![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > General
First-generation ethanol plants were designed based on corn (maize grain), a dense, stable, storable and shippable commodity-type product with multiple applications. With these properties, corn was used as a feedstock for large-scale biorefineries without any challenges for a considerable length of time to allow its usage to grow exponentially. In the second-generation biofuels, the feedstocks used are low-cost carbon resources such as crop and forest residues and municipal solid waste. These materials are not dense; they have irregular size and shape, variable moisture, and are not readily storable and shippable. When the industry tested these feedstocks for biofuel production, they faced flowability, storage, transportation, and conversion issues. One way to overcome feeding, handling, transportation, and variable moisture challenges is to densify the biomass. The densification systems such as pellet mill and briquette press are commonly used to produce densified products. The densified products have uniform size, shape, and higher density. Also, the densified products are aerobically stable as they have the moisture of less than 10 % (w.b.).This book's focus is to understand how the densification process variables, biomass types and their blends, mechanical preprocessing, and thermal and chemical pretreatment methods impact the quality of the densified products produced for biofuel production.
First published in 1981 as the "Offshore Information Guide", this revised information resource details the technology of the oil, gas and marine industries. For this edition, the guide has been completely revised and substantially enlarged. With the assistance of staff from the Centre of Cold Ocean Resources Engineering, Memorial University of Newfoundland, Canada, the world-wide coverage has been much extended. Additional subject areas include new sections under the following headings: exploration, field development, petroleum reservoirs, economics and government.
This book approaches the energy science sub-field carbon capture with an interdisciplinary discussion based upon fundamental chemical concepts ranging from thermodynamics, combustion, kinetics, mass transfer, material properties, and the relationship between the chemistry and process of carbon capture technologies. Energy science itself is a broad field that spans many disciplines -- policy, mathematics, physical chemistry, chemical engineering, geology, materials science and mineralogy -- and the author has selected the material, as well as end-of-chapter problems and policy discussions, that provide the necessary tools to interested students.
This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.
A practical and insightful discussion of time-frequency analysis methods and technologies Time-frequency analysis of seismic signals aims to reveal the local properties of nonstationary signals. The local properties, such as time-period, frequency, and spectral content, vary with time, and the time of a seismic signal is a proxy of geologic depth. Therefore, the time-frequency spectrum is composed of the frequency spectra that are generated by using the classic Fourier transform at different time positions. Different time-frequency analysis methods are distinguished in the construction of the local kernel prior to using the Fourier transform. Based on the difference in constructing the Fourier transform kernel, this book categorises time-frequency analysis methods into two groups: Gabor transform-type methods and energy density distribution methods. This book systematically presents time-frequency analysis methods, including technologies which have not been previously discussed in print or in which the author has been instrumental in developing. In the presentation of each method, the fundamental theory and mathematical concepts are summarised, with an emphasis on the engineering aspects. This book also provides a practical guide to geophysicists who attempt to generate geophysically meaningful time-frequency spectra, who attempt to process seismic data with time-dependent operations for the fidelity of nonstationary signals, and who attempt to exploit the time-frequency space seismic attributes for quantitative characterisation of hydrocarbon reservoirs.
The Politics of Energy Research and Development examines and evaluates U.S. research and development policies to promote nuclear, solar, conservation, and other technology options. This volume is the third in the series "Energy Policy Studies, "which explores fundamental, long-term social, political, and economic dimensions of energy technology, resources, and use. Contributions represent a wide range of theoretical and policy perspectives, including sociology, economics, political science, urban and regional studies, environmental analysis, and history and philosophy of technology. Contents: Richard L. Ottinger, "Introduction: The Tragedy of U.S. Energy R&D Policy"; Amor DEGREES B. Lovins, "The Origins of the Nuclear Power Fiasco"; Richard T. Sylves, "Nuclear Exotica: Peaceful Use of Nuclear Explosives"; Eugene Frankel, "Technology, Politics and Ideology: The Vicissitudes of Federal Solar Energy Policy, 1974-1983"; Maxine Savitz, "The Federal Role in Conservation Research and Development"; J. David Roessner, "Commercialization Issues in Energy Technology Policy"; John Byrne and Daniel Rich, "In Search of the Abundant Energy Machine"; and Grant P. Thompson, "Energy Policy in the Interim: Waiting for the Next Shoe to Drop."
This short monograph focuses on the theoretical backgrounds and practical implementations concerning the thermodynamic modeling of multiphase equilibria of complex reservoir fluids using cubic equations of state. It aims to address the increasing needs of multiphase equilibrium calculations that arise in the compositional modeling of multiphase flow in reservoirs and wellbores. It provides a state-of-the-art coverage on the recent improvements of cubic equations of state. Considering that stability test and flash calculation are two basic tasks involved in any multiphase equilibrium calculations, it elaborates on the rigorous mathematical frameworks dedicated to stability test and flash calculation. A special treatment is given to the new algorithms that are recently developed to perform robust and efficient three-phase equilibrium calculations. This monograph will be of value to graduate students who conduct research in the field of phase behavior, as well as software engineers who work on the development of multiphase equilibrium calculation algorithms.
This book explains the modelling and simulation of thermal power plants, and introduces readers to the equations needed to model a wide range of industrial energy processes. Also featuring a wealth of illustrative, real-world examples, it covers all types of power plants, including nuclear, fossil-fuel, solar and biomass. The book is based on the authors' expertise and experience in the theory of power plant modelling and simulation, developed over many years of service with EDF. In more than forty examples, they demonstrate the component elements involved in a broad range of energy production systems, with detailed test cases for each chemical, thermodynamic and thermo-hydraulic model. Each of the test cases includes the following information: * component description and parameterization data; * modelling hypotheses and simulation results; * fundamental equations and correlations, with their validity domains; * model validation, and in some cases, experimental validation; and * single-phase flow and two-phase flow modelling equations, which cover all water and steam phases. A practical volume that is intended for a broad readership, from students and researchers, to professional engineers, this book offers the ideal handbook for the modelling and simulation of thermal power plants. It is also a valuable aid in understanding the physical and chemical phenomena that govern the operation of power plants and energy processes.
This book brings together the state-of-the-art in energy and resources research. It covers wind, solar, hydro and geothermal energy, as well as more conventional power generation technologies, such as internal combustion engines. Related areas of research such as the environmental sciences, carbon dioxide emissions, and energy storage are also addressed.
This volume discusses how plant and algae organisms play a pivotal role in the transformation of solar energy to essential metabolites, and explores the numerous beneficial roles these metabolites have at an industrial level. It presents information on the utilization of plant and algae for biomass production, and shows how this is a practical option for large scale biofuel production. The book examines how these bio-metabolites can then be used to extract biofuel. Biomass produced from plants and algae can act as the source of feedstock for biofuel production and industrially important compounds. This book also explores that by curtailing culturing cost using wastewater, seawater, and industrial water as a nutrient and water source, biomass becomes an economical energy source. The introductory chapters of the book focus on the appreciative values of a pollution-free atmosphere, with special reference to enhanced greenhouse effect, and then are followed by chapters on the potential of plant and algae as a liquid energy resource. This book targets researchers, graduate students, and energy and fuel industry professionals interested in the plant sciences, biotechnology and renewable energy.
This book concisely describes the architecture of the oil and gas pipelines in the Black-Caspian Seas Region and analyzes the status quo and perspectives of oil and gas production in this region. The authors present numerous projects, each of which has made a substantial contribution to the development of pipeline transport and transit in this part of the world, and discuss them in detail. The topics covered include: the region's geographic characteristics; the region's hydrocarbon potential; Russian and EU policy on pipeline transport; Kazakhstan's pipeline policy; Chinese pipeline projects; the Bulgarian gas transmission system; environmental risks in the production and transportation of hydrocarbons; satellite monitoring; and subsea leak detection. This volume offers a valuable resource for politicians, specialists in the oil and gas business, decision-makers, and environmentalists alike.
Public Responses to Fossil Fuel Export provides wide-ranging theoretical and methodological international contributions on the human dimensions of fossil fuel export, with a distinctive focus on exporting countries, some of which are new entrants into the marketplace. What do members of the public think about exporting fossil fuels in places where it is happening? What do they see as its main risks and benefits? What connections are being made to climate change and the impending energy transition? How have affected communities responded to proposals related to fossil fuel export, broadly defined to include transport by rail, pipeline, and ship? Contributions to the work are presented in three parts. The first part synopsizes the background of the project, outlines major social science theories and relevant previous research, and identifies global trends in energy production. Regional and national case studies related to public opinion on fossil fuel export are included in part two of the manuscript. Part three highlights community-based case studies. Implications for research and practice feature in the concluding chapter.
This book analyzes hydrocarbon generation and accumulation within space-limited source rocks. The authors draw conclusions based on the principles of basin formation, hydrocarbon generation and accumulation, coupled with the practice of terrigenous basins in eastern China. Hydrocarbon generation and expulsion have been quantitatively assessed in space-limited source rock systems. This book explores new hydrocarbon generation and expulsion models to reflect real geological situations more accurately. The theory and practice proposed in this book challenge the traditional theory of kerogen thermal degradation and hydrocarbon generation.
This book highlights the importance of Facilitated Transport Membranes (FTMs) for the application of carbon capture, covering its introduction, gas transport phenomena and models, reaction mechanisms, industrial applications such as bio-gas upgradation, flue gas separation, hydrogen gas and natural gas purification, fabrication methods of both FTMs and their carrier mediums, testing/characterization techniques, techno-analysis with up-to-date trends and the future outlooks. Climate change and environmental impacts are resulted due to greenhouse gases, particularly CO2. The industrial revolution is currently causing the augmented emission of greenhouse gases. Therefore, various technologies are being looked at to overcome these problems. In which, membrane technology is key among them and is envisaged for many industrial applications, especially for gas separations and carbon capture. Considering this, FTMs are being actively investigated due to their remarkable gas separation performance. This book describes the working principle of FTMs and includes case studies to explore their impact on different industrial applications. Also, the book highlights how FTMs are reshaping science to capture CO2 for reducing climate and environmental impacts.
This book explores ways in which India can negotiate the low carbon path up until 2030, when it is expected to be the largest economy after the US and China. It comprehensively reviews the low climate pathways for India and provides a guide to the pathways that the country can adopt. India's population, energy demands and emissions will increase significantly, and the challenge is to restrict its CO2 emissions and walk the low carbon path. Through its Intended Nationally Determined Contributions (INDCs), India has pledged to reduce its emissions significantly. Addressing the question of which low carbon paths India can adhere to without compromising its growth, the book identifies the key factors that feed into existing models of climate change and discusses the cost of action versus inaction. It also examines key issues concerning India's environment through the lens of the transport, industry and water sectors. The book concludes by looking at policy implications for low carbon growth in India.
This monograph is based on methanol as a fuel for transportation sector, specifically for compression ignition (CI) engines. The contents present examples of utilization of methanol as a fuel for CI engines in different modes of transportation such as railroad, personal vehicles or heavy duty road transportation. The book also focuses on effect of methanol on combustion and performance characteristics of the engine. The effect of methanol on exhaust emission production, prediction and control is also discussed. It also discusses current methanol utilization and its potential, its effect on the engine in terms of efficiency, combustion, performance, pollutants formation and prediction. Part of the chapters are based on review of state-of-the-art while other chapters are dedicated to an original research. This volume will be a useful guide to professionals and academics involved in alternative fuels, compression ignition engines, and environmental research.
This book is a compilation of selected papers from the Fourth International Technical Symposium on Deepwater Oil and Gas Engineering & The Third International Youth Forum on Gas Hydrate, held in Qingdao, China in December 2021. The work focuses on the advancement of techniques for the deepwater oil and gas exploitation and natural gas hydrate exploitation. The book introduces new ideas for exploring deepwater oil and gas hydrate in a safe and efficient way. Advances of the natural gas hydrate pilot production in South China Sea, in oil and gas flow assurance and emerging technologies based on clathrate hydrate will be presented. It is a valuable resource for both practitioners and academics working in the field of deepwater oil and gas engineering.
Theory and Technology of Multiscale Dispersed Particle Gel for in-depth Profile Control systematically introduces concepts surrounding preparation principles and methods of DPG particles. The whole preparation process can be divided into two major stages: bulk gel crosslinking reaction period and DPG particle preparation period. The effects of bulk gel strength, shearing time, shearing rate and bulk gel-water ratio on PDPG particles are also systematically analyzed. Zirconium bulk gel, phenolic resin bulk gel, and organic-inorganic cross-linked bulk gel with short gelation time on the ground are introduced, along with gelation properties, gelation influencing factors, thermal stability and applicable conditions. This book systematically describes the theory and technology of multiscale dispersed particle gel which shows promise as an acceptable alternative to conventional water technologies needed for enhanced oil recovery in high water cut mature oilfields.
This book offers meaningful insights into an impending challenge for the energy industry, namely the increasing role of asset management amongst the utilities' core operations. In the aftermath of energy digitalization, power and gas companies will be able to seize asset productivity-through risk-based operation and maintenance-and better balance capital and operational expenditures. By addressing the asset management of both power and gas infrastructures, and by adopting a comprehensive approach-including regulation and business models, as well as a solid technology background-this book offers a unique perspective on the energy utilities' transformation journey and the road to optimal decision-making for both asset portfolio expansion and replacement. The asset management end-to-end mission requires appropriate internal governance-depending on the business framework-and the development of decision aid models (for asset replacement and maintenance), supported on probabilistic risk and reliability indexes. This book advocates systematically digitalizing the power and gas assets, addressing both data governance and infrastructure, alongside real-time equipment condition monitoring. It also provides a meaningful methodology for designing data-centric asset management and predictive operation and maintenance, using artificial intelligence and engineering-based approaches. As such, it provides valuable strategy, methods and models-illustrated by case studies and proofs of concept-for a wide range of stakeholders, including utilities and industry professionals, regulators, policy-makers, researchers and students.
Covering both upstream and downstream oil and gas facilities, Surface Production Operations: Volume 5: Pressure Vessels, Heat Exchangers, and Aboveground Storage Tanks delivers a must-have reference guide to maximize efficiency, increase performance, prevent failures, and reduce costs. Every engineer and equipment manager in oil and gas must have complete knowledge of the systems and equipment involved for each project and facility, especially the checklist to keep up with maintenance and inspection--a topic just as critical as design and performance. Taking the guesswork out of searching through a variety of generalized standards and codes, Surface Production Operations: Volume 5: Pressure Vessels, Heat Exchangers, and Aboveground Storage Tanks furnishes all the critical regulatory information needed for oil and gas specific projects, saving time and money on maintaining the lifecycle of mechanical integrity of the oil and gas facility. Including troubleshooting techniques, calculations with examples, and several significant illustrations, this critical volume within the Surface Production Operations series is crucial on every oil and gas engineer's bookshelf to solve day-to-day problems with common sense solutions.
This book presents the fundamentals of the reservoir and interfacial engineering. The book systematically starts with the basics of primary, secondary and tertiary (enhanced) oil recovery and emphasizes on the theory of microbial-enhanced oil recovery (MEOR) and its potential toward recovery of oil in place. Different approaches of MEOR such as in-situ, ex-situ, and integration of chemical- and microbial-enhanced oil recovery (EOR) are discussed in detail. This book highlights the link between the effectiveness of MEOR and the local reservoir conditions, crude oil characteristics, and indigenous microbial community. The latest implementations of MEOR across the globe are highlighted as case studies to outline the potential as well as the scope of MEOR. Given the topics covered, this book will be useful for professionals and researchers working in the areas of petroleum science and engineering, chemical engineering, biotechnology, bioengineering, and other related fields.
All living things contain carbon in some form, as it is the primary component of macromolecules including proteins, lipids, nucleic acids (RNA and DNA), and carbohydrates. As a matter of fact, it is the backbone of all organic (chemistry) compounds forming different kinds of bonds. Carbon: The Black, the Gray and the Transparent is not a complete scientific history of the material, but a book that describes key discoveries about this old faithful element while encouraging broader perspectives and approaches to its research due to its vast applications. All allotropes of carbon are described in this book, along with their properties, uses, and methods of procurement or manufacturing. Black carbon is represented by coal, gray carbon is represented by graphite, and transparent carbon is represented by diamond.
The reliance on fossil fuels for energy is unsustainable and has released an unprecedentedamount of carbon dioxide into our atmosphere. The continual research and developmenteffort into clean and sustainable energy technologies is of paramount importance toensure the responsible progress of human civilization and innovations. This collection,with authors representing industry, government, and academia, focuses on energyefficient technologies including innovative ore beneficiation, smelting technologies,recycling and waste heat recovery, and emerging novel energy technologies. Thesymposium also covers various technological aspects of sustainable energy ecosystems,processes that improve energy efficiency and reduce thermal emissions.Topics include: * Renewable Energy and Combustion Technologies * Energy Efficiency, Decarbonization and CO2 Management * Thermal Management and Hydrogen Technology
Over the past decade, carbon capture and storage (CCS) has come to the fore as a way to manage carbon dioxide emissions contributing to climate change. This book examines its introduction into the political scene, different interpretations of its significance as an emerging technology and the policy challenges facing government and international institutions with respect to its development, deployment and regulation. The focus of the book is on the construction of arguments about CCS in the public sphere, the coalitions of actors who have articulated distinctive perspectives on CCS and the varied strategies governments have adopted to integrate it into climate and energy policies. The authors analyse the issues decision-makers now confront in encouraging the uptake of the technology, managing uncertainties and regulating attendant risks. The book includes case studies of the reception of CCS in seven OECD countries: Australia, Canada, Germany, the Netherlands, Norway, the United Kingdom and the United States. Developments in the EU form the subject of an eighth case study. The authors point to the political significance of CCS as a mitigation option offering a way forward for fossil fuels in a carbon constrained world, while also emphasizing the uncertainties that surround its future development and deployment. Students, scholars and researchers from a wide variety of fields who are interested in climate change, energy policy, and the politics and policy of the environment will find this book illuminating, as will officials and policy makers in international organizations and governments.
This book comprehensively identifies most reservoir rock properties using a very simple approach. It aids junior and senior reservoir and geology engineers to understand the main fundamentals of rock properties. The book provides examples and solutions that can help the readers to quickly understand the topic. This book covers reservoir rock properties and their relationship to each other. The book includes many figures, tables, exercises, and flow diagrams to simplify the topics in different approaches. |
![]() ![]() You may like...
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
|