![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Transport technology > Automotive technology > General
Enhanced e-book includes videos Many books have been written on modelling, simulation and control of four-wheeled vehicles (cars, in particular). However, due to the very specific and different dynamics of two-wheeled vehicles, it is very difficult to reuse previous knowledge gained on cars for two-wheeled vehicles. Modelling, Simulation and Control of Two-Wheeled Vehicles presents all of the unique features of two-wheeled vehicles, comprehensively covering the main methods, tools and approaches to address the modelling, simulation and control design issues. With contributions from leading researchers, this book also offers a perspective on the future trends in the field, outlining the challenges and the industrial and academic development scenarios. Extensive reference to real-world problems and experimental tests is also included throughout. Key features: * The first book to cover all aspects of two-wheeled vehicle dynamics and control * Collates cutting-edge research from leading international researchers in the field * Covers motorcycle control a subject gaining more and more attention both from an academic and an industrial viewpoint * Covers modelling, simulation and control, areas that are integrated in two-wheeled vehicles, and therefore must be considered together in order to gain an insight into this very specific field of research * Presents analysis of experimental data and reports on the results obtained on instrumented vehicles. Modelling, Simulation and Control of Two-Wheeled Vehicles is a comprehensive reference for those in academia who are interested in the state of the art of two-wheeled vehicles, and is also a useful source of information for industrial practitioners.
Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 6: Vehicle Electronics focuses on: *Engine/Chassis/Body Electronic Control *Electrical and Electronic System *Software and Hardware Development *Electromagnetic Compatibility (EMC) *Vehicle Sensor and Actuator *In-Vehicle Network *Multi-Media/Infotainment System Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.
This book focuses on the design of a multi-criteria automated vehicle longitudinal control system as an enhancement of the adaptive cruise control system. It analyses the effects of various parameters on the average traffic speed and the traction force of the vehicles in mixed traffic from a macroscopic point of view, and also demonstrates why research and development in speed control and predictive cruise control is important. The book also summarises the main steps of the system's robust control design, from the modelling to its synthesis, and discusses both the theoretical background and the practical computation method of the control invariant sets. The book presents the analysis and verification of the system both in a simulation environment and under real-world conditions. By including the systematic design of the predictive cruise control using road and traffic information, it shows how optimization criteria can lead to multiobjective solutions, and the advanced optimization and control design methods required. The book focuses on a particular method by which the unfavourable effect of the traffic flow consideration can be reduced. It also includes simulation examples in which the speed design is performed, while the analysis is carried out in simulation and visualization environments. This book is a valuable reference for researchers and control engineers working on traffic control, vehicle control and control theory. It is also of interest to students and academics as it provides an overview of the strong interaction between the traffic flow and an individual vehicle cruising from both a microscopic and a macroscopic point of view.
Measuring Road Safety Using Surrogate Events provides researchers and practitioners with the tools they need to quickly and effectively measure traffic safety. As traditional crash-based safety analyses are being undermined by today's growing use of intelligent vehicular and road safety technologies, crash surrogates--or near misses--can be more effectively used to measure the future risk of crashes. This book advances the idea of using these near-crash techniques to deliver quicker and more adequate measurements of safety. It explores the relationships between traffic conflicts and crashes using an extrapolation of observed events rather than post-crash data, which is significantly slower to obtain. Readers will find sound estimation methods based on rigorous scientific principles, offering compelling new tools to better equip researchers to understand road safety and its factors.
Advanced Motorsport Engineering is an essential textbook for
students on Motorsports Engineering courses and a handy reference
those already working in the industry. Andrew Livesey is the Head of the School of Engineering at North West Kent College, UK
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
This volume contains papers presented at the International conference "The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains" held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future. This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.
Self-driving vehicles are a rapidly growing area of research and expertise. Theories and Practice of Self-Driving Vehicles presents a comprehensive introduction to the technology of self driving vehicles across the three domains of perception, planning and control. The title systematically introduces vehicle systems from principles to practice, including basic knowledge of ROS programming, machine and deep learning, as well as basic modules such as environmental perception and sensor fusion. The book introduces advanced control algorithms as well as important areas of new research. This title offers engineers, technicians and students an accessible handbook to the entire stack of technology in a self-driving vehicle. Theories and Practice of Self-Driving Vehicles presents an introduction to self-driving vehicle technology from principles to practice. Ten chapters cover the full stack of driverless technology for a self-driving vehicle. Written by two authors experienced in both industry and research, this book offers an accessible and systematic introduction to self-driving vehicle technology.
This book deals with the analysis of off-road vehicle dynamics from kinetics and kinematics perspectives and the performance of vehicle traversing over rough and irregular terrain. The authors consider the wheel performance, soil-tire interactions and their interface, tractive performance of the vehicle, ride comfort, stability over maneuvering, transient and steady state conditions of the vehicle traversing, modeling the aforementioned aspects and optimization from energetic and vehicle mobility perspectives. This book brings novel figures for the transient dynamics and original wheel terrain dynamics at on-the-go condition.
With a focus onecology, economy and engine performance, diesel engines are explored in relation to current research and developments. The prevalent trends in this development are outlined with particular focus on the most frequently used alternative fuels in diesel engines; the properties of various type of biodiesel and the concurrent improvement of diesel engine characteristics using numeric optimization alongside current investigation and research work in the field. Following of a short overview of engine control, aftertreatment and alternative fuels, "Green Diesel Engine "explores" "the effects of biodiesel usage on injection, fuel spray, combustion, and tribology characteristics, and engine performance. Additionally, optimization procedures of diesel engine characteristics are discussed using practical examples and each topic is corroborated and supported by current research and detailed illustrations. This thorough discussion provides a solid foundation in the current research but also a starting point for fresh ideas for engineers involved in developing/adjusting diesel engines for usage of alternative fuels, researchers in renewable energy, as well as to engineers, advanced undergraduates, and postgraduates. "
This book has been motivated by an urgent need for designing and implementation of innovative control algorithms and systems for tracked vehicles. Nowadays the unmanned vehicles are becoming more and more common. Therefore there is a need for innovative mechanical constructions capable of adapting to various applications regardless the ground, air or water/underwater environment. There are multiple various activities connected with tracked vehicles. They can be distributed among three main groups: design and control algorithms, sensoric and vision based in-formation, construction and testing mechanical parts of unmanned vehicles. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision, data fusion, or IC will find this book useful.
Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines summarizes recent developments in Artificial Intelligence (AI)/Machine Learning (ML) and data driven optimization and calibration techniques for internal combustion engines. The book covers AI/ML and data driven methods to optimize fuel formulations and engine combustion systems, predict cycle to cycle variations, and optimize after-treatment systems and experimental engine calibration. It contains all the details of the latest optimization techniques along with their application to ICE, making it ideal for automotive engineers, mechanical engineers, OEMs and R&D centers involved in engine design.
Modeling Remaining Useful Life Dynamics in Reliability Engineering applies traditional reliability engineering methods to Prognostics and Health Management (PHM), looking at Remaining Useful Life (RUL) and predictive maintenance to enable engineers to effectively and safely predict machinery lifespan. One of the key tools used in defining and implementing predictive maintenance policies is the RUL indicator. However, it is essential to account for the uncertainty inherent to the RUL, as otherwise predictive maintenance strategies can be incorrect. This can cause high costs, or alternatively, ineffective predictions. Methods used to estimate RUL are very numerous and diverse, and broadly speaking, fall into three categories: model-based, data-driven, or hybrid, which uses both. The book starts by building on established theory, and applying cutting edge research to it, such as artificial intelligence models and deep learning. It looks at traditional reliability engineering methods through their relation to Prognostics and Health Management (PHM) requirements and presents the concept of RUL loss rate. Following on from this, the book presents a general method for defining a nonlinear transformation enabling the MRL to become a linear function. It also touches on topics such as Weibull distribution, gamma distribution and degradation, along with time-to-failure distributions. Features: Provides both practical and theoretical background of RUL Describes how the uncertainty of RUL can be related to RUL loss rate Provides new insights into time-to-failure distributions Offers tools for predictive maintenance_ The book will be of interest to engineers and researchers in reliability engineering, Prognostics and Health Management and industry management.
This book contains 23 papers presented at the ECCOMAS Multidisciplinary Jubilee Symposium - New Computational Challenges in Materials, Structures, and Fluids (EMJS08), in Vienna, February 18-20, 2008. The main intention of EMJS08 was to react adequately to the increasing need for interdisciplinary research activities allowing ef?cient solution of complex problems in engineering and in the applied sciences. The 15th anniversary of ECCOMAS (European Community on Computational Methods in Applied Sciences) provided a suitable frame for taking the afo- mentioned situation into account by inviting distinguished colleagues from d- ferent areas of engineering and the applied sciences, encouraging them to choose multidisciplinary topics for their lectures. The main themes of EMJS08 have a long tradition in engineering and in the applied sciences: materials, structures, and ?uids. The solution of scienti?c pr- lems involving ?uids together with solids and structures, not to forget the materials the structures are made of, is of paramount importance in a technical world of rapidly increasing sophistication, referred to as the Leonardo World by the eminent German philosopher Jurgen Mittelstrass. More recently, the main themes of EMJS08 have gained considerable mom- tum, owing to signi?cant progress in nanotechnology. It enables resolution of a multitude of materials into their micro- and nanostructures. Covering aspects such as * Physical and chemical characterization * Multiscale modeling concepts, continuum micromechanics, and computational homogenization, as well as * Applications in various engineering ?elds the individual contributions to this book ?ow along different tracks of ?uids, materials, and structures.
Semi-active Suspension Control provides an overview of vehicle ride control employing smart semi-active damping systems (controlled dissipative elements which only require low energy input). These systems are able to tune the amount of damping in response to measured vehicle-ride and handling indicators. Two physically different dampers (magnetorheological and controlled-friction) are analysed from the perspectives of mechatronics and control. Ride comfort, road holding, road damage and human-body modelling (nonlinear visceral response in particular) are studied. A multidisciplinary approach is adopted throughout the book. Sound mathematical modelling is balanced by a large and detailed section on experimental implementation, where a variety of automotive applications are described offering a well-rounded view of the application of such systems. The implementation of control algorithms with regard to real-life engineering constraints is emphasised. The applications described include semi-active suspensions for a saloon car, seat suspensions for vehicles not equipped with a primary suspension, and control of heavy-vehicle dynamic-tyre loads to reduce road damage and improve handling. Engineers and practitioners working in noise and vibration; automotive engineers working in vehicle design, research and development; biomechanical engineers, physicists and life-scientists interested in human-body responses to vibration; and graduate students in vehicle studies, mechanics of vibration, dynamics and control will find this book of material assistance in their work.
An aging population, increasing obesity and more people with mobility impairments are bringing new challenges to the management of routine and emergency people movement in many countries. These population challenges, coupled with the innovative designs being suggested for both the built environment and other commonly used structures (e.g., transportation systems) and the increasingly complex incident scenarios of fire, terrorism, and large-scale community disasters, provide even greater challenges to population management and safety. "Pedestrian and Evacuation Dynamics," an edited volume, is based on the Pedestrian and Evacuation Dynamics (PED) 5th International 2010 conference, March 8th-10th 2010, located at the National Institute of Standards and Technology, Gaithersburg, MD, USA. This volume addresses both pedestrian and evacuation dynamics and associated human behavior to provide answers for policy makers, designers, and emergency management to help solve real world problems in this rapidly developing field. Data collection, analysis, and model development of people movement and behavior during nonemergency and emergency situations will be covered as well.
The articles in the book treat flow instability and transition starting with classical material dealt with in an innovative and rigorous way, some newer physical mechanisms explained for the first time and finally with the very complex topic of bombustion and two-phase flow instabilities.
This volume collects selected papers of the 3rd CESA Automotive Electronics Congress, Paris, 2014. CESA is the most important automotive electronics conference in France. The topical focus lies on state-of-the-art automotive electronics with respect to energy consumption and autonomous driving. The target audience primarily comprises industry leaders and research experts in the automotive industry.
Extremum-seeking control tracks a varying maximum or minimum in a performance function such as output or cost. It attempts to determine the optimal performance of a control system as it operates, thereby reducing downtime and the need for system analysis. Extremum-seeking Control and Applications is divided into two parts. In the first, the authors review existing analog-optimization-based extremum-seeking control including gradient-, perturbation- and sliding-mode-based control designs. They then propose a novel numerical-optimization-based extremum-seeking control based on optimization algorithms and state regulation. This control design is developed for simple linear time-invariant systems and then extended for a class of feedback linearizable nonlinear systems. The two main optimization algorithms - line search and trust region methods - are analyzed for robustness. Finite-time and asymptotic state regulators are put forward for linear and nonlinear systems respectively. Further design flexibility is achieved using the robustness results of the optimization algorithms and the asymptotic state regulator by which existing nonlinear adaptive control techniques can be introduced for robust design. The approach used is easier to implement and tends to be more robust than those that use perturbation-based extremum-seeking control. The second part of the book deals with a variety of applications of extremum-seeking control: a comparative study of extremum-seeking control schemes in antilock braking system design; source seeking, formation control, collision and obstacle avoidance for groups of autonomous agents; mobile radar networks; and impedance matching. MATLAB (R)/Simulink (R) code which can be downloaded from www.springer.com/ISBN helps readers to reproduce the results presented in the text and gives them a head start for implementing the algorithms in their own applications. Extremum-seeking Control and Applications will interest academics and graduate students working in control, and industrial practitioners from a variety of backgrounds: systems, automotive, aerospace, communications, semiconductor and chemical engineering.
The proceedings contain papers accepted for the 17th ISPE International Conference on Concurrent Engineering, which was held in Cracow, Poland, September 6-10, 2010. Concurrent Engineering (CE) has a history of over twenty years. At first, primary focus was on bringing downstream information as much upstream as possible, by introducing parallel processing of processes, in order to prevent errors at the later stage which would sometimes cause irrevocable damage and to reduce time to market. During the period of more than twenty years, numerous new concepts, methodologies and tools have been developed. During this period the background for engineering/manufacturing has changed extensively. Now, industry has to work with global markets. The globalization brought forth a new network of experts and companies across many different domains and fields in distributed environments. These collaborations integrated with very high level of profesionalism and specialisation, provided the basis for innovations in design and manufacturing and succeeded in creating new products on a global market.
This textbook draws on the authors' experience gained by teaching courses for engineering students on e.g. vehicle mechanics, vehicle system design, and chassis design; and on their practical experience as engineering designers for vehicle and chassis components at a major automotive company. The book is primarily intended for students of automotive engineering, but also for all technicians and designers working in this field. Other enthusiastic engineers will also find it to be a useful technical guide. The present volume (The Automotive Chassis - Volume 2: System Design) focuses on the automotive chassis as a system, providing readers with the knowledge needed to integrate the individual components described in Volume 1 in a complex system that satisfies customers' expectations. Special emphasis is given to factors influencing system performance, including: - the influence of the powertrain on vehicle performance. Conventional, hybrid and electric powertrains are considered; - factors influencing vehicles' handling performance; - factors influencing vehicles' comfort performance; and - factors influencing vehicles' stability and strategies for accident avoidance (active safety). In addition, this second volume thoroughly covers topics that are usually neglected in other books about the automotive chassis, such as: - the basics of vehicle aerodynamics; - internal combustion engines, electric motors and batteries; and - mathematical modeling tools. This thoroughly revised second edition has been updated to reflect the latest advances in electric and hybrid vehicles, electronic control systems and autonomous driving.
The book provides an introduction to the mechanics of composite materials, written for graduate students and practitioners in industry. It examines ways to model the impact event, to determine the size and severity of the damage and discusses general trends observed during experiments.
Autonomous driving is an emerging field. Vehicles are equipped with different systems such as radar, lidar, GPS etc. that enable the vehicle to make decisions and navigate without user's input, but there are still concerns regarding safety and security. This book analyses the security needs and solutions which are beneficial to autonomous driving. |
You may like...
War on Words - Who Should Protect…
Joanne M Lisosky, Jennifer R Henrichsen
Hardcover
Madam & Eve 2018 - The Guptas Ate My…
Stephen Francis, Rico Schacherl
Paperback
Introduction to Calligraphy
Veronique Sabard, Vincent Geneslay, …
Hardcover
|