![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
This widely expanded second edition offers a compilation of robust, reproducible techniques for the conservation of a wide range of biological materials. It includes novel approaches and protocols that were not preservable when the first edition was published. The book begins with a discussion of long term ex situ conservation of biological resources, the role of biological resource centers, and fundamental principles of freeze-drying and cryopreservation. Each chapter focuses on the preservation of specific biological materials, including proteins, mircroorganisms, cell lines, and multicellular structures.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. The present volume includes reviews on genetics, cell biology, physiology, comparative morphology, systematics, ecology, and vegetation science.
The Forest Primary Production Research Group was born in the Department of S- viculture, University of Helsinki in the early 1970s. Intensive ?eld measurements of photosynthesis and growth of forest vegetation and use of dynamic models in the interpretation of the results were characteristic of the research in the group. Electric instrumentation was based on analogue techniques and the analysis of the obtained measurements was based on self-written programs. Joint research projects with the Research Group of Environmental Physics at the Department of Physics, lead by Taisto Raunemaa (1939-2006) started in the late 1970s. The two research groups shared the same quantitative methodology, which made the co-operation fruitful. Since 1980 until the collapse of the Soviet Union the Academy of Finland and the Soviet Academy of Sciences had a co-operation program which included our team. The research groups in Tartu, Estonia, lead by Juhan Ross (1925-2002) and in Petrozawodsk, lead by Leo Kaipiainen (1932-2004) were involved on the Soviet side. We had annual ?eld measuring campaigns in Finland and in Soviet Union and research seminars. The main emphasis was on developing forest growth models. The research of Chernobyl fallout started a new era in the co-operation between forest ecologists and physicists in Helsinki. The importance of material ?uxes was realized and introduced explicitly in the theoretical thinking and measurements.
From being to becoming important, myo-inositol and its derivatives including phosphoinositides and phosphoinositols involved in diversi?ed functions in wide varieties of cells overcoming its insigni?cant role had to wait more than a century. Myo-inositol, infact, is the oldest known inositol and it was isolated from muscle as early as 1850 and phytin (Inositol hexakis phosphate) from plants by Pfeffer in 1872. Since then, interest in inositols and their derivatives varied as the methodology of isolation and puri?cation of the stereoisomers of inositol and their derivatives advanced. Phosphoinositides were ?rst isolated from brain in 1949 by Folch and their structure was established in 1961 by Ballou and his coworkers. After the compilation of scattered publications on cyclitols by Posternak (1965), proceedings of the conference on cyclitols and phosphoinositides under the supervision of Hoffmann-Ostenhof, were p- lished in 1969. Similar proceedings of the second conference on the same s- ject edited by Wells and Eisenberg Jr was published in 1978. In that meeting at the concluding session Hawthorne remarked "persued deeply enough p- haps even myoinositol could be mirror to the whole universe." This is now infact the scenario on the research on inositol and their phosphoderivatives. Finally a comprehensive information covering the aspects of chemistry, b- chemistry and physiology of inositols and their phosphoderivatives in a book entitled Inositol Phosphates written by Cosgrove (1980) was available.
Sulfur is one of the most versatile elements in life. This book provides, for the first time, in-depth and integrated coverage of the functions of sulfur in phototrophic organisms including bacteria, plants and algae. It bridges gaps between biochemistry and cellular biology of sulfur in these organisms, and of biology and environments dominated by them. The book therefore provides a comprehensive overview of plant sulfur relations from genome to environment.
Studies on the phenomenon of plant pathogenesis (disease development) have been useful to have a deep insight into the interactions between host plant and the pathogen. Depending on the levels of susceptibility (compatibility) or resistance (incompatibility) of the host plant and virulence of the pathogen, disease development may progress, either leading to symptom expression or result in the suppression of pathogen proliferation. Molecular techniques have been applied to elucidate the nature of interactions between the gene products of the plant and pathogen at cellular and molecular levels. Successful evasion of host's surveillance system and subsequent activities of metabolites of the pathogen (enzymes and toxins) encoded by pathogen genes counteracting the effects of various defense-related antimicrobial compounds present already or produced by the host plants, after initiation of infection have been critically studied by applying various molecular techniques. In addition to studying various phases of disease development in individual plants, molecular methods have been demonstrated to be effective, in gathering data on various aspects of epidemiology under natural conditions where the interaction of pathogen with populations of plants is influenced significantly by the environmental conditions existing in different ecosystems. This volume focuses on the possibility of applying the knowledge on pathogenesis and molecular epidemiology to determine the vulnerable stages in the life cycles of the pathogens that can be disrupted to achieve more effective disease control.
The rapid advances in elucidating the biosynthesis and mode of action of the plant hormone ethylene, as well as its involvement in the regulation of the whole plant physiology, made imperative the organization of a series of dedicated conferences. This volume contains the main lectures and poster contributions presented at the 7th International Symposium on the Plant Hormone Ethylene held in Pisa in 2006.
This book summarizes the experimental work conducted during a trans-disciplinary research program conducted for six years by the German Research Foundation. Each chapter includes introductory remarks written by internationally recognized scientists in their research areas. Contributiing authors representing outstanding German scientists from such different disciplines as Physics, Biochemistry, Plant Nutrition, Botany, and Molecular Biology not only report original research but also review the state of knowledge in their fields of research.
The sixth International Symposium on Genetics and Molecular Biology of Plant Nutriti9n was held in Elsinore, Denmark from August 17-21, 1998 and organised by th RiS0 National Laboratory in the year of its 40 anniversary. The 98 participants represented 23 countries and 80 scientific contributions with 43 oral and 37 poster presentations. The symposium addressed the molecular mechanisms, physiology and genetic regulation of plant nutrition. The Symposium brought together scientists from a range of different disciplines to exchange information and ideas on the molecular biology of mineral nutrition of plants. The symposium emphasised: * Bridging the gab between molecular biology, applied genetics, plant nutrition and plant breeding. * The development of methodologies to improve the efficiency and effectiveness of nutrition of plants * Quality of plant products. With sessions on: Nitrogen; Phosphorous; Micronutrients; Symbiosis; Membranes; Stress; Heavy Metals and Plant Breeding. In comparison with the previous conferences in this series more emphasis was placed on use of molecular techniques to clarify physiological mechanisms and processes, gene expression and regulation, as well as genetic marker assisted analysis. Significant of molecular genetic markers and other progress was reported in exploitation biotechnologies in breeding programmes.
A collection of papers that comprehensively describe the major areas of research on lipid metabolism of plants. State-of-the-art knowledge about research on fatty acid and glycerolipid biosynthesis, isoprenoid metabolism, membrane structure and organization, lipid oxidation and degradation, lipids as intracellular and extracellular messengers, lipids and environment, oil seeds and gene technology is reviewed. The different topics covered show that modern tools of plant cellular and molecular biology, as well as molecular genetics, have been recently used to characterize several key enzymes of plant lipid metabolism (in particular, desaturases, thioesterases, fatty acid synthetase) and to isolate corresponding cDNAs and genomic clones, allowing the use of genetic engineering methods to modify the composition of membranes or storage lipids. These findings open fascinating perspectives, both for establishing the roles of lipids in membrane function and intracellular signalling and for adapting the composition of seed oil to the industrial needs. This book will be a good reference source for research scientists, advanced students and industrialists wishing to follow the considerable progress made in recent years on plant lipid metabolism and to envision the new opportunities offered by genetic engineering for the development of novel oil seeds.
The present book provides a comprehensive overview of our current knowledge on plastid biogenesis, plastid-nuclear communication, and the regulation of plastid gene expression at all levels. It also assesses the state-of-the-art in key technologies, such as proteomics and chloroplast transformation. Written by recognized experts in the field, the book further covers crucial post-translational processes in plastid biogenesis and function, including protein processing.
Biological nitrogen fixation (BNF) has become important in rice farming systems because this process diminishes the need for expensive chemical fertilizers which have been associated with numerous health and environmental problems. The extensive exploitation of BNF would provide economic benefits to small farmers, avoiding all malign influences of chemical fertilizers. Meanwhile, advances in biotechnology have brought rice genetics to the threshold of new opportunities for increasing rice production. This volume focuses, in six different sessions, on the role of BNF in the improvement of rice production in the light of the current state of the art of BNF technology transfer and diffusion. New ideas on BNF technology in research, extension information and inoculant technology are also included, together with the socio-economic impacts of using BNF in rice farm systems.
The 18 chapters making up In Vitro Haploid Production in Higher Plants are divided into two sections. Section 1 (eight chapters) covers historical and fundamental aspects of haploidy in crop improvement. Section 2 deals with methods of haploid production, including anther culture, micropore culture, ovary culture, pollination with irradiated pollen, in vitro pollination, and special culture techniques, including polyhaploid production in the Triticeae by sexual hybridization, the influence of ethylene and gelling agents on anther culture, conditional lethal markers, and methods of chromosome doubling.
This volume contains a selection of 14 articles dealing with different aspects of biomonitoring and their relation to questions of global change. During the last 10 - 15 years, vegetation changes due to various causes have been more intensively studied in biological and environmental sciences. Especially aspects of global warming lead to a great variety of tasks for vegetation science (see e.g. the articles by Grabherr, Gottfried & Pauli; Carraro, Gianoni, Mossi, KlOtzli & Walther; Walther; Defila; Stampfli & Zeiter; Rothlisberger; Burga & Perret and Moller, WUthrich & Thannheiser). The different aspects of applied biomonitoring related to (possible) environmental changes concern various ecosystems, e.g. Central European beechwoods, Insubrian evergreen broad-leaved forests, thermophilous lowland deciduous forests, dry grasslands of the lower montane belt of the Ticino Alps, alpine mountain peaks of Switzerland and Austria, Swiss alpine timberline ecotones, and high arctic tundra vegetation. The volume is divided into three parts: A. General aspects of biomonitoring (contributions by KlOtzli; Wildi and Labasch & Otte) , B. Examples of applied biomonitoring in Germany and Switzerland (articles by Hakes; Herpin, Siewers, Kreimes & Markert; Defila; Stampfli & Zeiter; Rothlisberger and Ruoss, Burga & Eschmann), and C. Aspects of global change in the Alps and in the high arctic tundra (Grabherr, Gottfried & Pauli; Burga & Perret; Carraro, Gianoni, Mossi, KlOtzli & Walther; Walther and Moller, WUthrich & Thannheiser).
Since the beginning of agricultural production, there has been a continuous effort to grow more and better quality food to feed ever increasing popula tions. Both improved cultural practices and improved crop plants have allowed us to divert more human resources to non-agricultural activities while still increasing agricultural production. Malthusian population predictions continue to alarm agricultural researchers, especially plant breeders, to seek new technologies that will continue to allow us to produce more and better food by fewer people on less land. Both improvement of existing cultivars and development of new high-yielding cultivars are common goals for breeders of all crops. In vitro haploid production is among the new technologies that show great promise toward the goal of increasing crop yields by making similar germplasm available for many crops that was used to implement one of the greatest plant breeding success stories of this century, i. e., the development of hybrid maize by crosses of inbred lines. One of the main applications of anther culture has been to produce diploid homozygous pure lines in a single generation, thus saving many generations of backcrossing to reach homozygosity by traditional means or in crops where self-pollination is not possible. Because doubled haploids are equivalent to inbred lines, their value has been appreciated by plant breeders for decades. The search for natural haploids and methods to induce them has been ongoing since the beginning of the 20th century."
Since the beginning of agricultural production, there has been a continuous effort to grow more and better quality food to feed ever increasing popula tions. Both improved cultural practices and improved crop plants have al lowed us to divert more human resources to non-agricultural activities while still increasing agricultural production. Malthusian population predictions continue to alarm agricultural researchers, especially plant breeders, to seek new technologies that will continue to allow us to produce more and better food by fewer people on less land. Both improvement of existing cultivars and development of new high-yielding cultivars are common goals for breeders of all crops. In vitro haploid production is among the new technologies that show great promise toward the goal of increasing crop yields by making similar germplasm available for many crops that was used to implement one of the greatest plant breeding success stories of this century, i. e., the development of hybrid maize by crosses of inbred lines. One of the main applications of anther culture has been to produce diploid homozygous pure lines in a single generation, thus saving many generations of backcrossing to reach homozygosity by traditional means or in crops where self-pollination is not possible. Because doubled haploids are equivalent to inbred lines, their value has been appreciated by plant breeders for decades. The search for natural haploids and methods to induce them has been ongoing since the beginning of the 20th century."
Our image of plants is changing dramatically away from passive entities merely subject to environmental forces and organisms that are designed solely for the accumulation of photosynthate. Plants are revealing themselves to be dynamic and highly sensitive organisms that actively and competitively forage for limited resources, both above and below ground, organisms that accurately gauge their circumstances, use sophisticated cost-benefit analysis, and take clear actions to mitigate and control diverse environmental threats. Moreover, plants are also capable of complex recognition of self and non-self and are territorial in behavior. They are as sophisticated in behavior as animals but their potential has been masked because it operates on time scales many orders of magnitude less than those of animals. Plants are sessile organisms. As such, the only alternative to a rapidly changing environment is rapid adaptation. This book will focus on all these new and exciting aspects of plant biology.
In order to understand a process as complex as nitrogen fixation and to be in a position to manipulate it for the benefit of mankind, researchers are now working at the frontiers of science in many different areas: protein structure and function; catalytic mechanisms; electron transfer processes; regulatory circuits and environmental sensing; metabolic integration; chemical communication between organisms; differentiation; genome structure and function; microbial ecology; plant physiology; plant molecular biology; and agronomy. This volume represents a testimony to the advances in nitrogen fixation research that have been made and the contribution of these efforts to the solution of many other varied scientific problems. Limiting steps for future advances are analyzed and new horizons in nitrogen fixation research are proposed.
These papers include two lectures which address the role of Plant Nutrition in the sustainability of agro-ecosystems and the production of enough high quality food to feed the growing world population. Recent advances in Plant Nutrition are reviewed in the 11 papers presented in each of the Symposia devoted to: genetics and molecular biology of Plant Nutrition, nutrient functions, the role of the apoplast in mineral nutrition, plant quality and plant health, salinity and plant-soil-water relations, mineral element toxicity and resistance nutrient acquisition, soil organisms/plant interactions, fertiliser use in relation to optimum yield and environment, nutrient dynamics in natural and agro-ecosystems, and plant nutrition and sustainable development. Current knowledge and research emphasis in these areas of the subject is well illustrated and the reader is provided with a comprehensive view of the state of Plant Nutrition research.
Actin is an extremely abundant protein that comprises a dynamic polymeric network present in all eukaryotic cells, known as the actin cytoskeleton. The structure and function of the actin cytoskeleton, which is modulated by a plethora of actin-binding proteins, performs a diverse range of cellular roles. Well-documented functions for actin include: providing the molecular tracks for cytoplasmic streaming and organelle movements; formation of tethers that guide the cell plate to the division site during cytokinesis; creation of honeycomb-like arrays that enmesh and immobilize plastids in unique subcellular patterns; supporting the vesicle traffic and cytoplasmic organization essential for the directional secretory mechanism that underpins tip growth of certain cells; and coordinating the elaborate cytoplasmic responses to extra- and intracellular signals. The previous two decades have witnessed an immense accumulation of data relating to the cellular, biochemical, and molecular aspects of all these fundamental cellular processes. This prompted the editors to put together a diverse collection of topics, contributed by established international experts, related to the plant actin cytoskeleton. Because the actin cytoskeleton impinges on a multitude of processes critical for plant growth and development, as well as for responses to the environment, the book will be invaluable to any researcher, from the advanced undergraduate to the senior investigator, who is interested in these areas of plant cell biology.
Research on the interaction between plants and microbes continues to attract increasing attention, both within the field as well as in the scientific community at large. Many of the major scientific journals have recently reviewed various aspects of the field. Several papers dealing with plant-microbe interactions have been featured on the covers of scientific publications in the past several months, and the lay press have recently presented feature articles of this field. An additional sign of the interest in this field is that the International Society of Molecular Plant-Microbe Interactions has almost 500 members. This book is a collection of the papers that were given at the Sixth Inlernational Symposium on the Molecular Genetics of Plant-Microbe Interactions which was held in Seattle, Washington in July, 1992. Approximately 650 scientists attended and approximately 50 lectures covering the topics of Agrobacterium-plant interactions, Rhizobium-plant interactions, bacteria-plant interactions, fungal-plant interactions and new aspects of biotechnology were presented. In addition, many sessions were devoted to the plant response to the microbe. Over 400 posters were presented of which the authors of 20 were selected to give an oral presentation. These papers are included in this volume as well. The symposium also included speakers whose research interests are not directly related to plant-microbe interactions but who are at the cutting edge of research areas that impact on the theme of the symposium. These individuals kindly agreed to summarize their talks and their papers are also included.
A state-of-the-art overview of the intricate functional virus/host relationships that allow a virus or viroid to move cell-to-cell and systemically through the plant, as well as from plant to plant, and, thus, to spread infection. The book also illustrates the mechanisms by which viruses overcome plant defence responses, such as RNA silencing. Arabidopsis is used as an illustration of a plant host eminently suitable for genetic approaches to identify novel players in plant/virus interactions.
Af ter a kind mo ti va tion by Judit Si mon (Ed i tor-in-Chief of the Jour nal of Ther mal Anal y s is and Cal o ri m e t r y , Kluwe r Ac a dem ic Pub lis her) and ne go ti a tions with po- si ble con tri bu tors - lasting for m ore than one year - it was de cided to write a book about the ap pli ca tion of ther mal meth ods in bi ol ogy. Its aim was to be a guide how to per form ex per i ments and what kind of in for mation m ight be gained by them. We tried to col lect in for mation tha t could be achieved only dur ing a long per sonal pra- tice. In this way sci en tists from bi ol ogy and med i cine , e. g. , who are not so skilled in phys ics and math e mat ics may re al ize very soon the beauty and power of this tool at one hand. On the other hand, those sci en tists with better back ground in nat u ral sc- ences can be more sensitive to find out exciting biological problems.
Since the beginning of agricultural production, there has been a continuous effort to grow more and better quality food to feed ever increasing popula tions. Both improved cultural practices and improved crop plants have alIowed us to divert more human resources to non-agricultural activities while still increasing agricultural production. Malthusian population predictions continue to alarm agricultural researchers, especially plant breeders, to seek new technologies that will continue to allow us to produce more and better food by fewer people on less land. Both improvement of existing cultivars and development of new high-yielding cultivars are common goals for breeders of alI crops. In vitro haploid production is among the new technologies that show great promise toward the goal of increasing crop yields by making similar germplasm available for many crops that was used to implement one of the greatest plant breeding success stories of this century, i. e., the development of hybrid maize by crosses of inbred lines. One of the main applications of anther culture has been to produce diploid homozygous pure lines in a single generation, thus saving many generations of backcrossing to reach homozygosity by traditional means or in crops where self-pollination is not possible. Because doubled haploids are equivalent to inbred lines, their value has been appreciated by plant breeders for decades. The search for natural haploids and methods to induce them has been ongoing since the beginning of the 20th century."
Since the beginning of agricultural production, there has been a continuous effort to grow more and better quality food to feed ever increasing popula tions. Both improved cultural practices and improved crop plants have allowed us to divert more human resources to non-agricultural activities while still increasing agricultural production. Malthusian population predictions continue to alarm agricultural researchers, especially plant breeders, to seek new technologies that will continue to allow us to produce more and better food by fewer people on less land. Both improvement of existing cultivars and development of new high-yielding cultivars are common goals for breeders of all crops. In vitro haploid production is among the new technologies that show great promise toward the goal of increasing crop yields by making similar germplasm available for many crops that was used to implement one of the greatest plant breeding success stories of this century, i. e., the development of hybrid maize by crosses of inbred lines. One of the main applications of anther culture has been to produce diploid homozygous pure lines in a single generation, thus saving many generations of backcrossing to reach homozygosity by traditional means or in crops where self-pollination is not possible. Because doubled haploids are equivalent to inbred lines, their value has been appreciated by plant breeders for decades. The search for natural haploids and methods to induce them has been ongoing since the beginning of the 20th century." |
![]() ![]() You may like...
Plant Life under Changing Environment…
Durgesh Kumar Tripathi, Vijay Pratap Pratap Singh, …
Paperback
R7,236
Discovery Miles 72 360
Zinc in Plants - Current Knowledge and…
Durgesh Kumar Tripathi, Devendra Kumar Chauhan
Paperback
R4,335
Discovery Miles 43 350
The Impact of Nanoparticles on…
Nar Singh Chauhan, Sarvajeet Singh Gill
Paperback
R4,071
Discovery Miles 40 710
Forest Microbiology Vol.3_Tree Diseases…
Fred O. Asiegbu, Andriy Kovalchuk
Paperback
R4,069
Discovery Miles 40 690
Plant Transcription Factors…
Vikas Srivastava, Sonal Mishra, …
Paperback
R4,325
Discovery Miles 43 250
Biostimulants in Alleviation of Metal…
Sarvajeet Singh Gill, Narendra Tuteja, …
Paperback
R4,344
Discovery Miles 43 440
Toxicity of Nanoparticles in Plants - An…
Vishnu D. Rajput, Tatiana Minkina, …
Paperback
R4,069
Discovery Miles 40 690
Induced Genotoxicity and Oxidative…
Zeba Khan, Mohd Yunus Khalil Ansari, …
Hardcover
R5,144
Discovery Miles 51 440
|