![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Transport technology > Automotive technology > General
With the recent declarations of intent by spacefaring nations to return to the Moon and Mars, this comprehensive book is most timely. It covers the ExoMars Rover to which both authors contributed, as well as the US Mars Exploration Rover program.
Here is the first reference guide to the major sources for the study of recreational vehicles, boats, and aircraft in the context of American history and popular culture. It provides brief histories of the various types of vehicles and bibliographic essays on published and unpublished sources for further study. Reference works, histories, fiction, and specialized journals relating to the topic of recreational travel are described and analyzed. Appendixes list numerous museums, trade associations, and specialized organizations concerned with leisure travel, as well as films and video tapes.
Fahreigenschaften und Fahrleistungen eines Automobils werden massgeblich von der Aerodynamik geprAgt, ebenso aber auch der Komfort seiner Insassen und die Funktion seiner Aggregate. Die fahrzeug-Aerodynamik ist vorwiegend empirischer Natur und interdisziplinAr. Daran orientiert sich dieses Buch. Wo immer mAglich, werden aus dem Erfahrungsschatz der Autoren allgemeingA1/4ltige Aussagen A1/4ber strAmungsmechanische PhAnomene abgeleitet und Auswirkungen beschrieben, die sich auf Personenfahrzeuge, MotorrAder, Sport- oder Lastwagen ergeben. Damit hat sich das Buch zum Standardwerk entwickelt. Die vorliegende deutsche 3. Auflage ist inhaltlich konsolidiert und bestAndig.
This book presents operational and practical issuesof automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modernvehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, "Automotive Mechatronics" aimsat improving automotive mechatronics education and emphasises the trainingof students' experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME I: RBW or XBW unibody or chassis-motion mechatronic control hypersystems;DBW AWD propulsion mechatronic control systems; BBW AWB dispulsion mechatronic control systems; VOLUME II: SBW AWS conversion mechatronic control systems; ABW AWA suspension mechatronic control systems. This volumewas developed for undergraduate and postgraduate students as wellas for professionals involved in all disciplines related to the design or research and development of automotive vehicle dynamics, powertrains, brakes, steering, and shock absorbers (dampers). Basic knowledge of college mathematics, college physics, and knowledge of the functionality of automotive vehicle basic propulsion, dispulsion, conversion and suspension systems is required. "
'A fascinating hybrid. Part freewheeling history of the rise of the modern autonomous vehicle, part intimate memoir from an insider who was on the front lines for much of that history, Autonomy will more than bring readers up to speed on one of today's most closely watched technologies' Brian Merchant, author of The One Device From the ultimate insider - a former General Motors executive and current advisor to the Google Self-Driving Car project - comes the definitive story of the race between Google, Tesla and Uber to create the driverless car. We stand on the brink of a technological revolution. In the near future, most of us will not own automobiles, but will travel instead in driverless electric vehicles summoned at the touch of an app. We will be liberated from driving, so that the time we spend in cars can be put to more productive use. We will prevent more than 90 percent of car crashes, provide freedom of mobility to the elderly and disabled and decrease our dependence on fossil fuels. Autonomy tells the story of the maverick engineers and computer experts who triggered the revolution. Lawrence Burns - long-time adviser to the Google self-driving car project (now Waymo) and former corporate vice president of research, development and planning at General Motors - provides the perfectly timed history of how we arrived at this point, in a character-driven and vivid account of the unlikely thinkers who accomplished what billion-dollar automakers never dared. Beginning at a 2004 off-road robot race across the Mojave Desert with a million-dollar purse and continuing up to the current stampede to develop driverless technology, Autonomy is a page-turning chronicle of the past, a diagnosis of the present and a prediction of the future - the ultimate guide to understanding the driverless car and to navigating the revolution it has sparked.
This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena. The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.
This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book's exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that facilitates in-car connectivity while on the move. An essential guide for technicians working in a fast-developing field, this new volume will be warmly welcomed as a powerful aid in their endeavors.
This volume contains contributions illuminating much of the current research occurring in the area of visual perception. It encompasses all aspects of vision and its relationship to vehicle design, including both the internal and external design of the vehicle as well as the perceptual and cognitive limitations of the vehicle controller. Issues specifically related to the vision of the driver are initially addressed and the problems of vehicle glazing and light transmission are considered. The major topics of visual perception and vehicle control are covered in three related chapters encompassing: collision avoidance, vehicle signalling systems and the acquisition of visual information. Moving on to the external environment and its relationship to vision, traffic signs are discussed. Approaches to the measurement and modelling of driver behaviour are dealt with and the area of telerobotic control of vehicles is considered. In-vehicle displays are covered in two related chapters addressing issues of visual workload and effects of display type. It is hoped that the book, contributed to by experts from a diverse range of disciplines, including optometrists, psychologists, physiologists, human factors specialists and engineers, will stimulate the progression of research in this area, as effectively as the preceding volumes did.
This book addresses one of the most important components for pedestrian safety in vehicles - laminated windshields. It includes detailed real-world material characterization results for laminated glass and testing methodologies, constitutive models, and step-by-step numerical simulation modeling and simulation methods. As such, the book provides readers a thorough understanding of the mechanical behaviors of laminated glass and windshields. It also presents fundamental test data, analysis methodologies and essential insights into laminated glass safety design and mechanical behavior prediction. The book addresses the needs of researchers, engineers and postgraduate students in the fields of automotive engineering, mechanical engineering and related areas.
The authors review the past 20 years work in this field, and bring together for the first time details of the technology available and being developed to provide totally reusable launch vehicles for the future exploitation and exploration of space.
The safety of vehicle traffic depends on how well automotive lighting supports the visual perception of the driver. This book explains the fundamentals of visual perception, like e.g. physiology of eye and brain, as well as those of automotive lighting technology, like e.g. design of headlamps and signal lights. It is an interdisciplinary approach to a rapidly evolving field of science and technology written by a team of authors who are experts in their fields.
The ambitious objectives of future road mobility, i.e. fuel efficiency, reduced emissions, and zero accidents, imply a paradigm shift in the concept of the car regarding its architecture, materials, and propulsion technology, and require an intelligent integration into the systems of transportation and power. ICT, components and smart systems have been essential for a multitude of recent innovations, and are expected to be key enabling technologies for the changes ahead, both inside the vehicle and at its interfaces for the exchange of data and power with the outside world. It has been the objective of the International Forum on Advanced Microsystems for Automotive Applications (AMAA) for almost two decades to detect novel trends and to discuss technological implications and innovation potential from day one on. In 2012, the topic of the AMAA conference is "Smart Systems for Safe, Sustainable and Networked Vehicles". The conference papers selected for this book address current research, developments and innovations in the field of ICT, components and systems and other key enabling technologies leading to the automobile and road transport of the future. The book focuses on application fields such as electrification, power train and vehicle efficiency, safety and driver assistance, networked vehicles, as well as components and systems. Additional information is available at www.amaa.de
Focusing on the nuts and bolts of wireless network access for computers on board vehicles, this volume shows how in-car computerization now does much more than merely act as a glorified map-reader. Wireless communication is transforming road travel in ways previously undreamt of, allowing vehicles to "talk" to a wider network and monitor road conditions, potential delays and traffic congestion, all automatically. Toll payments can be made without opening the driver's window on a cold day, while vehicles might themselves take active steps to avoid collisions. It is the connection between on-board computers and wireless access points, ubiquitous in most cities now, that is a key area of research. Moving vehicles transfer their communications to new points as they progress, and this causes delays, known as "handover latency." In this book, new stochastic models are developed to map the disruption when connecting to 802.11 WLAN points. It details the application of stochastic tools to analyzing communication networks, as well as previous literature on handover latency and relevant mathematical modeling. Finally, it presents a scheme for monitoring traffic congestion using WLAN connectivity. This volume will be a useful addition to the libraries both of wireless communication students and those studying probability theory."
An airline schedule represents the central planning element of each airline. In general, the objective of airline schedule optimization is to find the airline schedule that maximizes operating profit. This planning task is not only the most important but also the most complex task an airline is confronted with. Until now, this task is performed by dividing the overall planning problem into smaller and less complex subproblems that are solved separately in a sequence. However, this procedure is only of minor capability to deal with interdependencies between the subproblems, resulting in less profitable schedules than those being possible with an approach solving the airline schedule optimization problem in one step. In this work, two planning approaches for integrated airline scheduling are presented. One approach follows the traditional sequential approach: existing models from literature for individual subproblems are implemented and enhanced in an overall iterative routine allowing to construct airline schedules from scratch. The other planning appraoch represents a truly simultaneous airline scheduling: using metaheuristics, airline schedules are processed and optimized at once without a separation into different optimization steps for its subproblems.
A complete solution for problems of vibration control in structures that may be subject to a broadband primary vibration field, this book addresses the following steps: experimental identification of the dynamic model of the structure; optimal placement of sensors and actuators; formulation of control constraints in terms of controller frequency response shape; controller design and simulation; and controller implementation and rapid prototyping. The identification procedure is a gray-box approach tailored to the estimation of modal parameters of large-scale flexible structures. The actuator/sensor placement algorithm maximizes a modal controllability index improving the effectiveness of the control. Considering limitations of sensors and actuators, the controller is chosen as a stable, band-pass MIMO system resulting from the closed-form solution of a robust control problem. Experimental results on an aeronautical stiffened skin panel are presented using rapid-prototyping hardware.
This book focuses on the small car segment of India's automotive industry to explain the emergence of lead markets. The authors contend that the current understanding of lead markets does not sufficiently explain the business practices that are born out of the intensified globalization of innovation. Lead markets are considered crucial for the global diffusion of new products and this book investigates whether sustainable lead markets can also emerge in developing economies, and if so, under which conditions. The authors question the conventional wisdom and propose updates and extensions to the lead market theory to better reflect the changing ground realities on ground.
Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation. In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions. Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill's analogy, is required to investigate airborne noises produced by turbochargers in passenger vehicles. The content of this book is intended for advanced undergraduates, graduates in mechanical engineering, research scientists and practicing engineers who want to better understand the interactions between these working fields and the resulting impact on the interesting topic of Aero and Vibroacoustics of Automotive Turbochargers.
This book provides practicing engineers, researchers, and students, with a working knowledge of the fatigue damage processes and models under multiaxial state of stress and strain. Readers are introduced to the important considerations of multiaxial fatigue that differentiate it from uniaxial fatigue. Multiaxial Fatigue presents an interpretive summary and comparison of various classes of models, providing a complete treatment of the subject from many perspectives. The concepts presented in this book are material independent and will be useful in designing test programs for metallic, ceramic, composite, and other materials. The book is filled with examples, case studies, and diagrams to make it a useful learning tool as well as a valuable desk reference. Contents include: State of Stress and Strain Stress-Strain Relationships Fatigue Damage Mechanisms Multiaxial Testing Nonproportional Loading Notches Strain-Based and Energy-Based Models Stress-Based Models Fracture Mechanics Model Applications.
This book describes the current state of the art for simulating paint shop applications, their advantages and limitations, as well as corresponding high-performance computing (HPC) methods utilized in this domain. The authors provide a comprehensive introduction to fluid simulations, corresponding optimization methods from the HPC domain, as well as industrial paint shop applications. They showcase how the complexity of these applications bring corresponding fluid simulation methods to their limits and how these shortcomings can be overcome by employing HPC methods. To that end, this book covers various optimization techniques for three individual fluid simulation techniques, namely grid-based methods, volumetric decomposition methods, and particle-based methods.
This book outlines issues related to massive integration of electric and plug-in hybrid electric vehicles into power grids. Electricity is becoming the preferred energy vector for the next new generation of road vehicles. It is widely acknowledged that road vehicles based on full electric or hybrid drives can mitigate problems related to fossil fuel dependence. This book explains the emerging and understanding of storage systems for electric and plug-in hybrid vehicles. The recharging stations for these types of vehicles might represent a great advantage for the electric grid by facilitating integration of renewable and distributed energy production. This book presents a broad review from analyzing current literature to on-going research projects about the new power technologies related to the various charging architectures for electric and plug-in hybrid vehicles. Specifically focusing on DC fast charging operations, as well as, grid-connected power converters and the full range of energy storage systems. These key components are analyzed for distributed generation and charging system integration into micro-grids. The authors demonstrate that these storage systems represent effective interfaces for the control and management of renewable and sustainable distributed energy resources. New standards and applications are emerging from micro-grid pilot projects around the world and case studies demonstrate the convenience and feasibility of distributed energy management. The material in this unique volume discusses potential avenues for further research toward achieving more reliable, more secure and cleaner energy.
This new edition of the highly successful Light Vehicle Maintenance and Repair Level 2 workbook provides complete coverage of the National Occupational Standards at Level 2 as set by the IMI and has been reviewed by Roy Brooks, the highly acclaimed author of the first edition. The easy to use, easy to follow format makes this the perfect companion for the course, for use in class and while carrying out practical tasks. Learners will be inspired by the full-colour diagrams and images illustrating key techniques and the Tip Boxes, weblinks, activities and questions will ensure learners have full understanding of all the essential information.
Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai University, Shanghai, China; Shaohua Li is a professor at Shijiazhuang Tiedao University, China.
Mechatronics in Action s case-study approach provides the most effective means of illustrating how mechatronics can make products and systems more flexible, more responsive and possess higher levels of functionality than would otherwise be possible. The series of case studies serves to illustrate how a mechatronic approach has been used to achieve enhanced performance through the transfer of functionality from the mechanical domain to electronics and software. Mechatronics in Action not only provides readers with access to a range of case studies, and the experts view of these, but also offers case studies in course design and development to support tutors in making the best and most effective use of the technical coverage provided. It provides, in an easily accessible form, a means of increasing the understanding of the mechatronic concept, while giving both students and tutors substantial technical insight into how this concept has been developed and used.
This edited volume presents the proceedings of the AMAA 2015 conference, Berlin, Germany. The topical focus of the 2015 conference lies on smart systems for green and automated driving. The automobile of the future has to respond to two major trends, the electrification of the drivetrain, and the automation of the transportation system. These trends will not only lead to greener and safer driving but re-define the concept of the car completely, particularly if they interact with each other in a synergetic way as for autonomous parking and charging, self-driving shuttles or mobile robots. Key functionalities like environment perception are enabled by electronic components and systems, sensors and actuators, communication nodes, cognitive systems and smart systems integration. The book will be a valuable read for research experts and professionals in the automotive industry but the book may also be beneficial for graduate students.
In the last 20 years, technological developments have set new standards in driver-vehicle interaction. These developments effect the entire lifecycle, from the moment a customer enters a dealership to examine a prospective vehicle, to the driving experience during the vehicle lifecycle, and the interaction with other road users and facilities in place. It is such developments, socioeconomic on the one hand, technological on the other, that make Automotive Ergonomics: Driver-Vehicle Interaction an important addition to the literature in this field. The book explores the challenges in research and development of new vehicles brought about by recent advances in theory and practice. Highlighting topics such as Human-Machine Interaction, Advanced Driver Assistance Systems, and the hugely evolving subject of digital human modeling and simulation in automotive applications, the book covers: Best practices and emerging developments Advances in power train technology Ergonomics of electric vehicles Effects of driver distraction, workload, and physical environments Active safety systems Navigation support Vibration and noise perception Health and safety aspects of driving While this area is not new, most of the books available are either too general or out of date. This book presents the latest developments in the field of ergonomics and human factors and discusses their implications to the design of modern and future vehicles, giving you the tools you need for innovation. |
![]() ![]() You may like...
Skew PBW Extensions - Ring and…
William Fajardo, Claudia Gallego, …
Hardcover
R3,921
Discovery Miles 39 210
Theory of Fractional Evolution Equations
Yong Zhou, Bashir Ahmad, …
Hardcover
R5,578
Discovery Miles 55 780
Towards Mathematical Philosophy - Papers…
David Makinson, Jacek Malinowski, …
Hardcover
R4,749
Discovery Miles 47 490
|