![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > General
As our knowledge of MEMS continues to grow, so does The MEMS Handbook. The field has changed so much that this Second Edition is now available in three volumes. Individually, each volume provides focused, authoritative treatment of specific areas of interest. Together, they comprise the most comprehensive collection of MEMS knowledge available, packaged in an attractive slipcase and offered at a substantial savings. This best-selling handbook is now more convenient than ever, and its coverage is unparalleled. The first of three volumes, MEMS: Introduction and Fundamentals covers the theoretical and conceptual underpinnings of the field, emphasizing the physical phenomena that dominate at the micro-scale. It also explores the mechanical properties of MEMS materials, modeling and simulation of MEMS, control theory, and bubble/drop transport in microchannels. Chapters were updated where necessary, and the book also includes two new chapters on microscale hydrodynamics and lattice Boltzmann simulations. This volume builds a strong foundation for further study and work in the MEMS field. MEMS: Introduction and Fundamentals comprises contributions from the foremost experts in their respective specialties from around the world. Acclaimed author and expert Mohamed Gad-el-Hak has again raised the bar to set a new standard for excellence and authority in the fledgling fields of MEMS and nanotechnology.
As our knowledge of microelectromechanical systems (MEMS) continues to grow, so does The MEMS Handbook. The field has changed so much that this Second Edition is now available in three volumes. Individually, each volume provides focused, authoritative treatment of specific areas of interest. Together, they comprise the most comprehensive collection of MEMS knowledge available, packaged in an attractive slipcase and offered at a substantial savings. This best-selling handbook is now more convenient than ever, and its coverage is unparalleled. The second volume, MEMS: Design and Fabrication, details the techniques, technologies, and materials involved in designing and fabricating MEMS devices. It begins with an overview of MEMS materials and then examines in detail various fabrication and manufacturing methods, including LIGA and macromolding, X-ray based fabrication, EFAB(R) technology, and deep reactive ion etching. This book includes three new chapters on polymeric-based sensors and actuators, diagnostic tools, and molecular self-assembly. It is a thorough guide to the important aspects of design and fabrication. MEMS: Design and Fabrication comprises contributions from the foremost experts in their respective specialties from around the world. Acclaimed author and expert Mohamed Gad-el-Hak has again raised the bar to set a new standard for excellence and authority in the fledgling fields of MEMS and nanotechnology.
As our knowledge of microelectromechanical systems (MEMS) continues to grow, so does The MEMS Handbook. The field has changed so much that this Second Edition is now available in three volumes. Individually, each volume provides focused, authoritative treatment of specific areas of interest. Together, they comprise the most comprehensive collection of MEMS knowledge available, packaged in an attractive slipcase and offered at a substantial savings. This best-selling handbook is now more convenient than ever, and its coverage is unparalleled. The third volume, MEMS: Applications, offers a broad overview of current, emerging, and possible future MEMS applications. It surveys inertial sensors, micromachined pressure sensors, surface micromachined devices, microscale vacuum pumps, reactive control for skin-friction reduction, and microchannel heat sinks, among many others. Two new chapters discuss microactuators and nonlinear electrokinetic devices. This book is vital to understanding the current and possible capabilities of MEMS technologies. MEMS: Applications comprises contributions from the foremost experts in their respective specialties from around the world. Acclaimed author and expert Mohamed Gad-el-Hak has again raised the bar to set a new standard for excellence and authority in the fledgling fields of MEMS and nanotechnology.
Because of the wide use of adaptive filtering in digital signal processing and, because most of the modern electronic devices include some type of an adaptive filter, a text that brings forth the fundamentals of this field was necessary. The material and the principles presented in this book are easily accessible to engineers, scientists, and students who would like to learn the fundamentals of this field and have a background at the bachelor level. Adaptive Filtering Primer with MATLAB (R) clearly explains the fundamentals of adaptive filtering supported by numerous examples and computer simulations. The authors introduce discrete-time signal processing, random variables and stochastic processes, the Wiener filter, properties of the error surface, the steepest descent method, and the least mean square (LMS) algorithm. They also supply many MATLAB (R) functions and m-files along with computer experiments to illustrate how to apply the concepts to real-world problems. The book includes problems along with hints, suggestions, and solutions for solving them. An appendix on matrix computations completes the self-contained coverage. With applications across a wide range of areas, including radar, communications, control, medical instrumentation, and seismology, Adaptive Filtering Primer with MATLAB (R) is an ideal companion for quick reference and a perfect, concise introduction to the field.
The power consumption of microprocessors is one of the most important challenges of high-performance chips and portable devices. In chapters drawn from Piguet's recently published Low-Power Electronics Design, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools addresses the design of low-power circuitry in deep submicron technologies. It provides a focused reference for specialists involved in designing low-power circuitry, from transistors to logic gates. The book is organized into three broad sections for convenient access. The first examines the history of low-power electronics along with a look at emerging and possible future technologies. It also considers other technologies, such as nanotechnologies and optical chips, that may be useful in designing integrated circuits. The second part explains the techniques used to reduce power consumption at low levels. These include clock gating, leakage reduction, interconnecting and communication on chips, and adiabatic circuits. The final section discusses various CAD tools for designing low-power circuits. This section includes three chapters that demonstrate the tools and low-power design issues at three major companies that produce logic synthesizers. Providing detailed examinations contributed by leading experts, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools supplies authoritative information on how to design and model for high performance with low power consumption in modern integrated circuits. It is a must-read for anyone designing modern computers or embedded systems.
The Smart Grid represents an unprecedented opportunity to move the energy industry into a new era of reliability, availability, and efficiency that will contribute to our economic and environmental health. During the transition period, it will be critical to carry out testing, technology improvements, consumer education, development of standards and regulations, and information sharing between projects to ensure that the benefits we envision from the Smart Grid become a reality. Today, an electricity disruption such as a blackout can have a domino effect-a series of failures that can affect banking, communications, traffic, and security. This is a particular threat in the winter, when homeowners can be left without heat. A smarter grid will add resiliency to our electric power system and make it better prepared to address emergencies such as severe storms, earthquakes, large solar flares, and terrorist attacks. Because of its two-way interactive capacity, the Smart Grid will allow for automatic rerouting when equipment fails or outages occur. This will minimize outages and minimize the effects when they do happen. When a power outage occurs, Smart Grid technologies will detect and isolate the outages, containing them before they become large-scale blackouts. The new technologies will also help ensure that electricity recovery resumes quickly and strategically after an emergency-routing electricity to emergency services first, for example. In addition, the Smart Grid will take greater advantage of customer-owned power generators to produce power when it is not available from utilities. By combining these "distributed generation" resources, a community could keep its health center, police department, traffic lights, phone system, and grocery stores operating during emergencies. In addition, the Smart Grid is a way to address an aging energy infrastructure that needs to be upgraded or replaced. This book shows that Smart Grids can address energy efficiency, to bring increased awareness to consumers about the connection between electricity use and the environment, bring increased national security to our energy system-drawing on greater amounts of home-grown electricity that is more resistant to natural disasters and attack.
Electric relays pervade the electronics that dominate our world. They exist in many forms, fulfill many roles, and each have their own behavioral nuances and peculiarities. To date, there exists no comprehensive reference surveying the broad spectrum of electric relays, save one-Electric Relays: Principles and Applications. This ambitious work is not only unique in its scope, but also in its practical approach that focuses on the operational and functional aspects rather than on theory and mathematics. Accomplished engineer Dr. Vladimir Gurevich builds the presentation from first principles, unfolding the concepts and constructions via discussion of their historical development from the earliest ideas to modern technologies. He uses a show-not-tell approach that employs nearly 1300 illustrations and reveals valuable insight based on his extensive experience in the field. The book begins with the basic principles of relay construction and the major functional parts, such as contact and magnetic systems. Then, it devotes individual chapters to the various types of relays. The author describes the principles of function and construction for each type as well as features of several relays belonging to a type that operate on different principles. Remarkably thorough and uniquely practical, Electric Relays: Principles and Applications serves as the perfect introduction to the plethora of electric relays and offers a quick-reference guide for the experienced engineer.
The book presents a unique view of failure analysis of high technology devices. It describes capabilities and limitations of many analytical techniques and testing paths and decisions best followed in example failure analysis studies.
The book highlights the research contributions of the interdigitated (IDT) sensors over a period of two decades in the field of sensing technology. It presents theory, design, and practical realization of the IDT sensors working over wide frequency rage for scientific, industrial, and consumer applications. The IDT sensors have been widely investigated for wide range of sensing applications including agriculture, environmental monitoring, structural health monitoring, health care, food and beverage testing, testing of dielectric material, proximity sensing, microfluidic application, automatic dispensing system etc. Hence, importance of IDT sensors is growing continuously for future applications. As such, it offers a key reference guide on IDT sensors for students, applied physicists, material scientists, engineers, sensors designers and technicians.
The introductory chapter briefly presents the fundamental topologies and operation of power inverters. The second chapter contains a description of wavelet basis functions and sampling theory with particular reference to the switching model of inverters. Chapter three outlines the connection between the non-uniform sampling theorem and wavelet functions to develop an ideal sampling-reconstruction process to operate an inverter for obtaining its optimal performances. The scale based linearly combined basis functions are developed in chapter four in order to successfully operate single phase wavelet modulated inverters. Chapter four also contains the development of the non-dyadic type multiresolution analysis, that are responsible for sampling and recontruction of three continuous time reference modulating signals for three phase inverters. The performances of single phase wavelet modulated inverters for static, dynamic and non-linear loads are presented in chapter five, while chapter six contains the simulation and experimental performances of three phase wavelet modulated voltage source inverters for different loads at various operating conditions. This book presents the latest technology in the advancing power electronics field.
This book discusses the scientific mechanism of copper electrodeposition and it's wide range of applications. The book will cover everything from the basic fundamentals to practical applications. In addition, the book will also cover important topics such as: * ULSI wiring material based upon copper nanowiring * Printed circuit boards * Stacked semiconductors * Through Silicon Via * Smooth copper foil for Lithium-Ion battery electrodes. This book is ideal for nanotechnologists, industry professionals, and practitioners.
The power consumption of integrated circuits is one of the most problematic considerations affecting the design of high-performance chips and portable devices. The study of power-saving design methodologies now must also include subjects such as systems on chips, embedded software, and the future of microelectronics. Low-Power Electronics Design covers all major aspects of low-power design of ICs in deep submicron technologies and addresses emerging topics related to future design. This volume explores, in individual chapters written by expert authors, the many low-power techniques born during the past decade. It also discusses the many different domains and disciplines that impact power consumption, including processors, complex circuits, software, CAD tools, and energy sources and management. The authors delve into what many specialists predict about the future by presenting techniques that are promising but are not yet reality. They investigate nanotechnologies, optical circuits, ad hoc networks, e-textiles, as well as human powered sources of energy. Low-Power Electronics Design delivers a complete picture of today's methods for reducing power, and also illustrates the advances in chip design that may be commonplace 10 or 15 years from now.
The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA's Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. - Introduces and holistically integrates the key EV powertrain technologies. - Provides a comprehensive overview of existing and emerging automotive solutions. - Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. - Presents many examples of powertrain technologies from leading manufacturers. - Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. - Investigates the environmental motivating factors and impacts of electromobility. - Presents a structured university teaching stream from introductory undergraduate to postgraduate. - Includes real-world problems and assignments of use to design engineers, researchers, and students alike. - Features a companion website with numerous references, problems, solutions, and practical assignments. - Includes introductory material throughout the book for the general scientific reader. - Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience. Instructors are encouraged to contact the author, John Hayes, direct to discuss course content or structure.
Today's engineers will confront the challenge of a new computing paradigm, relying on micro- and nanoscale devices. Logic Design of NanoICs builds a foundation for logic in nanodimensions and guides you in the design and analysis of nanoICs using CAD. The authors present data structures developed toward applications rather than a purely theoretical treatment. Requiring only basic logic and circuits background, Logic Design of NanoICs draws connections between traditional approaches to design and modern design in nanodimensions. The book begins with an introduction to the directions and basic methodology of logic design at the nanoscale, then proceeds to nanotechnologies and CAD, graphical representation of switching functions and networks, word-level and linear word-level data structures, 3-D topologies based on hypercubes, multilevel circuit design, and fault-tolerant computation in hypercube-like structures. The authors propose design solutions and techniques, going beyond the underlying technology to provide more applied knowledge. This design-oriented reference is written for engineers interested in developing the next generation of integrated circuitry, illustrating the discussion with approximately 250 figures and tables, 100 equations, 250 practical examples, and 100 problems. Each chapter concludes with a summary, references, and a suggested reading section.
Over the last twenty years there has been tremendous growth in the research and development of sensors and sensor signal processing methods. Advances in materials and fabrication techniques have led to a departure from traditional sensor types and the development of novel sensing techniques and devices, many of which are now finding favor in industry. Novel Sensors and Sensing provides an introduction to modern sensor types and sensor signal processing methods, with emphasis placed on the underlying physics and the generic operating principles involved. It includes a review of the fundamentals of measurement and instrumentation and covers the principle types of modern sensor-resonator, semiconductor based, and optical fiber (including an overview of optical propagation and transmission.) The final chapter of the book is devoted to flow measurement, an area that has benefited greatly from the developments in novel sensing devices and techniques.
Diffractional Optics of Millimetre Waves combines those elements of diffraction theory normally associated with optics, including Gaussian beams, lenses, and mirrors, and extends them into the micro- and millimetre wavelength range. In this regime there are a number of applications in devices, such as automobile proximity sensors, satellite-TV receiving antennae, and non-destructive testing systems. Researchers working in these areas would benefit from greater understanding of the diffraction phenomena involved. A translated and updated version of the authors' book Diffraction Quasioptics, this book will present results formerly unavailable in the general literature.
Computers and technology have reached a level of invisibility in our lives that is equal to indoor plumbing and electricity. We don't think about the mechanics of how they work, but when any of those systems breaks it is a MASSIVE disruption in our lives. All of us understand the basics of how a fuse box works or how to plunge a toilet, and with this book you will learn those equivalents in the IT world. This book will give a basic understanding of the various disciplines that exist within the IT world, some of the thought processes behind the methodologies IT professionals follow, and touch on some of the realities of living in a truly technological wonderland.
Power Electronics and Electric Drives for Traction Applications offers a practical approach to understanding power electronics applications in transportation systems ranging from railways to electric vehicles and ships. It is an application-oriented book for the design and development of traction systems accompanied by a description of the core technology. The first four introductory chapters describe the common knowledge and background required to understand the preceding chapters. After that, each application-specific chapter: highlights the significant manufacturers involved; provides a historical account of the technological evolution experienced; distinguishes the physics and mechanics; and where possible, analyses a real life example and provides the necessary models and simulation tools, block diagrams and simulation based validations. Key features: Surveys power electronics state-of-the-art in all aspects of traction applications. Presents vital design and development knowledge that is extremely important for the professional community in an original, simple, clear and complete manner. Offers design guidelines for power electronics traction systems in high-speed rail, ships, electric/hybrid vehicles, elevators and more applications. Application-specific chapters co-authored by traction industry expert. Learning supplemented by tutorial sections, case studies and MATLAB/Simulink-based simulations with data from practical systems. A valuable reference for application engineers in traction industry responsible for design and development of products as well as traction industry researchers, developers and graduate students on power electronics and motor drives needing a reference to the application examples. |
![]() ![]() You may like...
Advanced Electromagnetic Models for…
Harold A. Sabbagh, R. Kim Murphy, …
Hardcover
R4,399
Discovery Miles 43 990
Electrical Steels, Volume 1…
Anthony Moses, Philip Anderson, …
Hardcover
Control System Analysis and…
Anish Deb, Srimanti Roychoudhury
Hardcover
R5,110
Discovery Miles 51 100
Model Predictive Control for Microgrids…
Jiefeng Hu, Josep Guerrero, …
Hardcover
Adaptive Control of Dynamic Systems with…
Jing Zhou, Lantao Xing, …
Hardcover
R2,819
Discovery Miles 28 190
|