![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > General
This text is devoted to the rapidly evolving microsystem technology that promises to unravel a wide range of academic and industrial analytical problems, such as trace proofing and single molecule detection, substance selection, miniturized sequencing of biopolymers, handling of single molecules or cells in micro devices and the optimization of molecular functions. All these applications will have a bearing on the future work in the diagnosis of disease, high-throughput screening approaches and combinatorial chemistry. These should be of importance in all life science fields where high efficiency, budgetary restrictions, high sensitivity, the presence of small amounts of highly toxic waste products and storage space constraints are relevant parameters. Taken as a whole this text seeks to reveal how microsystems technology is how changing the face of biology, forensics, gene therapy, molecular medicine, screening, and more.
Contaminated sediments pose some of the most difficult site remediation issues. Contaminated sediments typically reside in spatially variable and dynamic systems subject to seasonal flow variations and episodic storm events. The volume of sediments that must be managed at particular sites often exceeds one million cubic meters, dwarfing many contaminated soil sites. These sediments are also associated with equally daunting volumes of water and efforts to remove the contamination typically entrains even more water. The environmental security of both NATO and partner countries is at risk due to the pervasive nature of sediment contamination of rivers, lakes and harbors. A NATO Advanced Research Workshop was convened in Bratislava in May 2005 to discuss current approaches to managing contaminated sediments and to identify research necessary to overcome outstanding problems. In this text, drawn from presentations and discussion of that workshop, current approaches to the assessment and remediation of contaminated sediments will be discussed with the emphasis on in-situ management. Physical, chemical and biological approaches for the assessment and remediation of sediments are all addressed. Developing regulatory and strategic approaches are highlighted with a special emphasis on the potential for biological remediation for the management of contaminated sediments.
Discover the latest, fast-developing technology to help move towards more cost-effective, small-batch, decentralized manufacturing of personalized systems 3D printing has revolutionized manufacturing. Its precision and flexibility have enabled the large-scale production of materials and devices too complex for conventional industrial manufacturing. This has been particularly revolutionary in the field of pharmaceutical production, where 3D printing is being integrated into the manufacture of both drugs and drug delivery devices. It has never been more important for industry professionals to understand this form of production. 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside offers a comprehensive overview of 3D printing technology and its pharmaceutical applications. It introduces readers to a world in which bespoke drug delivery systems developed for specific users or conditions is rapidly becoming a reality. Its detailed coverage of strategies and industrial processes incorporates the latest research and real-world experience of production. 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside readers will also find: A multi-disciplinary authorial team of industry leaders Discussion of common technical and regulatory barriers and their possible solutions Far-ranging discussion of pharmaceutical applications across all sectors 3D Printing of Pharmaceuticals and Drug Delivery Devices: Progress from Bench to Bedside is essential reading for pharmaceutical industry professionals and researchers looking to occupy the leading edge.
This book will introduce the concept of molecular communications and nanonetworks. The publication addresses why nanoscale communication is needed for the sophisticated nano and biotechnology applications. The text introduces the frontier applications of the molecular communication and nanonetworks. The book examines the molecular communication types called active, passive, and gap junction molecular communications. The author presents the molecular transmitter, receiver, encoding and decoding mechanisms used in these systems. Discussing the molecular communication system model and looking at the unique characteristics of practical molecular communication systems and these chemical reactions and their effects on the communication performance. Finally, the book examines the point-to-point, broadcast, and multiple-access molecular channel and shows two promising application examples of the nanonetworks. The first application example is the body area nanonetworks used in nanomedicine. the second nanonetwork application example, i.e., NanoSensor Networks (NSNs) with Molecular Communication.
Entomology as a science of inter-depended branches like molecular entomology, insect biotechnology, has made rapid progress. This also implies that there is an urgent need to manage the available resources. In the past five decades, entomology has taken giant steps ahead. The aim of this work is to integrate perspectives across molecular and biochemistry, physiology, reproduction, developmental biology, molecular evolution, genetics and RNAi applications. This century is proclaimed as the Era of Biotechnology and it consists of all types of Mol-Bio-Gen applications, which is an essential component for a thorough understanding of the insect biology. The aim of this work is to provide the comprehensive review of recent research from various geographic areas around the world and contributing authors that are recognized experts in their respective field of Genomic entomology. This Volume emphasizes upon the need for and relevance of studying molecular aspects of entomology in Universities, Agricultural Universities and other centers of molecular research. It will also serve as a landmark source for Insect advance science technology.
The latest edition in this continuing series includes the newest advances in the rapidly evolving field of animal cell culture, genetic manipulations for heterologous gene expression, cell line enhancements, improved bioreactor designs and separations, gene therapy manufacturing, tissue engineering, anti-apoptosis strategies and cell cycle research. The contents include new research articles as well as critical reviews on emerging topics such as viral and viral-like agent contamination of animal cell culture components. These papers were carefully selected from contributions by leading academic and industrial experts in the biotechnology community at the recent Cell Culture Engineering VI Meeting in San Diego, USA, 1998. However, the book is not merely a proceedings. Audience: Biochemical engineers, cell biologists, biochemists, molecular biologists, immunologists and other disciplines related to cell culture engineering, working in the academic environment and the biotechnology or pharmaceutical industry.
The future of agriculture greatly depends on our ability to enhance productivity without sacrificing long-term production potential. The application of microorganisms, such as the diverse bacterial species of plant growth promoting rhizobacteria (PGPR), represents an ecologically and economically sustainable strategy. The use of these bio-resources for the enhancement of crop productivity is gaining importance worldwide. Bacteria in Agrobiology: Crop Productivity focus on the role of beneficial bacteria in crop growth, increased nutrient uptake and mobilization, and defense against phytopathogens. Diverse group of agricultural crops and medicinal plants are described as well as PGPR-mediated bioremediation leading to food security.
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs is a vital resource for courses on cardiovascular solid mechanics or soft tissue biomechanics. Focusing on the response of the heart and blood vessels to mechanical loads from the perspective of nonlinear solid mechanics, its primary goal is to integrate basic analytical, experimental, and computational methods to offer a more complete understanding of the underlying mechanobiology. While dealing primarily with cardiovascular mechanics, both the fundamental methods and many of the specific results are applicable to many different soft tissues, making this book an excellent general introduction to soft tissue biomechanics overall. Divided into three parts, Cardiovascular Solid Mechanics presents a practical and rational approach to biomechanics. Part I, Foundations, briefly reviews historical points of interest, basic molecular and cell biology, histology, and an overview of soft tissue mechanics. In order to provide not only a working framework, but also to give key references for those who wish to develop and extend biomechanics, included are mathematical preliminaries and salient results from continuum mechanics, finite elasticity, experimental mechanics, and finite elements. Part II, Vascular Mechanics, reviews the anatomy, histology, and physiology of arteries, illustrating and discussing constitutive formulations and stress analyses for healthy mature arteries. Considerable attention is given to the concept of residual stress and the mechanics of a number of vascular disorders, including atherosclerosis, aneurysms, and hypertension, as well as the mechanics of popular endovascular therapies such as balloon angioplasty. Part III, Cardiac Mechanics, reviews the requisite anatomy, histology, physiology, and pathology, and discusses the constitutive relations and stress analyses in the normal, mature heart. Finally, the book points the reader to areas of study that require more advanced theoretical, experimental, and computational methods, such as electromechanics, thermomechanics, mixture theory analysis of solid-fluid coupling, and damage mechanics. This book is designed as a text for an upper-division course on cardiovascular solid mechanics but will also serve as a good introduction to soft tissue biomechanics. Exercises at the end of each chapter will clarify complex concepts for both students and more experienced readers. Clinicians, life scientists, engineers, and mathematicians will also find this an invaluable guide, with concise and practical chapters, all of which are amply referenced. Cover illustration: Schema of a developing pathology of the arterial wall under mechanical stress.
The adsorption of proteins at interfaces plays a role in many ?elds, such as health, food, environment and analysis. Fundamental aspects are useful when considering applications. We focus here especially on solid-liquid interfaces and present a few fundamental studies regarding adsorption - netics and conformational changes, and examples of applications to sensors and membranes. The ?rst part is dedicated to fundamental studies performed using - tical waveguide lightmode spectroscopy, as an example of a technique that has the advantage of not requiring labelled proteins, but is limited to s- ci?c supports. Conversely, the radiolabelling of proteins, which has the disadvantage of any labelling process, allows application to any kind of s- faces. As proteins bear both positive and negative charges, we can expect thein?uenceofanelectric?eldnormaltothe interfaceonthe pack- ing order at interfaces. The re?ning of data treatment may also lead to the determination of useful structural parameters. The balance between protein-surface and protein-protein interactions is a key point for the - scription of the structure at high coverage of the surface. Electrokinetic methods, like measurement of the streaming potential, may be helpful in the electrical characterisation of the interfacial layer facing the solution. The second part includes different bench techniques that were dev- oped to improve the sensitivity of the characterisation of the orientation and structure of the proteins at interfaces: dual polarisation interferometry and total internal re?ection ellipsometry are such recent examples.
This review series covers trends in modern biotechnology, including all aspects of this interdisciplinary technology, requiring knowledge, methods, and expertise from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science.
Over the last 15 years, there has been renewed interest in supercritical fluids owing to their unique properties and relatively low environmental impact. Greatest attention has been given to the extraction and separation of organic compounds. Supercritical fluids have also been successfully used for particle production, as reaction media, and for the destruction of toxic waste. Supercritical carbon dioxide has been the most widely used supercritical fluid, mainly because it is cheap, relatively nontoxic, and has convenient critical values. Supercritical fluids have also been used on analytical and preparative scales for many biological and other applications. Many papers have been published on the use of supercritical fluids. However, few have acted as a detailed instruction manual for those wanting to use the techniques for the first time. We anticipate that this Methods in Biotechnology volume, Supercritical Fluid Methods and Protocols will s- isfy the need for such a book. Every chapter has been written by experienced workers and should, if closely followed, enable workers with some or no previous experience of supercritical fluids to conduct experiments successfully at the first attempt.
Bloom Filter: A Data Structure for Computer Networking, Big Data, Cloud Computing, Internet of Things, Bioinformatics, and Beyond focuses on both the theory and practice of the most emerging areas for Bloom filter application, including Big Data, Cloud Computing, Internet of Things, and Bioinformatics. Sections provide in-depth insights on structure and variants, focus on its role in computer networking, and discuss applications in various research domains, such as Big Data, Cloud Computing, and Bioinformatics. Since its inception, the Bloom Filter has been extensively experimented with and developed to enhance system performance such as web cache. Bloom filter influences many research fields, including Bioinformatics, Internet of Things, computer security, network appliances, Big Data and Cloud Computing.
Attention has recently turned to using plants as hosts for the production of commercially important proteins. The twelve case studies in this volume present successful strategies for using plants to produce industrial and pharmaceutical proteins and vaccine antigens. They examine in detail projects that have commercial potential or products that have already been commercialized, illustrating the advantages that plants offer over bacterial, fungal or animal cell-culture hosts. There are many indications that plant protein production marks the beginning of a new paradigm for the commercial production of proteins that, over the next decade, will expand dramatically.
Part I The Nano-Scale Biological Systems in Nature; Molecular bio-motors in living cells - by T. Nishizaka; The form designed by viral genome - by K. Onodera; Part II Detection and Characterization Technology; Atomic force microscopy applied to nano-mechanics of the cell - by A. Ikai; Design, synthesis and biological application of fluorescent sensor molecules for cellular imaging - by K. Kikuchi; Dynamic visualization of cellular signaling - by Q. Ni and J. Zhang; Part III Fabrication Technology; Surface acoustic wave atomizer and electrostatic deposition - by Y. Yamagata; Electrospray deposition of biomolecules by V.N. Morozov; Part IV Processing Technology; Droplet handling - by T.Torii; Integrated microfluidic systems - by S. Kaneda and T. Fujii; Part V Applications; A novel non-viral gene delivery system: Multifunctional envelope-type nano device - by H. Hatakeyama, H. Akita, K. Kogure, and H. Harashima; Biosensors - by M. Saito, H.M. Hiep, N. Nagatani, and E.Tamiya; Micro bioreactors - by Sato and T. Kitamori
Representing the latest knowledge of the ecology and the physiology of cold-adapted microorganisms, plants and animals, this book explains the mechanisms of cold-adaptation on the enzymatic and molecular level, including results from the first crystal structures of enzymes of cold-adapted organisms.
This volume analyzes the dynamics and interactive processes among the players (individuals, institutions, and organizations/firms) that have constituted and legitimized the development of the biotechnology industries. The unit of analysis is small entrepreneurial firms developing biotechnological products and processes. What types of strategies are small entrepreneurs pursuing in order to create markets for their new products and processes, and how have specific strategies emerged? The primary interest is the network process through which the technological field and the development of institutions and routines evolve and co-evolve.
This volume covers recent developments in both fundamental and applied research in biological nitrogen fixation. It emphasizes the application of biological nitrogen fixation for sustainable agriculture, which should lead to poverty alleviation, environmental protection, and good agricultural practices generally. The roles of, and advances in, plant breeding, plant molecular biology, nodule physiology, and symbiotic and associative interactions between plants and microbes in sustaining agricultural productivity and soil fertility are described. The evolution of symbioses and nitrogen fixation are also covered in this volume. To ensure high agricultural productivity, while protecting the environment (both soil and water resources), requires plant cultivars that also respond to beneficial microbes. The volume, therefore, describes the physiology and genomics of nitrogen-fixing bacteria together with the biochemistry and molecular genetics of the nitrogenase enzyme that actually fixes atmospheric nitrogen to a usable form. This volume, which covers the most recent data on the role of nitrogen fixation in agriculture and forestry and on the biology of both plants and nitrogen-fixing microbes, is intended to serve as a useful reference for students and researchers, both in the laboratory (academic and commercial) and in the field.
The fourth International Symposium of the International Society for Environmental Biotechnology was held on the campus of Queen's University, Belfast, Northern Ireland, on June 20-25, 1998, with an attendance of several hundred people. This meeting included technical presentations of state-of-the-art research which were integrated with tutorials and workshops by practising technologists in the broad field of environmental biotechnology. The meeting was designed to be, in every respect, truly global. For example, presentations were heard from technical workers in Southeast Asia, Iran, China, many countries in Europe, India, and the United States. By having these selected presenters, as well as experienced tutors with focused workshops, all participants benefited from this interactive symposium, and from an informal exchange of ideas, discussions of technical problems, and exploration of new applications. Environmental biotechnology is an emerging field of scientific and technological investigations that is truly global. Furthermore, popular recognition is high for the environmental problems being faced and solved by biotechnology methods. The papers in this book cover the following topics: (i) Metals: Mine Drainage, Removal, Toxicity; (ii) Waste Treatment/Monitoring; (iii) Integrated Systems; (iv) Bioremediation: In situ/Reactors/Basic Studies; (v) Water Quality; (vi) Biodegradation; (vii) Local/National/International Issues.
As with any rapid technological development, the biotechnology revolution is putting great strains on the ability of law to adapt to new challenges and threats. Although there is general agreement on the need to regulate biotechnology in many different fields of human activity (agriculture, life sciences, forensic science) domestic law remains deeply divided over the best approach to take. This book is the first attempt at covering the most pressing legal issues raised by the impact of biotechnologies on different categories of international norms. Through the contribution of a selected group of international scholars and experts from international organizations, the book addresses 1) the international status of genetic resources, both in areas of national jurisdiction and in common spaces such as the international sea bed area and Antarctica; 2) the relevance of environmental principles in the governance of modern biotechnologies; 3) the impact of biotechnologies on trade rules, including intellectual property law; 4) the human rights implications, especially in the field of human genetics; and 5) the intersection between general international law and regional systems, especially those developed in Europe and Latin America. The overall objective of the book is to provide an up-to-date picture of international law as it stands today and to stimulate critical reflection and further research on the solutions that will be required in years to come.
The biotechnology business in India with an increase from USD 500 million in 1997 and reaching an estimated USD 1 billion next year health related prod ucts accounting for 60%, agro and veterinary products together 15%, and con tract R&D, reagents, devices and supplies adding up to the remaining 25% of which the diagnostics share was about 10% of the total surely presented an encouraging picture even five years ago. While volumes have increased, the pat tern has not. According to a report, prepared by McKinsey & Co, India's Phar maceutical industry including domestic and export sales and contract services totals nearly USD 5 billion. Furthermore, the company optimistically projects the growth to a factor of five fold only if both the industry and the government are able to put in place achievable solutions that must take care of the formida ble obstacles preventing further growth. If this assessment is correct, then the established transformation made by IT growth should also provide the confi dence required by the high expectations for biotechnology which have arisen in the country in recent years. Some contributors to this are overenthusiastic these are bureaucrats, some retired scientists and of course the complacent politicians who have the least knowledge of what the new biotechnology is all about. However, there are clear indications of biotechnology growth demon strated by a few but rapidly expanding biotech companies such as Biocon Ltd, Shantha Biotech (P) Ltd, Dr.
Concern for the environment has become one of the big issues in modern society, and one of the chief concerns is the environmental impact of modern industrial production. A particularly sensitive issue is the possibility of accidents in industries where there may be severe consequences for people, property and the environment. At one time the nuclear industry was seen as the most likely to be the cause of significant environmental damage, but after the occurrence of several major accidents such as Seveso, Flixborough and Bhopal, that concern extends to much of the chemicals industry. Pressure from society, reflected by strong legislation, coupled with a greater understanding of the impact that chemical processing operations can have, has led to the adoption of higher profile safety and environmental management programs within the chemical industry. Under these programmes existing and new processes are rigorously examined to determine the possible causes and consequences of failure, and the results used to improve the process to make failure less likely. Any process audit, aimed at improving safety or lessening the environmental impact, cannot be carried out using intuition or experience alone, so the discipline of risk analysis has grown as a collection of tools and methods which can be utilized to give a quantitative assessment of the risks involved in operating any given process. In this new book the authors present risk analysis and reduction in a clear and unified way, emphasizing the various different methods which can be used together in a global approach to risk analysis in the chemical process industries. Originally conceived as a text book for graduate level courses in chemical engineering, the clear presentation and thorough coverage will ensure that anyone involved in risk assessment, environmental impact assessment or safety planning will find this book an invaluable source of reference.
This Volume presents generic protocols for wet experimental and computer-based systems and synthetic biology approaches relevant to the field of hydrocarbon and lipid microbiology. It complements a second Volume that describes protocols for systems and synthetic biology applications. The wet experimental tools presented in this Volume include protocols for the standardisation of transcriptional measurements, application of uracil excision-based DNA editing for, inter alia, multi-gene assembly, the use of fluxomics to optimise "reducing power availability", and the incorporation of non-canonical amino acids into proteins for optimisation of activities. Phenome-ing microbes, using a combination of RNA-seq and bioinformatic algorithms, is presented, as is an illustration, using methylotrophs as an example, of how the different key omics approaches constitute a pipeline for functional analysis, acquisition of a systems overview, and metabolic optimisation. Complementary computational tools that are presented include protocols for probing the genome architecture of regulatory networks, genome-scale metabolic reconstruction, and bioinformatic approaches to guide metabolic engineering. The Volume also includes an overview of how synthetic biology approaches can be used to improve biocontainment. Hydrocarbon and Lipid Microbiology ProtocolsThere are tens of thousands of structurally different hydrocarbons, hydrocarbon derivatives and lipids, and a wide array of these molecules are required for cells to function. The global hydrocarbon cycle, which is largely driven by microorganisms, has a major impact on our environment and climate. Microbes are responsible for cleaning up the environmental pollution caused by the exploitation of hydrocarbon reservoirs and will also be pivotal in reducing our reliance on fossil fuels by providing biofuels, plastics and industrial chemicals. Gaining an understanding of the relevant functions of the wide range of microbes that produce, consume and modify hydrocarbons and related compounds will be key to responding to these challenges. This comprehensive collection of current and emerging protocols will facilitate acquisition of this understanding and exploitation of useful activities of such microbes. |
You may like...
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
Advanced Nanoformulations - Theranostic…
Md Saquib Hasnain, Amit Kumar Nayak, …
Paperback
R3,974
Discovery Miles 39 740
Molecular Medical Microbiology
Yi-Wei Tang, Musa Hindiyeh, …
Mixed media product
R14,897
Discovery Miles 148 970
Cyanobacterial Lifestyle and its…
Prashant Kumar Singh, Maria F. Fillat, …
Paperback
R3,925
Discovery Miles 39 250
Frontiers in Aquaculture Biotechnology
W. S. Lakra, Mukunda Goswami, …
Paperback
R3,925
Discovery Miles 39 250
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani
Hardcover
R3,463
Discovery Miles 34 630
|