![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
The human ambition to reproduce and improve natural objects and processes has a long history, and ranges from dreams to actual design, from Icarus's wings to modern robotics and bioengineering. This imperative seems to be linked not only to practical utility but also to our deepest psychology. Nevertheless, reproducing something natural is not an easy enterprise, and the actual replication of a natural object or process by means of some technology is impossible. In this book the author uses the term naturoid to designate any real artifact arising from our attempts to reproduce natural instances. He concentrates on activities that involve the reproduction of something existing in nature, and whose reproduction, through construction strategies which differ from natural ones, we consider to be useful, appealing or interesting. The development of naturoids may be viewed as a distinct class of technological activity, and the concept should be useful for methodological research into establishing the common rules, potentialities and constraints that characterize the human effort to reproduce natural objects. The author shows that a naturoid is always the result of a reduction of the complexity of natural objects, due to an unavoidable multiple selection strategy. Nevertheless, the reproduction process implies that naturoids take on their own new complexity, resulting in a transfiguration of the natural exemplars and their performances, and leading to a true innovation explosion. While the core performances of contemporary naturoids improve, paradoxically the more a naturoid develops the further it moves away from its natural counterpart. Therefore, naturoids will more and more affect our relationships with advanced technologies and with nature, but in ways quite beyond our predictive capabilities. The book will be of interest to design scholars and researchers of technology, cultural studies, anthropology and the sociology of science and technology."
Published since 1959, "Advances in Applied Microbiology" continues
to be one of the most widely read and authoritative review sources
in microbiology.
Systems biology is changing the way biological systems are studied by allowing us to examine the cell and organism as a whole. Systems biotechnology allows optimal design and development of upstream to downstream bioprocesses by taking a systems-approach. E. coli has been a model organism for almost all biological and biotechnological studies. This book brings together for the first time the state-of-the-art reviews by the world-leading experts on systems biology and biotechnological applications of E. coli. The topics covered include genomics and functional genomics, resources for systems biology, network analysis, genome-scale metabolic reconstruction, modelling and simulation, dynamic modelling and simulation, systems-level analysis of evolution, plasmids and expression systems, protein synthesis, production and export, engineering the central metabolism, synthetic biology, and systems metabolic engineering of E. coli. This book provides readers with guidance on how a complex biological system can be studied using E. coli as a model organism. It also presents how to perform synthetic biology and systems metabolic engineering studies on E. coli with successful examples, the approaches of which can be extended to other organisms. This book will be a complete resource for anyone interested in systems biology and biotechnology.
Adult Stem Cells, second edition, takes a critical look at issues concerning the developmental or differentiation potential for a variety of tissue types and for specific adult stem cell types. Since the first edition appeared a decade ago, our understanding of adult stem cells, and more specifically tissue-specific adult stem cells, has advanced tremendously. And an increased interest in regenerative medicine and potential stem cell applications has driven a quest for better understanding of stem cell biology. In turn, this has spawned much activity on generation and utilization of more and better reagents to identify and isolate stem cells and stem cell-like subpopulations, and on assays elucidating their developmental or differentiation potential and functional integration with host tissues and organs. In this fully updated new edition, chapters cover topics ranging from signaling pathways maintaining stemness in hematopoietic cells to regeneration after injury and endocrine mechanisms underlying the stem cell theory of aging. Other chapters cover stem cells by organ or system including pituitary, cardiac, epithelial, teeth, lung, ovary, prostate, liver, and many more. Importantly, the authors of the chapters have not only summarized their successes, but have also summarized some of the difficulties that each particular field is still facing with respect to maximizing the utility of stem cells in clinical settings. Collectively, they impart both the excitement and challenges facing stem cell utilization for repair and regeneration making this book essential reading for those involved in stem cell research as well as those involved in clinical assays.
Cellulolytic Enzyme Production and Enzymatic Hydrolysis for Second-Generation Bioethanol Production, by Mingyu Wang, Zhonghai Li, Xu Fang, Lushan Wang und Yinbo Qu Bioethanol from Lignocellulosic Biomass, by Xin-Qing Zhao, Li-Han Zi, Feng-Wu Bai, Hai-Long Lin, Xiao-Ming Hao, Guo-Jun Yue und Nancy W. Y. Ho Biodiesel From Conventional Feedstocks, by Wei Du und De-Hua Liu Establishing Oleaginous Microalgae Research Models for Consolidated Bioprocessing of Solar Energy, by Dongmei Wang, Yandu Lu, He Huang und Jian Xu Biobutanol, by Hongjun Dong, Wenwen Tao, Zongjie Dai, Liejian Yang, Fuyu Gong, Yanping Zhang und Yin Li Branched-Chain Higher Alcohols, by Bao-Wei Wang, Ai-Qin Shi, Ran Tu, Xue-Li Zhang, Qin-Hong Wang und Feng-Wu Bai Advances in Biogas Technology, by Ai-Jie Wang, Wen-Wei Li und Han-Qing Yu Biohydrogen Production from Anaerobic Fermentation, by Ai-Jie Wang, Guang-Li Cao und Wen-Zong Liu Microbial Fuel Cells in Power Generation and Extended Applications, by Wen-Wei Li and Guo-Ping Sheng Fuels and Chemicals from Hemicellulose Sugars, by Xiao-Jun Ji, He Huang, Zhi-Kui Nie, Liang Qu, Qing Xu and George T. Tsao
This volume is aimed in general at scientists who have an interest
in deciphering the molecular mechanisms for sequence recognition of
DNA. The methods have general applicability to small molecules as
well as oligomers and proteins, while the examples provide general
principles involved in sequence recognition.
This book summarizes the recent advancements for drug delivery systems (DDS) in terms of fundamental principles, rapidly emerging techniques and developing frontiers of molecular imprinting. Especially with the combination of enantioselective molecularly imprinted polymers and water compatible molecularly imprinted polymers, stimuli responsive imprinted DDS have been innovated and applied to dermal delivery, ophthalmic drugs and cancer treatment. This philosophy comprehensively revolutionizes the treatment strategy of human healthcare and provides the possibility to re-trigger in vivo an exhaust system after the complete release of the starting drug cargo, thus enabling precision medicine. To this end, the following unique features will be discussed and concluded: 1) State-of-the-art definition of MIP as drug delivery systems. 2) Advanced techniques and clinical applications of MIP as drug delivery systems in the past decade. 3) Novel frontiers and brand-new technologies, for example, drug delivery devices for zero-order sustained release and stimuli responsive imprinted DDS. 4) Revolutionary impact on dermal delivery, ophthalmic drugs and cancer treatment. 5) Future challenges and perspectives
Marine organisms produce a wide array of toxins, many of which are not only structurally unusual, but also show potent and interesting modes of action. Since the discovery of tetrodotoxin, a pufferfish toxin, as a potent and selective blocker of Na+ channels in 1964, it has been widely used as a research tool in pharmacological and physiological research. This has led to the identification of a number of important biological functions for Na+ channels. In recent years, much biological research has been carried out at molecular and cellular levels, and therefore selective inhibitors of enzymes and selective antagonist/agonists of receptors and channels have become increasingly important research tools. Accordingly, interest in using such compounds as reagents has increased. Marine toxins are some of the most popular research tools and have already contributed much to our understanding of biological processes and disease mechanisms. Written for: Scientists, researchers, pharmacologists
This book shows how a small toolbox of experimental techniques, physical chemistry concepts as well as quantum/classical mechanics and statistical methods can be used to understand, explain and even predict extraordinary applications of these advanced engineering materials and biomolecules. It highlights how improving the material foresight by design, including the fundamental understanding of their physical and chemical properties, can provide new technological levels in the future.
Published since 1959, "Advances in Applied Microbiology" continues
to be one of the most widely read and authoritative review sources
in microbiology.
The book covers the fundamentals of the field of biocatalysis that are not treated in such detail (or even not at all) in existing biocatalysis books or biochemistry textbooks. It of course does not substitute existing biochemistry textbooks but will serve a suitable supplement as it discusses biochemical fundamentals in connection with the respective topics. With focus on the interdisciplinary nature of biocatalysis, the book contains many aspects of fundamental organic chemistry and some of inorganic chemistry as well, which should make it interesting not only for biochemistry but also for chemistry students. An important theme being emphasized in the book is that applied biocatalysis is one of the main prerequisites for a sustainable development. The topics covered ranges from basic enzyme chemistry (biosynthesis, structure, properties, interaction forces, kinetics) to a detailed description of catalytic mechanisms. It covers the fundamentals of the different enzyme classes together with their applications in native and in immobilized state or in the form of whole cells in aqueous as well as non-conventional media. Topics such as catalytic antibodies, nucleic acid catalysts, non-ribosomal peptide synthesis, evolutionary methods, and the design of cells are also included.
This edited book details the plant-assisted remediation methods, which involves the interaction of plant roots with associated rhizospheric microorganisms for the remediation of soil and water contaminated with high levels of heavy metals, pesticides, radionuclides, agricultural by-products, municipal wastes, industrial solvents, petroleum hydrocarbons, organic compounds, and various other contaminants. Each chapter highlights and compares the beneficial and economical alternatives of phytoremediation to currently practiced soil, water, and air removal. This book covers state-of-the-art approaches in phytoremediation contributed by leading and eminent scientists from across the world. Phytoremediation approaches for environmental sustainability dealing the readers with a cutting-edge of multidisciplinary understanding in the principal and practical approaches of phytoremediation from laboratory research to field application. This book is of interest to researchers, teachers, environmental scientists, environmental engineers, environmentalists, and policy makers. Also, the book serves as additional reading material for undergraduate and graduate students of environmental microbiology, biotechnology, eco-toxicology, environmental remediation, waste management, and environmental sciences as well as the general audience.
This book focuses on corrosion and microbial corrosion, providing solutions for these problems based on nanotechnology and nanobiotechnology. It introduces the causes, consequences, cost and control of corrosion processes. It gives a particular emphasis on microbial corrosion of steel and other metals in oil, gas and shipping industries. The book presents the materials vulnerable to such kind of corrosion, and the use of nanomaterials to control it.
This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their application to practical issues related to design and operation of biological systems. Intended as a self-contained textbook for students in biotechnology and in industrial, chemical and biomedical engineering, this book will also represent a useful reference guide for professionals working in the above-mentioned fields.
Gene function annotation has been a central question in molecular biology. The importance of computational function prediction is increasing because more and more large scale biological data, including genome sequences, protein structures, protein-protein interaction data, microarray expression data, and mass spectrometry data, are awaiting biological interpretation. Traditionally when a genome is sequenced, function annotation of genes is done by homology search methods, such as BLAST or FASTA. However, since these methods are developed before the genomics era, conventional use of them is not necessarily most suitable for analyzing a large scale data. Therefore we observe emerging development of computational gene function prediction methods, which are targeted to analyze large scale data, and also those which use such omics data as additional source of function prediction. In this book, we overview this emerging exciting field. The authors have been selected from 1) those who develop novel purely computational methods 2) those who develop function prediction methods which use omics data 3) those who maintain and update data base of function annotation of particular model organisms (E. coli), which are frequently referred
This is the fourth updated and revised edition of a well-received book that emphasises on fungal diversity, plant productivity and sustainability. It contains new chapters written by leading experts in the field. This book is an up-to-date overview of current progress in mycorrhiza and association with plant productivity and environmental sustainability. The result is a must hands-on guide, ideally suited for agri-biotechnology, soil biology, fungal biology including mycorrhiza and stress management, academia and researchers. The topic of this book is particularly relevant to researchers involved in mycorrhiza, especially to food security and environmental protection. Mycorrhizas are symbioses between fungi and the roots of higher plants. As more than 90% of all known species of plants have the potential to form mycorrhizal associations, the productivity and species composition and the diversity of natural ecosystems are frequently dependent upon the pre sence and activity of mycorrhizas. The biotechnological application of mycorrhizas is expected to promote the production of food while maintaining ecologically and economically sustainable production systems.
This book presents an overview of fundamental aspects of surface-based biosensors and techniques for enhancing their detection sensitivity and speed. It focuses on rapid detection using miniaturized sensors and describes the physical principles of nanoscale transducers, surface modifications, microfluidics and reaction engineering, diffusion and kinetics. A key challenge in the field of bioanalytical sensors is the rapid delivery of target biomolecules to the sensing surface. While various nanostructures have shown great promise in sensitive detection, diffusion-limited binding of analyte molecules remains a fundamental problem. Recently, many researchers have put forward novel schemes to overcome this challenge, such as nanopore channels, electrokinetics, and dielectrophoresis, to name but a few. This book provides the readers an up-to-date account on these technological advances.
Weeds, insects, rodents, and pathogens are major problems in agricultural and urban environments; there is a clear need to augment chemical methods of control with biological methods. Until now these efforts have had limited success because of insufficient virulence of the host-specific organisms used. Naturally occurring biological agents are in evolutionary balance with their hosts, and attaining the level of control typically desired would lead to extinction of both the control agent and its host.In this book, the main researchers involved in enhancing fungal, bacterial, virus and insect biological control agents on different targets review progress in overcoming the barrier of insufficient virulence. This multi-disciplinary group, with backgrounds in many facets of biotechnology and crop protection, reviews their work and that of others, and describes the approaches, the successes and the remaining barriers in an integrated manner.
DNA and RNA fractions have been isolated from the whole blood, serum, plasma, the surface of blood cells, urine, saliva and spinal fluid from both healthy individuals and clinical patients. Recent developments are presented concerning the isolation, quantification and analysis of these molecules and their use in the identification of specific nucleic acid fragments related to a variety of clinical disorders thereby permitting their early diagnosis and prognosis.
Medicine and engineering work together towards solutions for biomedical problems. The interactions of blood elements with artificial materials (bags, tubes, artificial organs, etc.) require many disciplines for its understanding. Thus the effort presented in this book is the culmination of a genuine discussion on the problems arising in blood banks, in hospitals, in biomaterials development, in experimental haemocompatibility testing when platelets interact with biomaterials. Haematologists, chemists, biologists and engineers have tried to put their own point of view and to understand the point of view of the other disciplines. The main themes that are presented in the discussion are: platelet collection, storage and transfusion; haemostasis and anticoagulation; platelet and biomaterials, extracorporeal circulation and implanted materials; haemorheological parameters; modulation of platelet function; biological tests for evaluating platelet biomaterial interactions.
Plant-based medicines play an important role in all cultures, and have been indispensable in maintaining health and combating diseases. The identification of active principles and their molecular targets from traditional medicine provides an enormous opportunity for drug development. Using modern biotechnology, plants with specific chemical compositions can be mass propagated and genetically improved for the extraction of bulk active pharmaceuticals. Although there has been significant progress in the use of biotechnology, using tissue cultures and genetic transformation to investigate and alter pathways for the biosynthesis of target metabolites, there are many challenges involved in bringing plants from the laboratory to successful commercial cultivation. This book presents the latest advances in the development of medicinal drugs, including topics such as plant tissue cultures, secondary metabolite production, metabolomics, metabolic engineering, bioinformatics and future biotechnological directions.
NanoBioTechnology: BioInspired Devices and Materials of the Future is a groundbreaking text that will assist scientists and students in learning the fundamentals and cutting-edge nature of this new and emerging science. Focusing on materials and building blocks for nanotechnology, leading scientists from around the world share their knowledge and expertise in this authoritative volume. The volume is broken into five sections. The first section presents an overview of nanotechnology and describes the many aspects of the field. Section 2 details biological materials serving as nanotemplates for bottom-up fabrication. Section 3 covers the use of biological macromolecules for electron transfer and computation. Section 4 presents a brief overview of the extensive and rapidly growing field of nanomedicine. Finally, Section 5 details de-novo designed structures and the various approaches different scientific groups take with molecular level training and language. Authoritative and comprehensive, NanoBioTechnology: BioInspired Devices and Materials of the Future provides an extraordinary and thorough overview of the emerging field of nanobiotechnology for engineers and physicists, chemists and biologists, and others from many diverse fields.
Grapevine is a crop of major economical interest, and wine represents a multicultural heritage which has been growing since several milleniums. Yet, modern viticulture must face several challenges. Global climate has increased berry sugar content (and alcohol in the wine) whereas phenolic and aromatic ripeness are not always achieved. Water supply is becoming shorter. New varieties better adapted to new climatic conditions might have to be planted, which may affect wine typicity. Phytochemical treatments are more controlled, and the consumer pays increasing attention to environmentally safe practices. New methods reducing pesticide use, but maintaining yield and typicity, must be designed. The present book illustrates the recent progress made in ecophysiology, molecular and cell biology, and pathology of grapevine, as well as in precision viticulture and berry composition. Combination of these new tools with field observations will undoubtly make it easier to face the challenges described above. These multidisciplinary contributions will be of interest to anyone involved in grapevine and wine activities. |
![]() ![]() You may like...
Micro-Electronics and Clothing - The…
Kurt Hoffman, Howard Rush
Hardcover
R2,789
Discovery Miles 27 890
Making Complex Decisions toward…
Dinesh Kumar, Kanika Prasad
Hardcover
R3,507
Discovery Miles 35 070
Tribological Applications of Composite…
Mohamed Thariq Hameed Sultan, Mohd Ridzuan Mohd Jamir, …
Hardcover
R4,945
Discovery Miles 49 450
Advanced Ceramics for Energy Storage…
Peng Cao, Zhigang Chen, …
Paperback
R5,497
Discovery Miles 54 970
|