![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
This book discusses molecular approaches in plant as response to environmental factors, such as variations in temperature, water availability, salinity, and metal stress. The book also covers the impact of increasing global population, urbanization, and industrialization on these molecular behaviors. It covers the natural tolerance mechanism which plants adopt to cope with adverse environments, as well as the novel molecular strategies for engineering the plants in human interest. This book will be of interest to researchers working on the impact of the changing environment on plant ecology, issues of crop yield, and nutrient quantity and quality in agricultural crops. The book will be of interest to researchers as well as policy makers in the environmental and agricultural domains.
Plant tissue culture and advanced biotechnologies have proven to be influential tools that complement conventional breeding and accelerate development of many medicinal plants. Various approaches, such as pathway engineering, precursor feeding, transformation, elicitation with biotic and abiotic elicitors and scaling up in bioreactors, have been explored to improve the production of secondary metabolites from different medicinal plants. This book provides a comprehensive description of various studies, carried out on in vitro culture and hairy root cultures of Catharanthus roseus, Silybum marianum and Digitalis species which have been considered as alternative sources for the production of anti-tumour compounds, flavonolignans and cardenolides. Specific focus is on elicitation strategy for increasing production of bioactive compounds of C. roseus L., S. marianum and Digitalis species to overcome the constrains of conventional propagation. This book is valuable for researchers or students working on medicinal plants, phytochemistry, and plant tissue culture. It also serves as a reference for the pharmaceutical industry.
Metal toxicity and deficiency are both common abiotic problems faced by plants. While metal contamination around the world is a critical issue, the bioavailability of some essential metals like zinc (Zn) and selenium (Se) can be seriously low in other locations. The list of metals spread in high concentrations in soil, water and air includes several toxic as well as essential elements, such as arsenic (As), cadmium (Cd), chromium (Cr), aluminum (Al), and selenium (Se). The problems for some metals are geographically confined, while for others, they are widespread. For instance, arsenic is an important toxic metalloid whose contamination in Southeast Asia and other parts of world is well documented. Its threats to human health via food consumption have generated immense interest in understanding plants' responses to arsenic stress. Metals constitute crucial components of key enzymes and proteins in plants. They are important for the proper growth and development of plants. In turn, plants serve as sources of essential elements for humans and animals. Studies of their physiological effects on plants metabolism have led to the identification of crucial genes and proteins controlling metal uptake and transport, as well as the sensing and signaling of metal stresses. Plant-Metal Interactions sheds light on the latest development and research in analytical biology with respect to plant physiology. More importantly, it showcases the positive and negative impacts of metals on crop plants growth and productivity.
Sustainable increase in agricultural production while keeping the environmental quality, agro-ecosystem function and biodiversity is a real challenge in current agricultural practices. Application of PGPR can help in meeting the expected demand for increasing agricultural productivity to feed the world's booming population. Global concern over the demerits of chemicals in agriculture has diverted the attention of researchers towards sustainable agriculture by utilizing the potential of Plant Growth Promoting Rhizobacteria (PGPR). Use of PGPR as biofertilizers, biopesticides, soil, and plant health managers has gained considerable agricultural and commercial significance. The book Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture has contributions in the form of book chapter from 25 eminent global researchers, that discusses about the PGPRs and their role in growth promotion of various crop plants, suppression of wide range of phytopathogens, their formulation, effect of various factors on growth and performance of PGPR, assessment of diversity of PGPR through microsatellites and role of PGPR in mitigating biotic and abiotic stress.This book will be helpful for students, teachers, researchers, and entrepreneurs involved in PGPR and allied fields. The book will be highly useful to researchers, teachers, students, entrepreneurs, and policymakers.
Bioactive compounds produced by natural sources, such as plants, microbes, endophytic fungi, etc., can potentially be applied in various fields, including agriculture, biotechnology and biomedicine. Several bioactive compounds have proved to be invaluable in mediating plant-microbe interactions, and promoting plant growth and development. Due to their numerous health-promoting properties, these compounds have been widely used as a source of medication since ancient times. However, there is an unprecedented need to meet the growing demand for natural bioactive compounds in the flavor and fragrance, food, and pharmaceutical industries. Moreover, discovering new lead molecules from natural sources is essential to overcoming the rising number of new diseases. In this regard, natural bioactive compounds hold tremendous potential for new drug discovery. Therefore, this field of research has become a vital area for researchers interested in understanding the chemistry, biosynthetic mechanisms, and pharmacological activities of these bioactive metabolites. This book describes the basics of bioactive plant compounds, their chemical properties, and their pharmacological biotechnological properties with regard to various human diseases and applications in the drug, cosmetics and herbal industries. It offers a valuable asset for all students, educators, researchers, and healthcare experts involved in agronomy, ecology, crop science, molecular biology, stress physiology, and natural products.
This book presents a comprehensive overview of plant stresses caused by salt, drought, extreme temperatures, oxygen and toxic compounds, which are responsible for huge losses in crop yields. It discusses the latest research on the impact of salinity and global environment changes, and examines the advances in the identification and characterization of the mechanisms that allow plants to tolerate biotic and abiotic stresses. Further it presents our current understanding of metabolic fluxes and the various transporters that collectively open the possibility of applying in vitro technology and genetic engineering to improve stress tolerance. Exploring advanced methods that augment traditional plant tissue culture and breeding techniques toward the development of new crop varieties that can tolerate biotic and abiotic stresses to achieve sustainable food production, this book is a valuable resource for plant scientists and researchers.
This book describes the exciting biology and chemistry of strigolactones. Outgrowth of shoot branches? Development of lateral roots? Interactions with beneficial microorganisms? Avoiding parasitic plants? Responding to drought conditions? These important "decisions" that plants make are all regulated by a group of hormones called strigolactones. The latest research has yielded a number of new biological concepts, such as a redefinition of plant hormones and their crosstalk, new functional diversity of receptors, hormonal "smoke and mirrors," core signaling pathways, and even phloem transport of receptor proteins. Another important aspect of strigolactones is the related synthetic chemistry, which could pave the way for a variety of potential applications in agriculture and medicine. The book explains in detail the role that strigolactones play in plant development, and addresses the interaction of plants with soil biota and abiotic stress conditions, prospects of strigolactone biochemistry and evolution, and chemical synthesis of natural strigolactones and analogs, together with their potential applications. Including a glossary and end-of-chapter synopses to aid in comprehension, it offers a valuable asset for teachers, lecturers and (post-) graduate students in biology, agronomy and related areas..
This book highlights the advances in essential oil research, from the plant physiology perspective to large-scale production, including bioanalytical methods and industrial applications. The book is divided into 4 sections. The first one is focused on essential oil composition and why plants produce these compounds that have been used by humans since ancient times. Part 2 presents an update on the use of essential oils in various areas, including food and pharma industries as well as agriculture. In part 3 readers will find new trends in bioanalytical methods. Lastly, part 4 presents a number of approaches to increase essential oil production, such as in vitro and hairy root culture, metabolic engineering and biotechnology. Altogether, this volume offers a comprehensive look at what researchers have been doing over the last years to better understand these compounds and how to explore them for the benefit of the society.
Agronomic crops have provided food, beverages, fodder, fuel, medicine and industrial raw materials since the beginning of human civilization. More recently, agronomic crops have been cultivated using scientific rather than traditional methods. However, in the current era of climate change, agronomic crops are suffering from different environmental stresses that result in substantial yield loss. To meet the food demands of the ever-increasing global population, new technologies and management practices are being adopted to boost yields and maintain productivity under both normal and adverse conditions. Further, in the context of sustainable agronomic crop production, scientists are adopting new approaches, such as varietal development, soil management, nutrient and water management, and pest management. Researchers have also made remarkable advances in developing stress tolerance in crops. However, the search for appropriate solutions for optimal production to meet the increasing food demand is still ongoing. Although there are several publications on the recent advances in these areas, there are few comprehensive resources available covering all of the recent topics. This timely book examines all aspects of production technologies, management practices and stress tolerance of agronomic crops.
This book focuses on the plant cytoskeleton and its various cross-talks with other cellular components leading to its role in plant growth and development. It not only allows the geometric and signaling dimensions of cells, but is also very important in physiological processes. The book discusses the recent studies showing the role of actin and microtubule cytoskeleton interactions in cell-wall assembly and dynamics. The authors examine the role of both microtubules in the mechanics of plant cells, and actin filaments in the motility of chloroplasts. Based on recent advances in the study of the acto-myosin complex using high-resolution microscopy, they propose a new model for intracellular transport in plants. Exploring an almost-forgotten field of bioelectricity in the context of the cytoskeleton, the book highlights connections between the dynamic actin filaments and the bioelectricity of membranes and demonstrates that the plant cytoskeleton is involved in the distribution of plant hormones. Lastly, it addresses the role of endomembrane -cytoskeleton interactions to show the importance of the cytoskeleton in organelle morphogenesis and cellular functions. Studies in various plant models have shown how the actin filament and microtubules control and coordinate plant cell growth and development. This book summarizes the mechanisms underlying these functions.
Potassium (K+) is an essential mineral macronutrient abundantly present in the cytosol which, unlike other macronutrients, is not metabolized and does not integrate into macromolecules. Compared to animal cells, K+ is more abundantly present in plant cells. Overall performance of the plant, and operation of metabolic machinery depends upon intracellular K+ homeostasis (K+ uptake and efflux) via K+ channels and transporters acting as mediators of cellular responses during plant development. Unlike animals, plants lack sodium/K+ exchangers; plant cells have developed unique transport systems for K+ accumulation and release. In Arabidopsis thaliana, 71 K+ channels and transporters have been identified and categorized into six families. Plant adaptive responses to several abiotic and biotic stresses are mediated by regulation of intracellular K+ homeostasis. In this report, we highlight the role of K+ in abiotic and biotic stresses, features of channels and transporters responsible for its homeostasis along with its evolutionary relationship, perception and sensing mechanisms, and K+ deficiency triggering different signaling cascades. Overall, this book covers the role of K+ in plants would be significantly helpful to research, academic community as well as students to understand the one of the major attributes of plant biology.
The third edition of "Seeds: The Ecology of Regeneration in Plant Communities" highlights the many advances in the field of seed ecology and its relationship to plant community dynamics that have taken place in recent years. The new edition also features chapters on seed development and morphology, seed chemical ecology, implications of climate change on regeneration by seed, and the functional role of seed banks in agricultural and natural ecosystems. The book is aimed at advanced level students and researchers in the fields of seed science, seed ecology and plant ecology.
The second edition of this volume focuses on applied bioinformatics with specific applications to crops and model plants. Plant Bioinformatics: Methods and Protocols is aimed at plant biologists who have an interest in, or requirement for, accessing and manipulating huge amounts of data being generated by high throughput technologies. This book would also be of interest to bioinformaticians and computer scientists who would benefit from an introduction to the different tools and systems available for plant research. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and software, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Plant Bioinformatics: Methods and Protocols helps researchers with the increasing volume and diversity of data from different plants and also the integration of multiple diverse forms of data.
Clear and concise, this easy-to-use book offers an introductory course on the language of gene cloning, covering microbial, plant, and mammalian systems. It presents the nuts and bolts of gene cloning in a well-organized and accessible manner. Part I of this book outlines the essentials of biology and genetics relevant to the concept of gene cloning. Part II describes common techniques and approaches of gene cloning, ranging from the basic mechanics of DNA manipulation, vector systems, process transformation, to gene analysis. Part III & IV present application technologies of major impact in agriculture, biomedicine, and related areas. The ABCs of Gene Cloning, Third Edition contains updates including a tutorial chapter on gene-vector construction, methodologies on exome sequencing in finding disease genes, revised topics on gene therapy and whole genome sequencing, new developments for gene targeting and genome editing, as well as the current state of next generation sequencing. With more than 140 illustrations, this new edition provides an invaluable text for students and anyone who have interest in gaining proficiency in reading and speaking the language of gene cloning.
"Ecological Aspects of Nitrogen Acquisition explores not only how plants compete for nitrogen in complex ecological communities The book also looks in greater detail at the associations plants recruit with other organisms, ranging from soil microbes to arthropods, as nitrogen acquisition strategies, and how these contribute to individual and evolutionary fitness. The book is divided into four sections, each addressing an important set of relationships of plants with the environment and how this impacts the plant's ability to compete successfully for nitrogen, often the most growth-limiting nutrient. Ecological Aspects of Nitrogen Acquisition provides thorough coverage of this important topic, and will be a vitally important resource for plant scientists, agronomists, and ecologists"--
This edited book is focusing on the novel and innovative procedures in tissue culture for large scale production of plantation and horticulture crops. It is bringing out a comprehensive collection of information on commercial scale tissue culture with the objective of producing high quality, disease-free and uniform planting material. Developing low cost commercial tissue culture can be one of the best possible way to attain the goal of sustainable agriculture. Tissue culture provides a means for rapid clonal propagation of desired cultivars, and a mechanism for somatic hybridization and in vitro selection of novel genotypes. Application of plant tissue culture technology in horticulture and plantation crops provides an efficient method to improve the quality and nutrition of the crops. This book includes a description of highly efficient, low cost in vitro regeneration protocols of important plantation and horticulture crops with a detailed guideline to establish a commercial plant tissue culture facility including certification, packaging and transportation of plantlets. The book discusses somatic embryogenesis, virus elimination, genetic transformation, protoplast fusion, haploid production, coculture of endophytic fungi, effects of light and ionizing radiation as well as the application of bioreactors. This book is useful for a wide range of readers such as, academicians, students, research scientists, horticulturists, agriculturists, industrial entrepreneurs, and agro-industry employees.
This comprehensive book highlights the importance of Cyanidioschyzon merolae (C. merolae), an ultrasmall unicellular red alga, as a model eukaryote organism. The chapters introduce recent studies on C. merolae, from culture, synchronization and isolation methods of nucleic acids, proteins and organelles for molecular biological and cytological analyses, as well as its application in genetic engineering of environmental-stress-tolerant crops and oil production. In addition to discussing recent advances based on the complete genome information and molecular biological techniques such as genetic modifications and bioinformatics, the book includes visualization aids demonstrating that both classical and recent imaging techniques of fluorescent and electron microscopy can be applied to analyses of C. merolae. This publication offers a definitive resource for both beginners and professionals studying C. merolae, particularly in the field of molecular biology, evolutionary biology, morphology, biochemistry and cell biology, as well as those interested in its applications in medical sciences and agriculture.
This book is a comprehensive account of recent advances in the endophytic research. It covers recent perspective of endophytic research, molecular diversity, bioprospecting of novel genes using high throughput molecular techniques, and most importantly application of endophytes in practicing sustainable agriculture. Endophytic micro-organisms are mysterious living component associated mutually with plant roots and soil microbes. Various endophytic bacteria have attracted considerable attention for their ability to promote plant growth through direct mechanisms or by acting as biocontrol agents. Endophytes also find use in biocontrol, medicine, agriculture and food industry. This is a useful reading for the student of agriculture, environmental microbiology and biotechnology.
Genetically uniform cultivars in many self-pollinated cereal crops dominate commercial production in high-input environments especially due to their high grain yields and wide geographical adaptation. These cultivars generally perform well under favorable and high-input farming systems but their optimal performance cannot be achieved on marginal/organic lands or without the use of external chemical inputs (fertilizers, herbicides and pesticides). Cereal breeding programs aim at evaluating candidate lines/cultivars for agronomic, disease and quality traits in a weed free environment that makes it impossible to identify traits conferring competitive ability against weeds. Moreover, quantification of competitive ability is a complex phenomenon which is affected by range of growth traits. Above (e.g. light) and below (e.g. water and nutrients) ground resources also influence competitiveness to a greater extent. Competitiveness is quantitatively inherited trait which is heavily influenced by many factors including genotype, management, environment and their interaction. Sound plant breeding techniques and good experimental designs are prerequisites for maximizing genetic gains to breed cultivars for organically managed lands. The brief is focused on breeding wheat for enhanced competitive ability along with other agronomic, genetic and molecular studies that have been undertaken to improve weed suppression, disease resistance and quality in organically managed lands. The examples from other cereals have also been highlighted to compare wheat with other cereal crops.
Understanding the physiology of plants is fundamental to horticultural studies and practice. Aimed at undergraduates, this major textbook covers applied aspects of physiology related to horticultural crops. The author discusses specific physiological processes in relation to horticultural management, maintaining a focus throughout on how horticultural practices influence plant productivity and quality. Principles of Horticultural Physiology begins by guiding students through the basics of plant physiology; plant anatomy and plant classification, before covering plant hormones, growth and development, and factors related to the external environment including water, light, temperature and soil. Greenhouse culture is also discussed, as well as practical management techniques including seeding, pruning and grafting. The book concludes with real-world horticultural considerations of harvesting crops, packaging and transportation, postharvest physiology and marketing plant products, as well as a fascinating chapter on plants and human nutrition. One of the text's chief virtues is the accessible way the author conveys sometimes complex information in an easy to follow style. An ideal resource for undergraduate students of horticulture, this book will act as a guide throughout the entire course.
Originally published in 1954, this collection of the posthumous papers of the eminent plant physiologist Frederick Frost Blackman includes six papers that were unpublished at the time of his death, all of which address the topic of plant respiration. The data was collected over the course of one year from experiments performed on the effect of oxygen on the respiration of apples, and the text begins with an introduction by the noted botanist George Edward Briggs. This book will be of value to anyone interested in Blackman's work or in the history of botany and plant physiology.
In contrast to books on specific bioactive compounds, this book deals with the role of mevalonic acid metabolites (isoprenoids and their derived structures) in metabolism, development, and functions of organisms, which, though diverse, show various levels of communication. Different disciplines are brought together in a discussion of the messenger functions of terpenoids within and between organisms belonging to five biological kingdoms: bacteria, fungi, plants, insects, and vertebrates (including humans). The present volume covers evolutionary aspects of terpenoids in plant physiology, plant-insect relationships, semiochemicals, and in life sciences, with special emphasis on cancer research and treatment. The book provides proposals for multidisciplinary model systems for the study of interrelationships of organisms utilizing terpenoid messengers, and discusses novel strategies for insect control and multifactor treatments of cancer utilizing terpenoids. This book is of interest to scientists, and students at an advanced level: biologists, plant breeders, pharmacologists, specialists in medical fields, especially oncologists, physicians in general, and anyone with a basic biochemical and physiological knowledge.
This volume summarizes current research on the influence of plant polyphenols on human health, promoting collaboration between chemists and biologists to improve our understanding of their biological significance, and expanding the possibilities for their use.
In recent years, the study of the plant cell cycle has become of major interest, not only to scientists working on cell division sensu strictu , but also to scientists dealing with plant hormones, development and environmental effects on growth. The book The Plant Cell Cycle is a very timely contribution to this exploding field. Outstanding contributors reviewed, not only knowledge on the most important classes of cell cycle regulators, but also summarized the various processes in which cell cycle control plays a pivotal role. The central role of the cell cycle makes this book an absolute must for plant molecular biologists.
Arabinogalactan-proteins are distributed throughout the plant kingdom and are present in leaves, stems, roots, floral parts, and seeds. At the subcellular level, AGPs are localized on the plasma membrane, in the cell wall, in secretory and endocytotic pathway organelles, in stylar and root secretions and in the medium of cultured cells. The widespread distribution of AGPs indicates that they perform important functions. An expansion of knowledge regarding AGPs has been initiated and sustained through new experimental approaches, including the development of monoclonal antibody probes and cloning of cDNAs corresponding to core polypeptides. Regulated expression and other evidence points to the involvement of AGPs in plant reproductive development, pattern formation, and somatic embryogenesis, as well as in the processes of cell division, cell expansion, and cell death. AGPs also have an importance to industry. One example is gum arabic, an exudate from Acacia senegal, a mixture of AGPs and polysaccharides which has unique viscosity and emulsifying properties that have led to many uses in the food as well as other industries. |
![]() ![]() You may like...
Plant Life under Changing Environment…
Durgesh Kumar Tripathi, Vijay Pratap Pratap Singh, …
Paperback
R7,236
Discovery Miles 72 360
Wild Germplasm for Genetic Improvement…
Muhammad Tehseen Azhar, Shabir Hussain Wani
Paperback
R4,092
Discovery Miles 40 920
Toxicity of Nanoparticles in Plants - An…
Vishnu D. Rajput, Tatiana Minkina, …
Paperback
R4,069
Discovery Miles 40 690
The Chemical Dialogue Between Plants and…
Vivek Sharma, Richa Salwan, …
Paperback
R4,087
Discovery Miles 40 870
Transporters and Plant Osmotic Stress
Aryadeep Roychoudhury, Durgesh Kunar Kumar Tripathi, …
Paperback
R4,642
Discovery Miles 46 420
Plant Stress Physiology - Perspectives…
Mirza Hasanuzzaman, Kamran Nahar
Hardcover
R3,415
Discovery Miles 34 150
Metal and Nutrient Transporters in…
Aryadeep Roychoudhury, Durgesh Kunar Kumar Tripathi, …
Paperback
R3,922
Discovery Miles 39 220
|