Feng-Wu Bai, Hai-Long Lin, Xiao-Ming Hao, Guo-Jun Yue und Nancy W. Y. Ho Biodiesel From Conventional Feedstocks, by Wei Du und De-Hua Liu Establishing Oleaginous Microalgae Research Models for Consolidated Bioprocessing of Solar Energy, by Dongmei Wang, Yandu Lu, He Huang und Jian Xu Biobutanol, by Hongjun Dong, Wenwen Tao, Zongjie Dai, Liejian Yang, Fuyu Gong, Yanping Zhang und Yin Li Branched-Chain Higher Alcohols, by Bao-Wei Wang, Ai-Qin Shi, Ran Tu, Xue-Li Zhang, Qin-Hong Wang und Feng-Wu Bai Advances in Biogas Technology, by Ai-Jie Wang, Wen-Wei Li und Han-Qing Yu Biohydrogen Production from Anaerobic Fermentation, by Ai-Jie Wang, Guang-Li Cao und Wen-Zong Liu Microbial Fuel Cells in Power Generation and Extended Applications, by Wen-Wei Li and Guo-Ping Sheng Fuels and Chemicals from Hemicellulose Sugars, by Xiao-Jun Ji, He Huang, Zhi-Kui Nie, Liang Qu, Qing Xu and George T. Tsao
This volume is aimed in general at scientists who have an interest
in deciphering the molecular mechanisms for sequence recognition of
DNA. The methods have general applicability to small molecules as
well as oligomers and proteins, while the examples provide general
principles involved in sequence recognition.
This book summarizes the recent advancements for drug delivery systems (DDS) in terms of fundamental principles, rapidly emerging techniques and developing frontiers of molecular imprinting. Especially with the combination of enantioselective molecularly imprinted polymers and water compatible molecularly imprinted polymers, stimuli responsive imprinted DDS have been innovated and applied to dermal delivery, ophthalmic drugs and cancer treatment. This philosophy comprehensively revolutionizes the treatment strategy of human healthcare and provides the possibility to re-trigger in vivo an exhaust system after the complete release of the starting drug cargo, thus enabling precision medicine. To this end, the following unique features will be discussed and concluded: 1) State-of-the-art definition of MIP as drug delivery systems. 2) Advanced techniques and clinical applications of MIP as drug delivery systems in the past decade. 3) Novel frontiers and brand-new technologies, for example, drug delivery devices for zero-order sustained release and stimuli responsive imprinted DDS. 4) Revolutionary impact on dermal delivery, ophthalmic drugs and cancer treatment. 5) Future challenges and perspectives
This book shows how a small toolbox of experimental techniques, physical chemistry concepts as well as quantum/classical mechanics and statistical methods can be used to understand, explain and even predict extraordinary applications of these advanced engineering materials and biomolecules. It highlights how improving the material foresight by design, including the fundamental understanding of their physical and chemical properties, can provide new technological levels in the future.
The book covers the fundamentals of the field of biocatalysis that are not treated in such detail (or even not at all) in existing biocatalysis books or biochemistry textbooks. It of course does not substitute existing biochemistry textbooks but will serve a suitable supplement as it discusses biochemical fundamentals in connection with the respective topics. With focus on the interdisciplinary nature of biocatalysis, the book contains many aspects of fundamental organic chemistry and some of inorganic chemistry as well, which should make it interesting not only for biochemistry but also for chemistry students. An important theme being emphasized in the book is that applied biocatalysis is one of the main prerequisites for a sustainable development. The topics covered ranges from basic enzyme chemistry (biosynthesis, structure, properties, interaction forces, kinetics) to a detailed description of catalytic mechanisms. It covers the fundamentals of the different enzyme classes together with their applications in native and in immobilized state or in the form of whole cells in aqueous as well as non-conventional media. Topics such as catalytic antibodies, nucleic acid catalysts, non-ribosomal peptide synthesis, evolutionary methods, and the design of cells are also included.
This edited book details the plant-assisted remediation methods, which involves the interaction of plant roots with associated rhizospheric microorganisms for the remediation of soil and water contaminated with high levels of heavy metals, pesticides, radionuclides, agricultural by-products, municipal wastes, industrial solvents, petroleum hydrocarbons, organic compounds, and various other contaminants. Each chapter highlights and compares the beneficial and economical alternatives of phytoremediation to currently practiced soil, water, and air removal. This book covers state-of-the-art approaches in phytoremediation contributed by leading and eminent scientists from across the world. Phytoremediation approaches for environmental sustainability dealing the readers with a cutting-edge of multidisciplinary understanding in the principal and practical approaches of phytoremediation from laboratory research to field application. This book is of interest to researchers, teachers, environmental scientists, environmental engineers, environmentalists, and policy makers. Also, the book serves as additional reading material for undergraduate and graduate students of environmental microbiology, biotechnology, eco-toxicology, environmental remediation, waste management, and environmental sciences as well as the general audience.
This book focuses on corrosion and microbial corrosion, providing solutions for these problems based on nanotechnology and nanobiotechnology. It introduces the causes, consequences, cost and control of corrosion processes. It gives a particular emphasis on microbial corrosion of steel and other metals in oil, gas and shipping industries. The book presents the materials vulnerable to such kind of corrosion, and the use of nanomaterials to control it.
This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their application to practical issues related to design and operation of biological systems. Intended as a self-contained textbook for students in biotechnology and in industrial, chemical and biomedical engineering, this book will also represent a useful reference guide for professionals working in the above-mentioned fields.
Published since 1959, "Advances in Applied Microbiology" continues
to be one of the most widely read and authoritative review sources
in microbiology.
Gene function annotation has been a central question in molecular biology. The importance of computational function prediction is increasing because more and more large scale biological data, including genome sequences, protein structures, protein-protein interaction data, microarray expression data, and mass spectrometry data, are awaiting biological interpretation. Traditionally when a genome is sequenced, function annotation of genes is done by homology search methods, such as BLAST or FASTA. However, since these methods are developed before the genomics era, conventional use of them is not necessarily most suitable for analyzing a large scale data. Therefore we observe emerging development of computational gene function prediction methods, which are targeted to analyze large scale data, and also those which use such omics data as additional source of function prediction. In this book, we overview this emerging exciting field. The authors have been selected from 1) those who develop novel purely computational methods 2) those who develop function prediction methods which use omics data 3) those who maintain and update data base of function annotation of particular model organisms (E. coli), which are frequently referred
Marine organisms produce a wide array of toxins, many of which are not only structurally unusual, but also show potent and interesting modes of action. Since the discovery of tetrodotoxin, a pufferfish toxin, as a potent and selective blocker of Na+ channels in 1964, it has been widely used as a research tool in pharmacological and physiological research. This has led to the identification of a number of important biological functions for Na+ channels. In recent years, much biological research has been carried out at molecular and cellular levels, and therefore selective inhibitors of enzymes and selective antagonist/agonists of receptors and channels have become increasingly important research tools. Accordingly, interest in using such compounds as reagents has increased. Marine toxins are some of the most popular research tools and have already contributed much to our understanding of biological processes and disease mechanisms. Written for: Scientists, researchers, pharmacologists
|
![]() ![]() You may like...
Knowing God - The Trilogy - Knowing…
Christopher J.H. Wright
Hardcover
R1,153
Discovery Miles 11 530
|