![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
Originating in South America, cassava is grown in over 100 countries around the world. It is the third most important source of calories in the tropics after rice and maize. Its caloric value, as well as its ability to tolerate dry conditions and poor soils, makes it a key food security crop in developing countries. As demand for food grows, there is an urgent need to increase yields in the face of such challenges as climate change, threats from pests and diseases and the need to make cultivation more resource-efficient and sustainable. Drawing on an international range of expertise, this collection focuses on ways of improving the cultivation of cassava at each step in the value chain, from breeding to post-harvest storage. Volume 2 starts by reviewing genetic resources, advances in breeding and their application to produce varieties with desirable traits such as higher yield. It then goes on to review developments in understanding and managing pests and diseases. Achieving sustainable cultivation of cassava Volume 2: Genetic resources, breeding, pests and diseases will be a standard reference for agricultural scientists in universities, government and other research centres and companies involved in improving cassava cultivation. It is accompanied by Volume 1 which reviews cultivation techniques.
Carnivorous plants have fascinated botanists, evolutionary biologists, ecologists, physiologists, developmental biologists, anatomists, horticulturalists, and the general public for centuries. Charles Darwin was the first scientist to demonstrate experimentally that some plants could actually attract, kill, digest, and absorb nutrients from insect prey; his book Insectivorous Plants (1875) remains a widely-cited classic. Since then, many movies and plays, short stories, novels, coffee-table picture books, and popular books on the cultivation of carnivorous plants have been produced. However, all of these widely read products depend on accurate scientific information, and most of them have repeated and recycled data from just three comprehensive, but now long out of date, scientific monographs. The field has evolved and changed dramatically in the nearly 30 years since the last of these books was published, and thousands of scientific papers on carnivorous plants have appeared in the academic journal literature. In response, Ellison and Adamec have assembled the world's leading experts to provide a truly modern synthesis. They examine every aspect of physiology, biochemistry, genomics, ecology, and evolution of these remarkable plants, culminating in a description of the serious threats they now face from over-collection, poaching, habitat loss, and climatic change which directly threaten their habitats and continued persistence in them.
The world's mediterranean-type climate regions (including areas within the Mediterranean, South Africa, Australia, California, and Chile) have long been of interest to biologists by virtue of their extraordinary biodiversity and the appearance of evolutionary convergence between these disparate regions. These regions contain many rare and endemic species. Their mild climate makes them appealing places to live and visit and this has resulted in numerous threats to the species and communities that occupy them. Threats include a wide range of factors such as habitat loss due to development and agriculture, disturbance, invasive species, and climate change. As a result, they continue to attract far more attention than their limited geographic area might suggest. This book provides a concise but comprehensive introduction to mediterranean-type ecosystems. It is an accessible text which provides an authoritative overview of the topic. As with other books in the Biology of Habitats Series, the emphasis in this book is on the organisms that dominate these regions although their management, conservation, and restoration are also considered.
Plant genetics has come a long way from the time Gregor Mendel observed the traits of his pea plants. This book provides a glimpse on the advancements in plant genetics, putting emphasis on the various sequencing technologies that were instrumental in unlocking the plant genome. The plant genome has also lent itself to manipulation and modification, contributing greatly to the body of genetic knowledge as well as producing economically-, nutritionally-, and medically-significant plants. This book compiles and describes these plant genetic engineering and genomic editing approaches.
An understanding of crop physiology and ecophysiology enables the horticulturist to manipulate a plant's metabolism towards the production of compounds that are beneficial for human health when that plant is part of the diet or the source of phytopharmaceutical compounds. The first part of the book introduces the concept of Controlled Environment Horticulture as a horticultural production technique used to maximize yields via the optimization of access to growing factors. The second part describes the use of this production technique in order to induce stress responses in the plant via the modulation of these growing factors and, importantly, the way that this manipulation induces defence reactions in the plant resulting in the production of compounds beneficial for human health. The third part provides guidance for the implementation of this knowledge in horticultural production.
Mimicry is a classic example of adaptation through natural selection. The traditional focus of mimicry research has been on defence in animals, but there is now also a highly-developed and rapidly-growing body of research on floral mimicry in plants. This has coincided with a revolution in genomic tools, making it possible to explore which genetic and developmental processes underlie the sometimes astonishing changes that give rise to floral mimicry. Being literally rooted to one spot, plants have to cajole animals into acting as couriers for their pollen. Floral mimicry encompasses a set of evolutionary strategies whereby plants imitate the food sources, oviposition sites, or mating partners of animals in order to exploit them as pollinators. This first definitive book on floral mimicry discusses the functions of visual, olfactory, and tactile signals, integrating them into a broader theory of organismal mimicry that will help guide future research in the field. It addresses the fundamental question of whether the evolutionary and ecological principles that were developed for protective mimicry in animals can also be applied to floral mimicry in plants. The book also deals with the functions of floral rewardlessness, a condition which often serves as a precursor to the evolution of mimicry in plant lineages. The authors pay particular attention to the increasing body of research on chemical cues: their molecular basis, their role in cognitive misclassification of flowers by pollinators, and their implications for plant speciation. Comprehensive in scope and conceptual in focus, Floral Mimicry is primarily aimed at senior undergraduates, graduate students, and researchers in plant science and evolutionary biology.
Although they are among the most abundant of all living things and
provide essential oxygen, food, and shelter to the animal kingdom,
few books pay any attention to how and why plants evolved the
wondrous diversity we see today. In this richly illustrated and
clearly written book, Karl J. Niklas provides the first
comprehensive synthesis of modern evolutionary biology as it
relates to plants.
Allometry, the study of the growth rate of an organism's parts in
relation to the whole, has produced exciting results in research on
animals. Now distinguished plant biologist Karl J. Niklas has
written the first book to apply allometry to studies of the
evolution, morphology, physiology, and reproduction of plants.
From their ability to use energy from sunlight to make their own food, to combating attacks from diseases and predators, plants have evolved an amazing range of life-sustaining strategies. Written with the non-specialist in mind, John King's lively natural history explains how plants function, from how they gain energy and nutrition to how they grow, develop and ultimately die. New to this edition is a section devoted to plants and the environment, exploring how problems created by human activities, such as global warming, pollution of land, water and air, and increasing ocean acidity, are impacting on the lives of plants. King's narrative provides a simple, highly readable introduction, with boxes in each chapter offering additional or more advanced material for readers seeking more detail. He concludes that despite the challenges posed by growing environmental perils, plants will continue to dominate our planet.
This book presents an overview of plant physiology and the routes of contaminant uptake as well as the potential benefits and limitations of using soil amendments to enhance phytoextraction. While amendments can offer some benefits for contaminant removal from soil, their influence is often dependent on factors such as site conditions, contaminants present and plant species involved. Implementation of phytoremediation technologies, as with other remediation approaches, remains site-specific and therefore requires an understanding of these factors.
For many years orchids have been among the most popular of ornamental plants, with thousands of species and hybrids cultivated worldwide for the diversity, beauty, and intricacy of their flowers. This book is the eagerly-awaited result of over 30 years of research into orchid anatomy by one of the world's leading authorities and is the first comprehensive publication on orchid anatomy since 1930. It describes the structure and relationships among the cells and tissues of leaves, stems, and roots, and is organized systematically in line with the taxonomy expressed in the OUP Genera Orchidacearum Series. The book is fully illustrated with over 100 photomicrographs and numerous original line drawings. This latest addition to the Anatomy of the Monocotyledons Series is an essential reference text for orchid scientists and research students and will also be of interest and use to a broader audience of orchid enthusiasts.
Plant physiology is a sub-discipline of botany concerned with the function, or physiology of plants. Closely related fields include plant morphology (structure of plants), plant ecology (interactions with the environment), phytochemistry (biochemistry of plants), cell biology, and molecular biology. Fundamental processes such as photosynthesis, respiration, plant nutrition, plant hormone functions, tropisms, nastic movements, photoperiodism, photomorphogenesis, circadian rhythms, environmental stress physiology, seed germination, dormancy and stomata function and transpiration are studied. This book presents the latest research in the field from around the world.
Why don't trees get tired holding their limbs out for a hundred years? Why can a single African Violet leaf produce a dozen identical new plants? Any why don't plants bleed to death when their leaves fall off naturally? Descriptions of the plant parts too small to see without magnification provide the answers. The plant's cells and their several specialised working subunits are examined in addition to chemical traits like colour, scent, and the hormonal effects that turn leaves toward the light and allow other adaptations to the surroundings.
Growth, reproduction, and geographical distribution of plants are profoundly influenced by their physiological ecology: the interaction with the surrounding physical, chemical, and biological environments. This textbook highlights mechanisms that underlie plant physiological ecology at the levels of physiology, biochemistry, biophysics, and molecular biology. At the same time, the integrative power of physiological ecology is well suited to assess the costs, benefits, and consequences of modifying plants for human needs and to evaluate the role of plants in natural and managed ecosystems. Plant Physiological Ecology, Third Edition is significantly updated, with many full color illustrations, and begins with the primary processes of carbon metabolism and transport, plant water relations, and energy balance. After considering individual leaves and whole plants, these physiological processes are then scaled up to the level of the canopy. Subsequent chapters discuss mineral nutrition and the ways in which plants cope with nutrient-deficient or toxic soils. The book then looks at patterns of growth and allocation, life-history traits, and interactions between plants and other organisms. Later chapters deal with traits that affect decomposition of plant material and with the consequences of plant physiological ecology at ecosystem and global levels. Plant Physiological Ecology, Third Edition features several boxed entries that extend the discussions of selected issues, a glossary, and numerous references to the primary and review literature. This significant new text is suitable for use in plant ecology courses, as well as classes ranging from plant physiology to plant molecular biology.
Plant remains can preserve a critical part of history of life on Earth. While telling the fascinating evolutionary story of plants and vegetation across the last 500 million years, this book also crucially offers non-specialists a practical guide to studying, dealing with and interpreting plant fossils. It shows how various techniques can be used to reveal the secrets of plant fossils and how to identify common types, such as compressions and impressions. Incorporating the concepts of evolutionary floras, this second edition includes revised data on all main plant groups, the latest approaches to naming plant fossils using fossil-taxa and techniques such as tomography. With extensive illustrations of plant fossils and living plants, the book encourages readers to think of fossils as once-living organisms. It is written for students on introductory or intermediate courses in palaeobotany, palaeontology, plant evolutionary biology and plant science, and for amateurs interested in studying plant fossils.
Plant remains can preserve a critical part of history of life on Earth. While telling the fascinating evolutionary story of plants and vegetation across the last 500 million years, this book also crucially offers non-specialists a practical guide to studying, dealing with and interpreting plant fossils. It shows how various techniques can be used to reveal the secrets of plant fossils and how to identify common types, such as compressions and impressions. Incorporating the concepts of evolutionary floras, this second edition includes revised data on all main plant groups, the latest approaches to naming plant fossils using fossil-taxa and techniques such as tomography. With extensive illustrations of plant fossils and living plants, the book encourages readers to think of fossils as once-living organisms. It is written for students on introductory or intermediate courses in palaeobotany, palaeontology, plant evolutionary biology and plant science, and for amateurs interested in studying plant fossils.
Introduction to Plant Physiology became the best-selling first edition plant physiology text of the 1990's! Now, we're building on the success of prior editions to provide an even more effective fourth edition. Plant Physiology has been praised for its excellent balance of traditional and modern topics, presented in a straightforward style, without overwhelming undergraduates with excessive detail. Its focus is on the ideas and experimental approaches in plant physiology. This is a one-semester course. It assumes that the student has had introductory biology or botany as a pre-requisite.
For centuries orchids have been among the most popular of plant families, with thousands of species and hybrids cultivated worldwide for the diversity, beauty, and intricacy of their flowers. The Genera Orchidacearum series represents a robust and natural classification of the orchids, something that has eluded plant scientists and orchid enthusiasts for years. The editors, who are all distinguished orchid specialists, incorporate a wealth of new DNA data into a truly phylogenetic classification, identifying the areas and taxa that merit additional work. To this end, they have invited several international specialists to contribute in their particular areas of expertise. Each volume provides comprehensive coverage of one or two orchid subfamilies, and the series as a whole will be an indispensable reference tool for scientists, orchid breeders, and growers. Orchidaceae is the largest monocotyledon family and perhaps the largest plant family in terms of number of species, approximately 25,000. Although the fossil record is limited, active molecular research in recent years has unravelled many of the complexities and phylogenetics of this cosmopolitan plant family. This sixth and final volume treats 140 genera in tribes Dendrobieae and Vandeae of the largest subfamily, Epidendroideae, including some of the showiest orchids often used in hybridizing. Comprehensive treatments are provided for each genus, which include complete nomenclature, description, distribution (with map), anatomy, palynology, cytogenetics, phytochemistry, phylogenetics, pollination, ecology, and economic uses. Cultivation notes are included for those genera known to be in hobbyist collections. Genera are beautifully illustrated with line drawings and colour photographs. An Addendum updates a few generic accounts published in past volumes. A cumulative glossary, list of generic synonyms with their equivalents, and list of all series contributors round out this final volume in the series.
"Physiology and Behaviour of Plants" looks at plants and how they sense and respond to their environment. It takes the traditional plant physiology book into a new dimension by demonstrating how the biochemical observations underlie the behaviour of the plant. In many ways the book parallels courses studied at university on animal physiology and behaviour. The plant has to meet the same challenges as an animal to survive, but overcomes these challenges in very different ways. Students learn to think of plants not only as dynamic organisms, but aggressive, territorial organisms capable of long-range communication. Hallmark features include: Based on a successful course that the author has run for several years at Sussex University, UKRelates plant biochemistry to plant functionPrinted in four colour throughoutIncludes a wealth of illustrations and photographs that engages the reader's attention and reinforce key concepts explored within the textPresents material in a modern 'topic' based approach, with many relevant and exciting examples to inspire the studentAn accompanying web site will include teaching supplements This innovative textbook is the ultimate resource for all students in biology, horticulture, forestry and agriculture. Companion website for this title is available at www.wiley.com/go/scott/plants
Plants face a daunting array of creatures that eat them, bore into
them, and otherwise use virtually every plant part for food,
shelter, or both. But although plants cannot flee from their
attackers, they are far from defenseless. In addition to
adaptations like thorns, which may be produced in response to
attack, plants actively alter their chemistry and physiology in
response to damage. For instance, young potato plant leaves being
eaten by potato beetles respond by producing chemicals that inhibit
beetle digestive enzymes.
Understanding ecosystem structure and function requires familiarity with the techniques, knowledge and concepts of the three disciplines of plant physiology, remote sensing and modelling. This is the first textbook to provide the fundamentals of these three domains in a single volume. It then applies cross-disciplinary insights to multiple case studies in vegetation and landscape science. A key feature of these case studies is an examination of relationships among climate, vegetation structure and vegetation function, to address fundamental research questions. This book is for advanced students and researchers who need to understand and apply knowledge from the disciplines of plant physiology, remote sensing and modelling. It allows readers to integrate and synthesise knowledge to produce a holistic understanding of the structure, function and behaviour of forests, woodlands and grasslands.
The phenomenon of guttation finds applications in a wide range of areas, including plant biology, ecology, agriculture, horticulture, animal husbandry, pharmacology and medicine. This unique text provides a comprehensive review of this process. It explores the genetic, environmental, and edaphic factors that control and regulate guttation; and discusses in detail the impact of guttation on soil-plant-animal-environment systems, soil fertility and soil productivity, plant water balance, plant physiological research, ecosystem maintenance, and hydathode retrieval of water and solute. A separate chapter addresses practical applications, such as in the production of recombinant proteins for commercial use, seed protein, alkaloids, pharmaceutical drugs, resins, gums, and rubber. Besides specialists in plant sciences, the book will also appeal to anyone interested in the topic of plant-water relationships.
The new edition of this authoritative text provides an interdisciplinary treatise of all aspects of the interactions between light and the living world. It starts with a description of the physics of light, and how to deal with it in experiments and observations. The phenomena described in the rest of the book covers all organisms: how light is used by organisms for obtaining energy for life processes, for gathering information about the environment, and for communicating with others of the same or other species. The book also describes "bad" effects of light in causing disease or contributing to formation of environmental toxins. New techniques used by scientists to investigate life processes using light are also explored in the volume. Written by experts in the field, Photobiology: The Science of Life and Light, 3e is a valuable and accessible resource for both advanced undergraduates and established researchers. |
![]() ![]() You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
|