![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > General
This book focuses on various aspects related to air pollution, including major sources of air pollution, measurement techniques, modeling studies and solution approaches to control. The book also presents case studies on measuring air pollution in major urban areas, such as Delhi, India. The book examines vehicles as a source of air pollution and addresses the quantitative analysis of engine exhaust emissions. Subsequent chapters discuss particulate matter from engines and coal-fired power plants as a major pollutant, as well as emission control techniques using various after treatment systems. The book's final chapter considers future perspectives and a way forward for sustainable development. It also discusses several emission control techniques that will gain relevance in the future, when stricter emission norms will be enforced for international combustion (IC) engines as well as power plants. Given its breadth of coverage, the book will benefit a wide variety of readers, including researchers, professionals, and policymakers.
This book looks at chemmotological solutions to important questions surrounding sustainability and environmental safety of transport - both key priorities within the global strategy of sustainable development. Bringing together expanded versions of selected papers presented at the 8th International Scientific-Technical Conference: Problems of Chemmotology - Theory and Practice of Rational Use of Conventional and Alternative Fuels and Lubricants, contributors present solutions to problematic questions, including choosing feedstock and technologies of its processing for manufacturing alternative fuels, development and implementation of measures for improving environmental safety of transport, minimizing exhaust gases emission from transport, introducing new solution or improvements in systems of fuels supply and infrastructure, and changes in legislative and regulatory base for fuels and lubricants use. This collection will be an invaluable reference for researchers, professionals, and students involved in alternative aviation fuels, transport engineering, sustainable transport development, and fuels and lubricants.
This book highlights recent advancements in such an important topic, through contribution from experts demonstrating different applications in 'day-to-day' life, both existing and newly emerging non-biological technologies, and thought provoking approaches from different parts of the world, potential future prospects associated with some frontier development in non-conventional energy sources. It covers different types of natural energy sources such as: Ocean, Tidal and Wave energy; Nuclear energy; Solar cells; Geothermal energy; Hydrogen Fuel; Photovoltaic modules; Gas hydrates; Hydrate-based Desalination Technology; and Hydrothermal Liquefaction of Kraft Lignin/ Lignocellulosic Biomass to Fuels and Chemicals. This book is a comprehensive and informative compilation for international readers, especially undergraduate and post graduate students and researchers.
This book is a compilation of selected papers from the 5th International Petroleum and Petrochemical Technology Conference (IPPTC 2021). The work focuses on petroleum & petrochemical technologies and practical challenges in the field. It creates a platform to bridge the knowledge gap between China and the world. The conference not only provides a platform to exchanges experience but also promotes the development of scientific research in petroleum & petrochemical technologies. The book will benefit a broad readership, including industry experts, researchers, educators, senior engineers and managers.
Our energy use and its consequences (including climate change) motivate some of the most contentious and complex public debates of our time. Although these issues are often cast in terms of renewable versus non-renewable energy, in reality both depend on finite Earth resources. The evolution of the Earth itself therefore offers a uniquely illuminating perspective from which to evaluate alternative pathways toward energy and environmental sustainability. Geofuels: Energy and the Earth systematically develops this perspective using informal, nontechnical language laced with humor. It is well suited to a broad readership, ranging from beginning university students to lifelong learners who are interested in how the Earth's past will influence their own future. It also provides simplified explanations of controversial topics, such as energy return on energy investment, peak oil, and fracking. The focus throughout is on building a sound physical understanding of how natural resources constrain our use of energy.
This book gathers the proceedings of the 9th International Symposium on Coal Combustion, held in Qingdao, China in July 2019. It provides the latest research results on techniques for pulverized coal combustion and fluidized bed combustion, low-carbon energy and emission controls, and industrial applications. Highlighting research areas that are of great importance in promoting collaboration between related subjects and the technical development of coal-related fields, the book offers a valuable reference guide for researchers and engineers alike.
In this volume, Professor He and his coworkers summarize polyethylene glycol (PEG)-promoted CO2 chemistry on the basis of understanding about phase behavior of PEG/CO2 system and reaction mechanism at molecular level. As PEG could be utilized as a green replacement for organic solvents, phase-transfer catalyst, surfactant, support in various reaction systems, significantly promoting catalytic activity and recovering expensive metal catalysts, particularly regarded as a CO2-philic material, the authors focus on special applications of PEG in CO2 capture and utilization, including PEG-functionalized catalysts for efficient transformation of CO2 and PEG-functionalized absorbents for efficient CO2 capture. Furthermore, they describe carbon capture and utilization strategy as an alternative approach to address the energy penalty problem in carbon capture and storage. Interestingly, the authors also discuss PEG radical chemistry in dense CO2 as rather creative and unusual use of PEG, presumably serves as a reaction medium and a radical initiator for radical chemistry.
This book presents a comprehensive introduction to well logging and the inverse problem. It explores challenges such as conventional data processing methods' inability to handle local minima issues, and presents the explanations in an easy-to-follow way. The book describes statistical data interpretation by introducing the fundamentals behind the approach, as well as a range of sampling methods. In each chapter, a specific method is comprehensively introduced, together with representative examples. The book begins with basic information on well logging and logging while drilling, as well as a definition of the inverse problem. It then moves on to discuss the fundamentals of statistical inverse methods, Bayesian inference, and a new sampling method that can be used to supplement it, the hybrid Monte Carlo method. The book then addresses a specific problem in the inversion of downhole logging data, and the interpretation of earth model complexity, before concluding with a meta-technique called the tempering method, which serves as a supplement to statistical sampling methods. Given its scope, the book offers a valuable reference guide for drilling engineers, well logging tool physicists, and geoscientists, as well as students in the areas of petroleum engineering and electrical engineering.
As the case for Climate Change mitigation becomes ever more pressing, hydrogen has the potential to play a major role in a low-carbon energy future. Hydrogen can drive the vehicles of tomorrow and also heat homes and supply energy to businesses. Much recent discussion in energy policy circles has considered ways in which greatly expanded electrification can meet the demand for low-carbon mobility and heating. Such narratives centre on the widespread use of renewable energy sources with occasionally surplus renewable electricity being used to produce hydrogen, for example by electrolysis. While such developments have a beneficial role to play, this book focuses on an alternative paradigm. This book considers a more evolutionary path involving the continued extraction and use of fossil fuels, most notably natural gas, but in ways that greatly reduce greenhouse gas emissions. In this way much established industrial capacity and know how might be transitioned to help deliver the low carbon future that the world so desperately requires. Presenting up-to-date energy policy recommendations with a focus on hydrogen from fossil fuels, the book will be of considerable interest to policymakers and energy researchers in academia, industry and government labs, while also offering a valuable reference guide for business developers in low-carbon energy, and for oil and gas industry analysts.
Intended for development planners and administrators, energy planners, environmentalists, foresters and conservationists, this book provides a survey of the current, and likely future extent of, biomass energy shortages in Sri Lanka and seeks to identify the most appropriate means by which these might be addressed. Biomass accounts for roughly two-thirds of Sri Lanka's primary energy consumption, and long-term supply capability is being undermined by a fast and accelerating rate of deforestation. The book draws out the lessons to be learned in other parts of the world from Sri Lanka's experience.
From basic tenets to the latest advances, this is the most comprehensive and up-to-date coverage of the process of biodesulfurization in the petroleum refining industry. Petroleum refining and process engineering is constantly changing. No new refineries are being built, but companies all over the world are still expanding or re-purposing huge percentages of their refineries every year, year after year. Rather than building entirely new plants, companies are spending billions of dollars in the research and development of new processes that can save time and money by being more efficient and environmentally safer. Biodesulfurization is one of those processes, and nowhere else it is covered more thoroughly or with more up-to-date research of the new advances than in this new volume from Wiley-Scrivener. Besides the obvious benefits to biodesulfurization, there are new regulations in place within the industry with which companies will, over the next decade or longer, spend literally tens, if not hundreds, of billions of dollars to comply. Whether for the veteran engineer needing to update his or her library, the beginning engineer just learning about biodesulfurization, or even the student in a chemical engineering class, this outstanding new volume is a must-have. Especially it covers also the bioupgrading of crude oil and its fractions, biodenitrogenation technology and application of nanotechnology on both biodesulfurization and biodenitrogenation technologies.
Many on-site power plants either fail outright or perform far below expectations- all because of poor planning and evaluation of the power plants from the beginning. This book is intended to help those interested in cogeneration power plants by laying out a thorough and proven planning methodology for new facilities, as well as an evaluation methodology for existing facilities. There are many good reasons to want your own power plant including: improved power quality, increased reliability, and savings on energy expenses- buying power wholesale, rather than at retail prices. Although the economics are certainly important, there are a wide range of other advantages to consider, the relative value of which will vary depending on your unique circumstances.
David Altman, James M. Carter, S. S. Penner, Martin Summerfield. High Temperature Equilibrium, Expansion Processes, Combustion of Liquid Propellants, The Liquid Propellants Rocket Engine. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
We are in the midst of an energy revolution, led by the United States. As the world's greatest producer of natural gas moves aggressively to expand its exports of liquefied natural gas (LNG), America stands poised to become an energy superpower-an unanticipated development with far-reaching implications for the international order. Agnia Grigas drills deep into today's gas markets to uncover the forces and trends transforming the geopolitics of gas. The boom in shale gas production in the United States, the growth of global LNG trade, and the buildup of gas transport infrastructure worldwide have so transformed the traditional markets that natural gas appears to be on the verge of becoming a true global commodity. Traditional suppliers like Russia, whose energy-poor neighbors were dependent upon its gas exports and pipelines, are feeling the foundations of the old order shifting beneath their feet. Grigas examines how this new reality is rewriting the conventional rules of intercontinental gas trade and realigning strategic relations among the United States, the European Union, Russia, China, and beyond. In the near term, Moscow's political influence will erode as the Russian gas giant Gazprom loses share in its traditional markets while its efforts to pivot eastward to meet China's voracious energy needs will largely depend on Beijing's terms. In this new geopolitics of gas, the United States will enjoy opportunities but also face challenges in leveraging its newfound energy clout to reshape relations with both European states and rising Asian powers.
What happens when fossil fuels run out? How do communities and cultures survive? Central Appalachia and South Wales were built to extract coal, and faced with coal's decline, both regions have experienced economic depression, labor unrest, and out-migration. After Coal focuses on coalfield residents who chose not to leave, but instead remained in their communities and worked to build a diverse and sustainable economy. It tells the story of four decades of exchange between two mining communities on opposite sides of the Atlantic, and profiles individuals and organizations that are undertaking the critical work of regeneration. The stories in this book are told through interviews and photographs collected during the making of After Coal, a documentary film produced by the Center for Appalachian Studies at Appalachian State University and directed by Tom Hansell. Considering resonances between Appalachia and Wales in the realms of labor, environment, and movements for social justice, the book approaches the transition from coal as an opportunity for marginalized people around the world to work toward safer and more egalitarian futures.
Whether as a textbook for the petroleum engineering student or a reference for the veteran engineer working in the field, this new volume is a valuable asset in the engineer's library for new, tested methods of more efficient oil and gas exploration and production and better estimating methods. In this book, the authors combine a rigorous, yet easy to understand, approach to petrophysics and how it is applied to petroleum and environmental engineering to solve multiple problems that the engineer or geologist faces every day. Useful in the prediction of everything from crude oil composition, pore size distribution in reservoir rocks, groundwater contamination, and other types of forecasting, this approach provides engineers and students alike with a convenient guide to many real-world applications. Fluid dynamics is an extremely important part of the extraction process, and petroleum geologists and engineers must have a working knowledge of fluid dynamics of oil and gas reservoirs in order to find them and devise the best plan for extraction, before drilling can begin. This book offers the engineer and geologist a fundamental guide for accomplishing these goals, providing much-needed calculations and formulas on fluid flow, rock properties, and many other topics that are encountered every day. The approach taken in Fluid Dynamics of Oil and Gas Reservoirs is unique and has not been addressed until now in a book format. Readers now have the ability to review some of the most well-known fields in the world, from the USA to Russia and Asia. Useful for the veteran engineer or scientist and the student alike, this book is a must-have for any geologist, engineer, or student working in the field of upstream petroleum engineering.
This book discusses effective and alternative uses for natural gas (NG) and highlights the utilization of NG in the field of methane activation and chemical production. It details the techniques used during the reforming process of petrochemical and bio-derived fuels and it presents cutting-edge research that describes the utilization of NG that enables it to be more cost-effective and eliminate the expensive greenhouse gas emitting process of hydrogen production. The book addresses three major topics: NG use in upstream heavy oil and bitumen upgrading, NG and its use in downstream oil refining through co-aromatization of various feeds in the petrochemical industry, and NG use in the upgrading of bio-derived fuels and discusses alternative uses of NG. In-depth chapters demonstrate uses for NG beyond heating homes, through catalysis and in-situ hydrogen donation, and its potential applications for the petrochemical and biofuel industries.
The search for alternative sources of energy to offset diminishing resources of easy and cost-effective fossil fuels has become a global initiative, and fuel generated from biomass is a leading competitor in this arena. Large-scale introduction of biofuels into the energy mix could contribute to environmentally and economicaly sustainable development on a global scale. The processes and methodologies presented in this volume will offer a cutting-edge and comprehensive approach to the production of biofuels, for engineers, researchers, and students.
'Fascinating revelations' Max Hastings, Sunday Times 'An immensely valuable guide to a great and terrible industry' The Economist 'The book I have long been waiting for... Essential reading' Michael Klare Petroleum has always been used by humans: as an adhesive by Neanderthals, as a waterproofing agent in Noah's Ark and as a weapon during the Crusades. Its eventual extraction from the earth in vast quantities transformed light, heat and power. A Pipeline Runs Through It is a fresh, in-depth look at the social, economic, and geopolitical forces involved in our transition to the modern oil age. It tells an extraordinary origin story, from the pre-industrial history of petroleum through to large-scale production in the mid-nineteenth century and the development of a dominant, fully-fledged oil industry by the early twentieth century. This was always a story of imperialist violence, economic exploitation and environmental destruction. The near total eradication of the Native Americans of New York, Pennsylvania and Ohio has barely been mentioned as a precondition for the emergence of the first oil region in the United States. The growth of Royal Dutch-Shell involved the genocidal subjugation of people of the Dutch East Indies and the exploitation of oil in the Middle East arose seamlessly out of Britain's prior political and military interventions in the region. Finally, in an entirely new analysis, the book shows how the British navy's increasingly desperate dependence on vulnerable foreign sources of oil may have been a catalytic ingredient in the outbreak of the First World War. The rise of oil has shaped the modern world, and this is the book to understand it.
An energy revolution is under way with far-reaching consequences for nations, companies, and the way we address climate change Low oil prices are sending shockwaves through the global economy, and longtime industry observer Dieter Helm explains how this and other shifts are the harbingers of a coming energy revolution and how the fossil fuel age will come to an end. Surveying recent surges in technological innovations, Helm's provocative new book documents how the global move toward the internet-of-things will inexorably reduce the demand for oil, gas, and renewables-and prove more effective than current efforts to avert climate change. Oil companies and energy utilities must begin to adapt their existing business models or face future irrelevancy. Oil-exporting nations, particularly in the Middle East, will be negatively impacted, whereas the United States and European countries that are investing in new technologies may find themselves leaders in the geopolitical game. Timely and controversial, this book concludes by offering advice on what governments and businesses can and should do now to prepare for a radically different energy future.
Part of the Princeton Aeronautical Paperback series designed to bring to students and research engineers outstanding portions of the twelve-volume High Speed Aerodynamics and Jet Propulsion series. These books have been prepared by direct reproduction of the text from the original series and no attempt has been made to provide introductory material or to eliminate cross reference to other portions of the original volumes. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Since the first edition of Fracking was published, hydraulic fracturing has continued to be hotly debated. Credited with bringing the US and other countries closer to "energy independence," and blamed for tainted drinking water and earthquakes, hydraulic fracturing ("fracking") continues to be one of the hottest topics and fiercely debated issues in the energy industry and in politics. Covering all of the latest advances in fracking since the first edition was published, this expanded and updated revision still contains all of the valuable original content for the engineer or layperson to understand the technology and its ramifications. Useful not only as a tool for the practicing engineer solve day-to-day problems that come with working in hydraulic fracturing, it is also a wealth of information covering the possible downsides of what many consider to be a very valuable practice. Many others consider it dangerous, and it is important to see both sides of the argument, from an apolitical, logical standpoint. While induced hydraulic fracturing utilizes many different engineering disciplines, this book explains these concepts in an easy to understand format. The primary use of this book shall be to increase the awareness of a new and emerging technology and what the various ramifications can be. The reader shall be exposed to many engineering concepts and terms. All of these ideas and practices shall be explained within the body. A science or engineering background is not required.
PETROLEUM REFINING The third volume of a multi-volume set of the most comprehensive and up-to-date coverage of the advances of petroleum refining designs and applications, written by one of the world's most well-known process engineers, this is a must-have for any chemical, process, or petroleum engineer. This volume continues the most up-to-date and comprehensive coverage of the most significant and recent changes to petroleum refining, presenting the state-of-the-art to the engineer, scientist, or student. This book provides the design of process equipment, such as vessels for the separation of two-phase and three-phase fluids, using Excel spreadsheets, and extensive process safety investigations of refinery incidents, distillation, distillation sequencing, and dividing wall columns. It also covers multicomponent distillation, packed towers, liquid-liquid extraction using UniSim design software, and process safety incidents involving these equipment items and pertinent industrial case studies. Useful as a textbook, this is also an excellent, handy go-to reference for the veteran engineer, a volume no chemical or process engineering library should be without. Written by one of the world's foremost authorities, this book sets the standard for the industry and is an integral part of the petroleum refining renaissance. It is truly a must-have for any practicing engineer or student in this area. This groundbreaking new volume: Assists engineers in rapidly analyzing problems and finding effective design methods and select mechanical specifications Provides improved design manuals to methods and proven fundamentals of process design with related data and charts Covers a complete range of basic day-to-day petroleum refining operations topics with new materials on significant industry changes Includes extensive Excel spreadsheets for the design of process vessels for mechanical separation of two-phase and three-phase fluids Provides UniSim (R)-based case studies for enabling simulation of key processes outlined in the book Helps achieve optimum operations and process conditions and shows how to translate design fundamentals into mechanical equipment specifications Has a related website that includes computer applications along with spreadsheets and concise applied process design flow charts and process data sheets Provides various case studies of process safety incidents in refineries and means of mitigating these from investigations by the US Chemical Safety Board Includes a vast Glossary of Petroleum and Technical Terminology
Lukas Pehle beschaftigt sich mit der transienten thermischen und strukturmechanischen Analyse einer 19-stufigen Mitteldruck-Dampfturbine. Dafur errechnet und bewertet er Zeitdauern und auftretende Spannungen, um ein breites Spektrum an Vorwarm-Szenarien beschreiben zu koennen. Das dabei verwendete und weiterentwickelte Festkoerpermodell wird an experimentellen Daten kalibriert, um im Anschluss eine Parameterstudie durchfuhren zu koennen. Mithilfe des untersuchten Konzepts des Vorwarmens von Dampfturbinen koennen thermisch induzierte Spannungen beim Kraftwerksstart verringert werden. Dieses Buch leistet aufgrund der dadurch flexibleren Kraftwerke einen wichtigen Beitrag zur Versorgungssicherheit nach der Energiewende, also fur den UEbergang von fossilen Energietragern und der Kernenergie zu einer nachhaltigen Energieversorgung mittels erneuerbarer Energien. |
![]() ![]() You may like...
This Is How It Is - True Stories From…
The Life Righting Collective
Paperback
Handbook of Qualitative Research in…
Michael R.M. Ward, Sara Delamont
Hardcover
R6,978
Discovery Miles 69 780
Qualitative Inquiry and Research Design…
John W. Creswell, Cheryl N. Poth
Paperback
R2,692
Discovery Miles 26 920
Food and Beverage Management - For the…
John Cousins, David Foskett, …
Hardcover
R3,352
Discovery Miles 33 520
Symmetry: Representation Theory and Its…
Roger Howe, Markus Hunziker, …
Hardcover
R3,490
Discovery Miles 34 900
|