![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > General
This Brief offers a comprehensive study covering the different aspects of gas allocation optimization in petroleum engineering. It contains different methods of defining the fitness function, dealing with constraints and selecting the optimizer; in each chapter a detailed literature review is included which covers older and important studies as well as recent publications. This book will be of use for production engineers and students interested in gas lift optimization.
Bitumen and CoalDerived Asphaltenes: AsphalteneViscosity Relationship of Processed and Unprocessed Bitumen (A. Chakma et al.). Natural and Accelerated Aging of Bitumens (F.S. Choquest, A.F. Verhasselt). Asphalt and Asphaltene Conversion: Classification of Asphalt Types by Asphaltene Aromaticity (H.J. Lian, T.F. Yen). Sludge Formation During Heavy Oil Conversion (D.A. Storm et al.). Surface and Colloidal Aspects of Asphaltenes: Surface Activity and Dynamics of Asphaltenes (E.Y. Sheu et al.). Role of Asphaltenes in Recovering Heavy Oil through MicroBubble Generation (M.R. Islam, A. Chakma). Thermodynamic and Molecular Aspects of Asphaltenes: The Study of Molecular Attractions in the Asphalt System by Solubility Parameter (J.R. Lin, T.F. Yen). Solvation of Ratawi Asphaltenes in Vacuum Residue (D.A. Storm et al.). 10 additional articles. Index.
This book will cover the most recent progress on the use of low-cost nanomaterials and development of low-cost/large scale processing techniques for greener and more efficient energy related applications, including but not limited to solar cells, energy storage, fuel cells, hydrogen generation, biofuels, etc. Leading researchers will be invited to author chapters in the field with their expertise. Each chapter will provide general introduction to a specific topic, current status of research and development, research challenges and outlook for future direction of research. This book aims to benefit a broad readership, from undergraduate/graduate students to researchers working on renewable energy.
This book provides insights into the development and usage of coal in chemical engineering. The reactivity of coal in processes such as pyrolysis, gasification, liquefaction, combustion and swelling is related to its structural properties. Using experimental findings and theoretical analysis, the book comprehensively answers three crucial issues that are fundamental to the optimization of coal chemical conversions: What is the structure of coal? How does the underlying structure determine the reactivity of different types of coal? How does the structure of coal alter during coal conversion? This book will be of interest to both individual readers and institutions involved in teaching and research into chemical engineering and energy conversion technologies. It is aimed at advanced- level undergraduate students. The text is suitable for readers with a basic knowledge of chemistry, such as first-year undergraduate general science students. Higher-level students with an in-depth understanding of the chemistry of coal will also benefit from the book. It will provide a useful reference resource for students and university-level teachers, as well as practicing engineers.
This book covers the major physical and mechanical processes that unfold during cementing and subsequent well service, and which can affect the well integrity. Focusing on the underlying physics, it concisely presents the central concepts of well cementing. The authors discuss the displacement of different fluids in the annulus, the mechanical stability of cement subject to varying downhole temperature, pressure and in-situ stresses, and the impact of defects on cement integrity under different mechanical and thermal loads over the course of the well's lifetime. The book identifies knowledge gaps and unresolved issues, and proposes new directions for future research and development. The book is a valuable resource for practising engineers in the oil and gas industry, academic and industrial researchers involved in oil and gas engineering, and to graduate students within this same sector.
Liberating Energy from Carbon analyzes energy options in a carbon-constrained world. Major strategies and pathways to decarbonizing the carbon-intensive economy are laid out with a special emphasis on the prospects of achieving low-risk atmospheric CO2 levels. The opportunities and challenges in developing and bringing to market novel low and zero-carbon technologies are highlighted from technical, economic and environmental viewpoints. This book takes a unique approach by treating carbon in a holistic manner-tracking its complete transformation chain from fossil fuel sources to the unique properties of the CO2 molecule, to carbon capture and storage and finally, to CO2 industrial utilization and its conversion to value-added products and fuels. This concise but comprehensive sourcebook guides readers through recent scientific and technological developments as well as commercial projects that aim for the decarbonization of the fossil fuel-based economy and CO2 utilization that will play an increasingly important role in the near- and mid-term future. This book is intended for researchers, engineers, and students working and studying in practically all areas of energy technology and alternative energy sources and fuels.
This Brief examines the sustainability of energy use in global food production and processing. The nexus between food, water, and energy are explored against a background of climate change. Current efforts to reduce the energy intensity of food and increase sustainability are explored. Food waste and its impact on energy is covered, including regional variations and nutrient recycling methods. Energy Use in Global Food Production uses case studies to illustrate how food production and processing is a significant contributor to anthropogenic climate change. Modern industrial agriculture uses fossil fuel to grow crops and produce fertilizers, pesticides and farm machinery. Additional energy is used to transport and process food at a primary and secondary level. With the median forecast for global population at more than 9 billion by 2030, a 30% increase over the current population, energy efficient food processing will be of increasing importance. This Brief provides an overview of current energy efficient food processing methods looks at the way forward as demands continue to increase.
Enabling Environment is as real as it gets. The global commons are jointly owned and their inhabitants are jointly obligated to ensure their preservation. In the face of protracted negotiations, convoluted documentation, discord, and incessant bickering among scientists, activists, pressure groups of various hues, politicians and negotiators, very often the people on the ground are ignored or taken for granted. In the meantime, life meanders along. It is these 'everyday individuals' who make consumption-related choices on their lifestyles, travel or on preferring certain products or services over others. Enabling Environment puts the individual front and center. Ecosystem services need to be recognized, appropriately priced and the costs allocated to the agents concerned. Enabling Environment is about defining economic and non-economic incentive structures and utilizing them to arrive at pro-environmental outcomes. This collection of articles illustrates the use of existing social, economic and regulatory structures, and the financial architecture and instruments, suitably modified or extended, to help internalize the environmental externality.
In experiments on a prototypical combustor, Richard Steinert identifies new insights on the impact of noise on the phenomenon known as thermoacoustic instability. The phenomenon is a concerning issue which creates a technical limit on the efficiency and environmental impact of fossil fuels combustion in industrial combustors. It poses a threat to the structural integrity of practical systems such as gas turbine combustors and rocket engines. The experiments demonstrate that thermoacoustic systems feature an interesting noise-induced behaviour known as coherence resonance - a coherent response of dynamical systems close to their stability boundary that is induced by stochastic excitation. The work contained in this publication is an example illustrating the importance of fundamental considerations in solving perplexing engineering issues.
The word sustainability shares its root with sustenance. In the context of modern society, sustenance is inextricably linked to the use of energy. Fossil Energy provides an authoritative reference on all aspects of this key resource, which currently represents nearly 85% of global energy consumption. Gathering 16 peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, the chapters provide comprehensive, yet concise coverage of fundamentals and current areas of research. Written by recognized authorities in the field, this volume represents an essential resource for scientists and engineers working on the development of energy resources, fossil or alternative, and reflects the essential role of energy supplies in supporting a sustainable future.
The assessment of greenhouse gases emitted to and removed from the atmosphere is high on the international political and scientific agendas. Growing international concern and cooperation regarding the climate change problem have increased the need for policy-oriented solutions to the issue of uncertainty in, and related to, inventories of greenhouse gas (GHG) emissions. The approaches to addressing uncertainty discussed here reflect attempts to improve national inventories, not only for their own sake but also from a wider, systems analytical perspective - a perspective that seeks to strengthen the usefulness of national inventories under a compliance and/or global monitoring and reporting framework. These approaches demonstrate the benefits of including inventory uncertainty in policy analyses. The authors of the contributed papers show that considering uncertainty helps avoid situations that can, for example, create a false sense of certainty or lead to invalid views of subsystems. This may eventually prevent related errors from showing up in analyses. However, considering uncertainty does not come for free. Proper treatment of uncertainty is costly and demanding because it forces us to make the step from "simple to complex" and only then to discuss potential simplifications. Finally, comprehensive treatment of uncertainty does not offer policymakers quick and easy solutions.
Extensive descriptions of a wide range of key or world-class mineral deposits of China are presented in the context of the country's general geology, tectonic units and mineral systems and their geodynamic evolution within the tectonic framework of the Asian continent. This comprehensive overview, incorporating the latest geological concepts, is the first such coverage written in English by a western expert, and will be of benefit to mineral explorers and miners, as well as to research scientists and students in institutions of higher education. In his compilation of this compendium of Chinese geology and mineral systems, Franco Pirajno draws on first-hand knowledge of China's geology and mineral deposits gained in numerous field visits and research projects with Chinese colleagues from various academic institutions over the past 18 years. First time that a western-based book on China's geology and mineral deposits is published Appropriate for use by the mineral exploration industry Modern English-language geological and mineral deposits information on China Most useful to Western (and Chinese) geoscientists
This book examines the concept and purpose of joint development agreements of offshore hydrocarbon deposits from the perspective of public international law and the law of the sea, taking into consideration and extensively reviewing State practice concerning seabed activities in disputed maritime areas and when hydrocarbon deposits extend across maritime boundaries. It distinguishes between agreements signed before and after the delimitation of maritime boundaries and analyzes the relevance of natural resources or unitization clauses included in maritime delimitation agreements. It also takes into consideration the relation between these resources and maritime delimitation and analyzes all the relevant international jurisprudence. Another innovative aspect of this book is that it examines the possibility of joint development of resources that lay between the continental shelf and the Area, considering both theoretical and practical problems. As such, the book is a useful tool for scholars and experts on public international law and the law of the sea, but also for national authorities and practitioners of international disputes resolution, as well as public and private entities working in the oil and gas industry.
This book analyses the deep interaction between the world's environmental crises, energy production, conversion and use, and global regulation policies. Bringing together experts from a wide range of scientific fields, it offers the reader a broad scope of knowledge on such topics as: climate change and exhaustion of resources the relationship between basic science and the development of sustainable energy technologies the relationship between global and local environmental policies the possible competition between foodstuff production and that of agro-fuels urban adaptation negotiations at the international level financial rules This book invites the reader to consider the multidisciplinary aspects of these urgent energy/environmental issues.
Existing views on geodynamics (recharge, migration, discharge) of uids at deep layers of petroliferous basins are summarized. The in ltration and elision th- ries explaining development of uid pressures in deep formations are called into question based on quantitative estimates available for some artesian (petroliferous) basins. Using the West Siberian, Pechora, Terek-Kuma, Bukhara-Karshi, and other petroliferous basins as examples, the stratum-block structure of deep formations is substantiated for strati ed systems of platform in inter- and intramontane depr- sions. It is shown that petroliferous reservoirs at great depths are characterized, regardless of lithology, by largely ssure-related capacity and permeability (clayey rocks included) changeable in space and through geological time. Much attention is paid to development of abnormally high formation pressures. Peculiarities in heat and mass transfer at deep levels are considered for different regions. The energetic formation model substantiated for deep uids explains different anomalies (baric, thermal, hydrogeochemical, mineralogical, and others) at deep levels of platforms. Based on hydrogeodynamic considerations, the theory of oil origin and formation of hydrocarbon elds is proposed. The book is of interest for oilmen, hydrogeo- gists, geologists, and specialists dealing with prospecting of petroliferous deposits as well as industrial, mineral, and thermal waters in deep formations of strati ed sedimentary basins. vii Contents 1 Existing Views on Fluidodynamics in Petroliferous Formations . . 1 References ...11 2 Investigation Methods of Deep Fluidodynamics ...15 2. 1 Methods of Formation Pressure Reducing ...16 2. 2 Assessment of Directions of Density-Variable Fluid Flows by the "Filtration Force" Method ...
This brief covers novel techniques for clean hydrogen production which primarily involve sodium hydroxide as an essential ingredient to the existing major hydrogen production technologies. Interestingly, sodium hydroxide plays different roles and can act as a catalyst, reactant, promoter or even a precursor. The inclusion of sodium hydroxide makes these processes both kinetically and thermodynamically favorable. In addition possibilities to produce cleaner hydrogen, in terms of carbon emissions, are described. Through modifications of steam methane reformation methods and coal-gasification processes, from fossil as well as non-fossil energy sources, the carbon dioxide emissions of these established ways to produce hydrogen can significantly be reduced. This brief is aimed at those who are interested in expanding their knowledge on novel techniques and materials to produce clean hydrogen and capture carbon dioxide at a large-scale. The detailed thermodynamic analysis, experimental findings and critical analysis of such techniques are well discussed in this brief. Therefore, this book will be of great interest and use to students, engineers and researchers involved in developing the hydrogen economy as well as mitigating carbon dioxide emissions at a large-scale.
The first volume in a new Springer Series on Shipping and Transport Logistics, Oil Transport Management provides a full historical account of the evolution of the oil transport industry since the 1800's. In this comprehensive guide, the authors investigate the industry and describe the shipping market and its structure, as well as forecasting, location plan and the transportation chain. They dedicate a separate chapter to each topic to cover various concepts, including: an introduction to the tanker shipping market, including how the freight, new vessel building, second hand and demolition markets influence one another, the economic structure and organization of the tanker industry in both the past and present, and forecasting the need for oil-based sea transportation. Further chapters present case studies and simulations to illustrate the importance of factory location decisions and the need for oil infrastructure investments. Chapter One also includes a regression equation to predict the fleet size in tanker shipping. Oil Transport Management is a key reference, which can be practically applied to wider global research and practices. Ideal for both industry practitioners, and researchers and students of shipping studies, Oil Transport Management provides a concise yet comprehensive coverage of the oil transport industry's history and a guide for its future development.
The International Workshop on Turbulent Combustion was held September 14-15, 2000, at the Nagoya Institute of Technology, to review the present status of turbu lent combustion studies. Reviews were presented by Prof. F. A. Williams of the Uni versity of California, San Diego; Prof. Ken Bray of the University of Cambridge; and Prof. Jay Gore of Purdue University. Dr. Howard Baum of the National Institute of Standards and Technology and Dr. Jim McDonough of the University of Ken tucky participated in the discussion. Some ten papers, describing the latest findings of Japanese studies in this field, were given at the meeting. About half of these studies are supported by a national project, the Open and Integrated Research Pro gram, Creation of New Functionalized Thermo-Fluid Systems by Turbulence Con trol, that started only recently under the sponsorship of the Science and Technology Agency of Japan. The meeting was a great success and gave impetus and a sense of perspective to young Japanese researchers through the excellent reviews and valu able comments their work received. I believe that this kind of open discussion is indispensable for any project to produce a good outcome, and I would like to extend my sincere thanks to all who participated in the meeting. Finally, I would like to express my special thanks to Prof. Tatsuya Hasegawa of the Nagoya Institute of Technology, Prof. Akira Yoshida of Tokyo Denki University, Prof."
The National Clean Energy Fund (NCEF), announced in the
Government of India s Budget 2010-11, is seen as a major step in
India's quest for energy security and reducing the carbon intensity
of energy. Funding research and innovative projects in clean energy
technologies, and harnessing renewable energy sources to reduce
dependence on fossil fuels constitute the objectives of the NCEF.
The NCEF s utilization of funds is considered to be rather low and
disbursements poorly aligned with the fund s stated objectives,
thus posing a potential risk of diluting the focus of NCEF with
adverse implications for the much-needed research and innovation in
the clean energy sector in India.
It is with great pleasure and satisfaction that I present to the international scientific community this collection of papers presented at the symposium on Surface Phenomena in Enhanced Oil Recovery held at Stockholm, Sweden, during August 20-25, 1979. It has been an exciting and exhausting experience to edit the papers included in this volume. The proceedings cover six major areas of research related to chemical flooding processes for enhanced oil recovery, namely, 1) Fundamental aspects of the oil displacement process, 2) Micro structure of surfactant systems, 3) Emulsion rheology and oil dis placement mechanisms, 4) Wettability and oil displacement mecha nisms, 5) Adsorption, clays and chemical loss mechanisms, and 6) Polymer rheology and surfactant-polymer interactions. This book also includes two invited review papers, namely, "Research on Enhanced Oil Recovery: Past, Present and Future," and "Formation and Properties of Micelles and Microemulsions" by Professor J. J. Taber and Professor H. F. Eicke respectively. This symposium volume reflects the current state-of-art and our understanding of various surface phenomena in enhanced oil recovery processes. The participation by researchers from various countries in this symposium reflects the global interest in this area of research and the international effort to develop che science and technology of enhanced oil recovery processes.
Economic and environmental requirements for advanced power generating systems demand the removal of corrosive and other sulfurous compounds from hot coal gas. After a brief account of the world energy resources and an overview of clean coal technologies, a review of regenerable metal oxide sorbents for cleaning the hot gas is provided. Zinc oxide, copper oxide, calcium oxide, manganese oxide based as well as supported and mixed metal oxide sorbents are treated. Performance analysis of these sorbents, effects of various parameters on the desulfurization efficiency, kinetics of sulfidation and regeneration reactions, sulfiding and regeneration mechanisms are discussed. Two chapters present recent results in the direct production of elemental sulfur from regeneration or SO2-rich gases.
1 Oxford and Webster's dictionaries,2 give trans-Atlantic agreement in English with a common definition for 'Quality' as 'degree of excellence'. Compared with the many words taken up by other authors' definitions, this is remarkably brief and no doubt unsatisfactory to many people. Yet if 'degree' means a stage in an ascending or descending series, in intensity or in amount, then measurement is by definition explicitly required if terms such as 'quality level', 'good quality', 'high quality' etc. are to have any real meaning. Using measurement is inherent in the methods of all the major writers on the achievement of business improvement through quality. Results from measurements allow improvement by using tools commonly grouped under the heading Statistical Process Control (SPC). Results also form part of the judging criteria of Total Quality Management (TQM) models such as the Malcolm Baldrige National Quality Award in the USA and the more recent European Quality Award. Future revisions of the ISO 9000 series of quality management system standards will specifically require measure ment of defects. However, it is not easy for quality professionals or line managers to find examples of what they should measure and how to do it in their own particular functions in their own particular industries; case st\}dies always seem to refer to others."
Marine Clastic reservoirs provides an integrated perspective to sandstone reservoir description and analysis. It combines analog-oriented methods fromsequence stratigraphy with rigorous stratigraphic and sedimentological description of cores and outcrops to develop a process-based analysis of sandstone facies. Twelve chapters, divided into 3 sections, first describe the specific use of sequence stratigraphy to catalog, identify, andpredict marine clastic reservoir facies. Next they examine the importance ofrigorous sedimentological and geomorphic description. Finally, marine depositional environments from delta systems to deep-sea fans arereviewed to give examples of these improved descriptive and analytical techniques
The increased demand on fossil fuels for energy production has resulted in expanded research and development efforts on direct use of fossil fuels and conversion of fossil fuels into synthetic fuels. These efforts have focused on the efficiency of the energy production and/or conversion processes, and of the emission control technology, as well as delineation of the health and environmental impacts of those processes and their by-products. A key ingredient of these studies is the analytical capability necessary to identify and quan- tify those chemicals of interest in the process and by-produce streams from coal combustion, oil shale retorting, petroleum refin- ing, coal l1quifaction and gasification. These capabilities are needed to analyze a formidable range of materials including liquids, solids, gases and aerosols containing large numbers of criteria and pollutants including potentially hazardous polynuclear aromatic hy- drocarbons, organo-sulfur and organo-nitrogen species, trace elements and heavy metals, among others. Taking notice of these developments we sought to provide a forum to discuss the latest information on new and novel applica- tions of a subset of those necessary analytical capabilities, namely atomic and nuclear techniques. Consequently, we organized the con- ference on Atomic and Nuclear Methods in Fossil Fuel Energy Research, which was held in Mayaguez, Puerto Rico from December 1 to December 4, 1980.
This book is written as a practical field manual to effective. Each geolOgist has to develop his/her be used by geologists engaged in mineral explo own techniques and will ultimately be judged on ration. It is also hoped that it will serve as a text results, not the process by which these results and reference for students in Applied Geology were reached. In mineral exploration, the only courses of universities and colleges. The book 'right' way of doing anything is the way that aims to outline some of the practical skills that locates ore in the quickest and most cost-effective turn the graduate geologist into an explo manner. It is preferable, however, for an individ rationist: . It is intended as a practical 'how to' ual to develop his/her own method of operation book, rather than as a text on geological or ore after having tried, and become aware of, those deposit theory. procedures which experience has shown to work An explorationist is a professional who search well and which are generally accepted in indus try as good exploration practice. es for ore bodies in a scientific and structured way. Although an awkward and artificial term, The chapters of the book approximately fol this is the only available word to describe the low the steps which a typical exploration pro totality of the skills which are needed to locate gramme would go through. In Chapter 1, the and define economic mineralization." |
You may like...
Production and Purification of…
Yun Hang Hu, Xiaoliang Ma, …
Hardcover
R5,467
Discovery Miles 54 670
Solid Fuel Blending - Principles…
David Tillman, Dao Duong, …
Hardcover
R2,074
Discovery Miles 20 740
Theory and Technology of Multiscale…
Caili Dai, Guang Zhao, …
Paperback
R3,409
Discovery Miles 34 090
Advances in Ultra-low Emission Control…
Yongsheng Zhang, Tao Wang, …
Paperback
R4,663
Discovery Miles 46 630
|