![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
Bioactive Carbohydrate Polymers is probably the first book dealing with the latest in the field of polysaccharides and related products and their biological activities, especially the immunological effects. The different chapters describe the structure and bioactivity of polysaccharides from plants used in traditional medicine in different parts of the world, especially China, Japan and Europe. The focus of the book is on immunologically active plant and seaweed polysaccharides, pharmacological activities of sulphated polysaccharides of animal and seaweed origin, and on possible activities of polysaccharides in our food. Methods for isolation and characterisation of the polymers with chemical and enzymatic methods is covered, as well as discussions on the different biological test-systems and the information they provide. This book will be useful to scientists and postgraduate students working with polysaccharides and their possible uses, and should be of interest for people working in the areas of chemistry, biology, pharmacy and medicine.
Wheat breeders have achieved significant results over the last fifty years in research on mankind's one of the most important crops. Classical genetic and breeding methods, far broader international cooperation than was experienced in earlier periods, and improvements in agronomic techniques have led to previously unimaginable development in the utilisation of wheat for human consumption. The contribution of wheat researchers is particularly noteworthy since these results have been achieved at a time when the world population has grown extremely dynamically. Despite this demographic explosion, of a proportion never previously experienced, thousands of millions of people have been saved from starvation, thus avoiding unpredictable social consequences and situations irreconcilable with human dignity. Despite these developments in many regions of the world food supplies are still uncertain and the increase in the world's wheat production has not kept pace with the population increase during the last decade. Due to the evils of civilisation and the pollution of the environment there is a constant decline in the per capita area of land suitable for agricultural production. Based on population estimates for 2030, the present wheat yield of around 600 million tonnes will have to be increased to almost 1000 million tonnes if food supplies are to be maintained at the present level.
Salinity and water stress limit crop productivity worldwide and generate substantial economic losses each year, yet innovative research on crop and natural resource management can reveal cost-effective ways in which farmers can increase both their productivity and their income. Presenting recent research findings on salt stress, water stress and stress-adapted plants, this book offers insights into new strategies for increasing the efficiency of crops under stressful environments. The strategies are based on conventional breeding and advanced molecular techniques used by plant physiologists, and are discussed using specific case studies to illustrate their potential. The book emphasizes the effects of environmental factors on specific stages of plant development, and discusses the role of plant growth regulators, nutrients, osmoprotectants and antioxidants in counteracting their adverse affects. Synthesising updated information on mechansisms of stress tolerance at cell, tissue and whole-plant level, this book provides a useful reference text for post graduate students and researchers involved in the fields of stress physiology and plant physiology in general, with additional readership amongst researchers in horticulture, agronomy, crop science, conservation, environmental management and ecological restoration.
The Forest Primary Production Research Group was born in the Department of S- viculture, University of Helsinki in the early 1970s. Intensive ?eld measurements of photosynthesis and growth of forest vegetation and use of dynamic models in the interpretation of the results were characteristic of the research in the group. Electric instrumentation was based on analogue techniques and the analysis of the obtained measurements was based on self-written programs. Joint research projects with the Research Group of Environmental Physics at the Department of Physics, lead by Taisto Raunemaa (1939-2006) started in the late 1970s. The two research groups shared the same quantitative methodology, which made the co-operation fruitful. Since 1980 until the collapse of the Soviet Union the Academy of Finland and the Soviet Academy of Sciences had a co-operation program which included our team. The research groups in Tartu, Estonia, lead by Juhan Ross (1925-2002) and in Petrozawodsk, lead by Leo Kaipiainen (1932-2004) were involved on the Soviet side. We had annual ?eld measuring campaigns in Finland and in Soviet Union and research seminars. The main emphasis was on developing forest growth models. The research of Chernobyl fallout started a new era in the co-operation between forest ecologists and physicists in Helsinki. The importance of material ?uxes was realized and introduced explicitly in the theoretical thinking and measurements.
Combining an ecosystems approach with new insights at the molecular and biochemical level, this book presents the latest findings on how plants respond, physiologically, to sulfur in their environment. It explores key areas such as biotic and abiotic interactions, adaptations to fluctuating supply, and sulfur s role in plant metabolic networks to assess the functions and implications of this essential plant nutrient in a range of natural, semi-natural and anthropogenic environments. Leaders in the field, Hawkesford and de Kok, draw together an international group of experts in plant sulfur nutrition, to collate and integrate new information from molecular biology, ecology and physiology. The result is an important new reference on the relationships between plants and sulfur at all levels including contributions arising from recent omic approaches. With implications for issues such as agriculture, forestry, water management and ecosystem restoration, this book is relevant to a wide audience, from graduate level students and researchers, to policy makers and practitioners."
In the last two decades technological advances in isotope ratio mass spectrometry have been very rapid, opening up new possibilities for analysis of biological and environmental materials. The new instrumentation has facilitated faster analysis of samples via automated sample preparation and multi-isotope analysis of single samples, resulting in considerable cost savings, and enabling access to isotope analysis for many more researchers. These changes are reflected in the rapidly growing international literature on stable isotopes. While there have been some excellent books and review papers aimed at interpreting isotope signals in biology and environmental science, there have been fewer attempts to provide practical tools for researchers making forays into this exciting new arena. This book aims to address this inadequacy by providing a set of practical guidelines for the application of a range of novel and well proven stable isotope techniques to the fields of plant physiological ecology, agriculture, marine ecology and palaeoecology. The book is the outcome of a weeklong workshop held under the auspices of the Cooperative Research Centre for Legumes in Mediterranean Agriculture (CLIMA 1992 - 2000) at The University of Western Australia and the CSIRO Floreat Laboratories, Perth, Western Australia, in February 1999. The workshop was designed to provide practical tools and experiences for researchers and students concerned with how one goes about using stable isotopes in field investigations.
Genetic variability is an important parameter for plant breeders in any con ventional crop improvement programme. Very often the desired variation is un available in the right combination, or simply does not exist at all. However, plant breeders have successfully recombined the desired genes from cultivated crop gerrnplasm and related wild species by sexual hybridization, and have been able to develop new cultivars with desirable agronomie traits, such as high yield, disease, pest, and drought resistance. So far, conventional breeding methods have managed to feed the world's ever-growing population. Continued population growth, no further scope of expanding arable land, soil degradation, environ mental pollution and global warrning are causes of concern to plant biologists and planners. Plant breeders are under continuous pressure to improve and develop new cultivars for sustainable food production. However, it takes several years to develop a new cultivar. Therefore, they have to look for new technologies, which could be combined with conventional methods to create more genetic variability, and reduce the time in developing new cultivars, with early-maturity, and improved yield. The first report on induced mutation of a gene by HJ. Muller in 1927 was a major mi1estone in enhancing variation, and also indicated the potential applica tions of mutagenesis in plant improvement. Radiation sources, such as X-rays, gamma rays and fast neutrons, and chemical mutagens (e. g., ethyl methane sulphonate) have been widely used to induce mutations."
Plant growth is of great economical and intellectual interest. Plants are the basis of our living environment, the production of our food and a myriad of plant-based natural products. Plant bio-mass is also becoming an important renewable energy resource. Agricultural plant cultivation and breeding programs have altered plant productivity and yield parameters extensively, yet the principles and underlying mechanisms are not well understood. At the cellular level, growth is the result of only two processes, cell division and cell expansion, but these two processes are controlled by intertwined signaling cascades and regulatory mechanisms forming complex regulatory networks. Ultimately this network is what plant scientists are trying to unravel. The sequencing of model and agronomically important plant genomes allows complete insight into the molecular components involved in each process. Methods to quantify the molecular changes, image growth processes and reconstruct growth regulatory networks are rapidly developing. This knowledge should help to elucidate key regulators and to design methods to engineer plant architecture and growth parameters for future human needs. This volume gives a comprehensive overview of what is known about plant growth regulation and growth restraints due to environmental conditions and should allow readers at all levels an entry into this exiting field of research.
The 15th International Symposium on Plant Lipids was held in Okazaki, Japan, in May 12th to 17th, 2002, at the Okazaki Conference Center. The Symposium was organized by the Japanese Organizing Committee with the cooperation of the Japanese Association of Plant Lipid Researchers. The International Symposium was successful with 225 participants from 29 countries. We acknowledge a large number of participants from Asian countries, in particular, from China, Korea, Malaysia, Taiwan, Thailand and the Philippines, presumably because this was the fIrst time that the International Symposium on Plant Lipids was held in Asia. We also acknowledge a number of scientists from Canada, France, Germany, UK and USA, where plant lipid research is traditionally very active. The Symposium provided an opportunity for presentation and discussion of 68 lectures and 93 posters in 11 scientific sessions, which together covered all aspects of plant lipid researches, such as the structure, analysis, biosynthesis, regulation, physiological function, environmental aspects, and the biotechnology of plant lipids. In memory of the founder of this series of symposia, the Terry Galliard Lecture was delivered by Professor Ernst Heinz from Universitat: Hamburg, Germany. In addition, special lectures were given by two outstanding scientists from animal lipid fields, Professor James Ntambi from University of Wisconsin, USA, and Dr. Masahiro Nishijima from the National Institute for Infectious Diseases, Japan. To our great honor and pleasure, the session of Lipid Biosynthesis was chaired by Dr.
Legumes are very important plants playing a central role in biological research. They are a key component of sustainable agricultural systems because of symbiotic nitrogen fixation and other beneficial symbiosis with mycorrhizal fungi. Studies on most of the major leguminous crops are hampered by large genome sizes and other disadvantages which have hindered the isolation and characterisation of genes with important roles in legume biology and agriculture. For this reason Lotus japonicus was chosen as a model species for legume research some ten years ago. Since then, many groups around the world have adopted Lotus as a model and have developed numerous resources and protocols to facilitate basic and applied research on this species. This handbook represents the first effort to compile basic descriptions and methods for research in Lotus, including symbiotic processes, cell and molecular biology protocols, functional genomics, mutants, gene tagging and genetic analysis, transformation and reverse genetic analysis, primary and secondary metabolism, and an exhaustive update of the scientific literature available on this plant.
The importance of haploids is well known to geneticists and plant breeders. The discovery of anther-derived haploid Datura plants in 1964 initiated great excitement in the plant breeding and genetics communities as it offered shortcuts in producing highly desirable homozygous plants. Unfortunately, the expected revolution was slow to materialise due to problems in extending methods to other species, including genotypic dependence, recalcitrance, slow development of tissue culture technologies and a lack of knowledge of the underlying processes. Recent years have witnessed great strides in the research and application of haploids in higher plants. After a lull in activities, drivers for the resurgence have been: (1) development of effective tissue culture protocols, (2) identification of genes c- trolling embryogenesis, and (3) large scale and wide spread commercial up-take in plant breeding and plant biotechnology arenas. The first major international symposium on "Haploids in Higher Plants" took place in Guelph, Canada in 1974. At that time there was much excitement about the potential benefits, but in his opening address Sir Ralph Riley offered the following words of caution: "I believe that it is quite likely that haploid research will contr- ute cultivars to agriculture in several crops in the future. However, the more extreme claims of the enthusiasts for haploid breeding must be treated with proper caution. Plant breeding is subject from time to time to sweeping claims from ent- siastic proponents of new procedures.
Plant hormones play a crucial role in controlling the way in which plants grow and develop. While metabolism provides the power and building blocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate them to produce the form that we recognize as a plant. This book is a description of these natural chemicals: how they are synthesized and metabolized, how they act at both the organismal and molecular levels, how we measure them, a description of some of the roles they play in regulating plant growth and development, and the prospects for the genetic engineering of hormone levels or responses in crop plants. This is an updated revision of the third edition of the highly acclaimed text. Thirty-three chapters, including two totally new chapters plus four chapter updates, written by a group of fifty-five international experts, provide the latest information on Plant Hormones, particularly with reference to such new topics as signal transduction, brassinosteroids, responses to disease, and expansins. The book is not a conference proceedings but a selected collection of carefully integrated and illustrated reviews describing our knowledge of plant hormones and the experimental work that is the foundation of this information. The Revised 3rd Edition adds important information that has emerged since the original publication of the 3rd edition. This includes information on the receptors for auxin, gibberellin, abscisic acid and jasmonates, in addition to new chapters on strigolactones, the branching hormones, and florigen, the flowering hormone.
This collection reviews advances in research on improving barley cultivation across the value chain. Part 1 reviews advances in understanding barley physiology in such areas as plant growth, grain development and plant response to abiotic stress. Chapters also review current developments in exploiting genetic diversity and mapping the barley genome. Building on this foundation, the second part of the book summarises advances in breeding with chapters on breeding trial design as well as advances in molecular breeding techniques such as genome wide association studies (GWAS) and targeted induced lesions in genomes (TILLING). Part 3 looks further along the value chain at ways of optimising cultivation practices. There are chapters on post-harvest storage as well as fungal diseases, weeds and integrated methods for their management. The final part of the book assesses current developments in optimising barley for particular end uses such as malting, brewing and animal feed as well as current research on the nutraceutical properties of barley.
This volume contains selected papers presented at the First Balkan Botanical Congress. The articles refer to all groups of plants and to all scientific disciplines in plant sciences and cover several major themes of current interest to botanists: taxonomy, geobotany and evolution: flora, vegetation, geographical distribution, pollen morphology and deposition, biodiversity, conservation, phytosociology biochemistry, metabolism and bioenergetics: secondary metabolites, enzymes, membrane transport, virus infection ecology and ecophysiology: metal accumulation and tolerance, toxicity and pollution, bio-monitoring systems, dynamics of vegetation communities, leaf structure and ecological types, UV-B and ozone radiation, pesticides and herbicides, ecological evaluation, management and protection of ecosystems, adaptation, photosynthesis structure and its dynamics: organization and molecular characterization of biomembranes and different cell structures and organelles, ultrastructure, anatomy, biosynthesis and localization of different cell compounds genetics, plant breeding and biotechnology: gene transfer, genetic engineering, genetic sterility and diversity, biodiversity and conservation, in vitro regeneration, micropropagation, genotype-environment interaction growth, development and differentiation: differentiation of cell structures, reproductive biology, photoreceptors, crop simulation model, regulators and plant morphogenesis, plant growth patterns, somatic-embryogenesis and organogenesis.
Most plants rely on the co-existence with microorganisms: both groups benefit from these symbioses. It has been shown that a large number of specific genes in plants and microorganisms are only activated during these interactions. Of course, various microbes also act as pathogens. Interactions between plants and microorganisms are often located on plant surfaces, such as leaf cuticles, seeds and mainly on the roots. The communication between plants and microbes is the main topic treated in "Plant Surface Microbiology," such as the signaling within a symbiosis, the molecular differences between symbiotic and pathogenic microorganisms, the role of microorganisms in the development of plants or in plant protection against deleterious agents. Further contributions are devoted to: the analysis of bacterial communities in the rhizosphere; microbial population genetics; aspects of mycorrhizal symbiosis; functional genomic approaches and the use of microorganisms as bio-indicator of soil disturbance.
Trees are a major component of the biosphere and have played an important part in the world's history and culture. With the modern challenges of global warming and dwindling fossil fuel reserves, trees, and in particular their wood, can provide solutions. Unfortunately, too little is known about the biology of these plants, due largely to a lack of appropriate techniques. In recognition of this, Wood Formation in Trees presents a variety of detailed techniques and protocols for the study of the cell and molecular biology of wood formation in trees. Internationally recognized experts, most of whom are the researchers who developed the techniques, speak with authority in this volume, and also provide first-hand tips and trade secrets to help the uninitiated master the techniques. The techniques reflect a hierarchical approach to the study of the developmental biology of wood formation: anatomical, biochemical and molecular-genetic. Trees are a tremendous but vastly under-appreciated natural resource. In an age where the natural product is so often modified to suit modern tastes and industrial processes, it is essential to understand how the natural product is made. The techniques in this book provide that essential information about the process of wood formation in trees.
Eucalyptus, a genus of over 800 species, is a multiproduct crop par excellence. Not only is it grown for timber, pulp and fuelwood, but, as the Aborigines discovered thousands of years ago, it has numerous medicinal and aromatic properties. Since the first commercial distillation of eucalyptus oil 150 years ago, a vast array of eucalyptus-based products has entered the marketplace, mainly for pharmaceutical, fragrance and flavor use. Eucalyptus provides an invaluable reference for all those with an interest in Eucalyptus - in academia and industry alike, for researchers as well as producers, processors, importers and end users - but there are also issues discussed and lessons learned that extend to medicinal and aromatic plants.
Woody plants have distinct growth and development habits. Being sessile and perennial species, woody plants are challenged by multiple stresses year-round or facing repeated stress attacks during their lives. A stress challenge in one season may impact the plant performance in other seasons or years; therefore, woody plants must develop specific mechanisms to minimize the damage caused by various stresses. Although all plant species share the basic physiological process, the unique characteristics of woody species in anatomy structure, body size, growth habit, and life expectancy contribute to significant differences in their responses to different environmental stresses compared to herbaceous plants. Written by a group of experts, Stress Physiology of Woody Plants, is comprised of 11 chapters profoundly describing the uniqueness of plant structure, growth and development, photosynthesis and respiration, and growth regulation in woody species. It summarizes findings in the responses of woody plants to major environmental stresses including drought, nutrient deficiency, salinity, low temperature, oxidative stress, heavy metal, and multiple stresses. Features: Provides a comprehensive review of physiological and molecular aspects of woody plants responding to some major environmental stresses. Bridges the gap between woody and herbaceous species in the field of general physiology and stress physiology. Describes the uniqueness of woody plants in plant structure, growth and development, photosynthesis and respiration, and growth regulation. Summarizes physiological and molecular responses to the environmental stresses in woody plants. This book serves as a textbook and major reference by students and researchers of plant physiology, horticulture, forestry, and plant molecular biology and teaches a better understanding of the mechanisms of plant response to individual or combined stresses in woody species.
Below the soil surface, the rhizosphere is the dynamic interface
among plant roots, soil microbes and fauna, and the soil itself,
where biological as well as physico-chemical properties differ
radically from those of bulk soil. The Rhizosphere is the first
ecologically-focused book that explicitly establishes the links
from extraordinarily small-scale processes in the rhizosphere to
larger-scale belowground patterns and processes. This book includes
chapters that emphasize the effects of rhizosphere biology on
long-term soil development, agro-ecosystem management and responses
of ecosystems to global change. Overall, the volume seeks to spur
development of cross-scale links for understanding belowground
function in varied natural and managed ecosystems.
The fixation of nitrogen - the conversion of atmospheric nitrogen to a form which plants can use - is fundamental to the productivity of the biosphere and therefore to the ability of the expanding human population to feed itself. Although the existence and importance of the process of biological nitrogen fixation has been recognised for more than a century, scientific advances over the last few decades have altered radically our understanding of its nature and mechanisms. This book provides an introductory-level survey of biological nitrogen fixation, covering the role of the process in the global nitrogen cycle as well as its biochemistry, physiology, genetics, ecology, general biology and prospects for its future exploitation. This new edition has been fully updated to include the most recent developments in the field, so providing an up-to-date and accessible account of this key biological process.
In this comprehensive and stimulating text and reference, the authors have succeeded in combining experimental data with current hypotheses and theories to explain the complex physiological functions of plants. For every student, teacher and researcher in the plant sciences it offers a solid basis for an in-depth understanding of the entire subject area, underpinning up-to-date research in plant physiology. The authors vividly explain current research by references to experiments, they cite original literature in figures and tables, and, at the end of each chapter, list recent references that are relevant for a deeper analysis of the topic. In addition, an abundance of detailed and informative illustrations complement the text.
The latest findings in seed physiologydiscussed as they relate to agricultural problems! Presenting the latest findings in the area of seed physiology as well as the practical applications of that knowledge in the field, the Handbook of Seed Physiology: Applications to Agriculture provides a comprehensive view of seed biology and its role in crop performance. Key topics include seed germination, crop emergence, crop establishment, dormancy, preharvest sprouting, plant hormones, abscisic and giberellic acids, weeds, grain quality, oil crops, and malting quality. Abundant case studies provide information of value to researchers, students, and professionals in the fields of seed science, field crop research, crop science, agronomy, and seed technology. The Handbook of Seed Physiology discusses vital topics which serve as the basis for the development of techniques and processes to improve seed performance and crop yield. In this text, you will explore: the effect of the soil physical environment on seed germination the roles of physiology, genetics, and environment in the inception, maintenance, and termination of dormancy the relationship between the termination of dormancy and the synthesis and signaling of gibberellins and abscisic acid mechanisms of orthodox seed deterioration and approaches for repair of seed damage characteristics, behavior, and mechanisms of desiccation tolerance in recalcitrant seeds the role of seed moisture in free radical assaults on seeds and the protective function of raffinose oligosaccharides the production of free radicals and their effect on lipids and lipid peroxidation components of grain quality in oil crops and factors influencing them structural components and genotypic and environmental factors affecting barley malting quality In addition to the latest scientific information in the area of seed physiology, this text provides insights into practical applications of that knowledge through the description of: screening protocols for germination tolerance to temperature and water stress methods for improving seed performance in the field techniques for controlling preharvest sprouting of cereals breeding and production strategies for improving grain quality population-based threshold models in the prediction of germination and emergence patterns modeling changes in dormancy to predict weed emergence Extensive reference sections accompanying each chapter include both foundation texts and current research. Principles and concepts discussed in the text are elaborated upon through equations, figures, and tables covering such topics as water and soil thermal regimes; seed water potential; temperature and water effects on germination; free radical attack; and molecular structures. Exploring concepts, techniques, and processes related to seed germination and crop establishment, this comprehensive, one-of-a-kind reference is an indispensable tool for seed scientists and agricultural professionals. Add it to your library today and put seed physiology research to work in establishing high-quality next crops!
Plants convert inorganic nitrogen into amino acids, the building blocks for proteins. They also make a wide range of other nitrogen compounds to help protect themselves from pests and diseases. An understanding of these compounds can therefore help in devising better crop protection and production methods. This volume contains essays by scientists who have studied aspects of plant nitrogen nutrition and amino acid biosynthesis. There are chapters on protein amino acids, nonprotein amino acids, betaines, glutathione, polyamines, and other secondary metabolites derived from amino acids. The results of these studies will be of interest to graduate students and professionals in biochemistry and botany.
A rewritten and re-organised edition of The Physiological Ecology of Seaweeds (1985). Seaweed Ecology and Physiology surveys the broad literature, but it is not merely an update of the earlier book. This book contains an introductory chapter reviewing seaweed morphology, cytology, and life histories. The chapter on community level ecology now includes six guest essays by senior algal ecologists which conveys the excitement of phycological research. The treatment of tropical seaweeds had been expanded, reflecting the growing literature from tropical regions, and the authors' experiences in the tropics. The final chapter on mariculture is much larger, and includes a case study on how principles of physiological ecology were applied in developing the carrageenan industry. Finally there is an appendix summarising the taxonomic position and nomenclature of the species mentioned in the book.
Photosynthesis: Photobiochemistry and Photobiophysics is the first single-authored book in the Advances in Photosynthesis Series. It provides an overview of the light reactions and electron transfers in both oxygenic and anoxygenic photosynthesis. The scope of the book is characterized by the time frame in which the light reactions and the subsequent electron transfers take place, namely between <=10-12 and >=10-3 second. The book is divided into five parts: An Overview; Bacterial Photosynthesis; Photosystem II & Oxygen Evolution; Photosystem I; and Proton Transport and Photophosphorylation. In discussing the structure and function of various protein complexes, we begin with an introductory chapter, followed by chapters on light-harvesting complexes, the primary electron donors and the primary electron acceptors, and finally the secondary electron donors. The discussion on electron acceptors is presented in the order of their discovery to convey a sense of history, in parallel with the advancement in instrumentation of increasing time resolution. The book includes a large number of stereo pictures showing the three-dimensional structure of various photosynthetic proteins, which can be easily viewed with unaided eyes. This book is designed to be used as a textbook in a graduate or upper-division undergraduate course in photosynthesis, photobiology, plant physiology, biochemistry, and biophysics; it is equally suitable as a resource book for students, teachers, and researchers in the areas of molecular and cellular biology, integrative biology, microbiology, and plant biology. |
You may like...
Sustainable Plant Nutrition - Molecular…
Tariq Aftab, Khalid Hakeem
Paperback
R3,925
Discovery Miles 39 250
Crop Physiology Case Histories for Major…
Victor Sadras, Daniel Calderini
Paperback
R3,134
Discovery Miles 31 340
The Plant Hormone Ethylene - Stress…
Nafees A. Khan, Antonio Ferrante, …
Paperback
R2,941
Discovery Miles 29 410
Forest Microbiology Vol.3_Tree Diseases…
Fred O. Asiegbu, Andriy Kovalchuk
Paperback
R3,925
Discovery Miles 39 250
Zinc in Plants - Current Knowledge and…
Durgesh Kumar Tripathi, Devendra Kumar Chauhan
Paperback
R4,180
Discovery Miles 41 800
Toxicity of Nanoparticles in Plants - An…
Vishnu D. Rajput, Tatiana Minkina, …
Paperback
R3,925
Discovery Miles 39 250
Secondary Xylem Biology - Origins…
YoonSoo Kim, Ryo Funada, …
Paperback
R2,068
Discovery Miles 20 680
|