![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
The study of phytoliths inorganic silica remnants plants leave behind when they die and decay has developed dramatically over the last twenty years. New publications have documented a diverse array of phytoliths from many regions around the globe, while new understandings have emerged as to how and why plants produce phytoliths. Together, these developments make phytoliths a powerful tool in reconstructing past environments and human uses of plants. In Phytoliths, Dolores Piperno makes sense of the discipline for both those working directly with phytoliths in the field or the lab as well as for those who rely on the results of phytolith studies for their own research. Including over a hundred images, Piperno's book will be of great benefit to archaeologists and paleobotanists in the classroom or the lab.
In Virus-Insect-Plant Interactions, the world's leading scientists
discuss the latest breakthroughs in understanding the biological
and ecological factors that define these complex transmission
systems and how this knowledge might be used to our advantage in
producing innovative, user and environmentally friendly approaches
to controlling the spread of plant pathogens by insects. This is an
invaluable reference work for researchers, teachers, and students.
There are many quick-reference figures and tables, the contents
pages include individual chapter abstracts, and each chapter ends
with its own bibliography.
This book clearly defines ways to maximize the allelopathic potential of important field crops for controlling weeds, either in the same crop or others. Compared to the use of herbicides, allelopathy is an attractive option to control weeds naturally under field conditions. The book highlights the allelopathic potential of several important cereals (wheat, maize, rice, barley, sorghum, rye) and two oilseed crops [sunflower and canola (as well as some other member of Brassicaceae family)]. Further, the book explains how the allelopathic potential of these crops can be manipulated under field conditions to suppress weeds. This is possible by growing allelopathic crop cultivars, using mulches from allelopathic crops, intercropping an allelopathic crop with a non-allelopathic crop, including allelopathic crops in crop rotation, or using allelopathic crops as cover crops. Equipped with several basic concepts of allelopathy, this book will be highly useful for the farming community as well as students and researchers.
Understanding the physiology of plants is fundamental to horticultural studies and practice. Aimed at undergraduates, this major textbook covers applied aspects of physiology related to horticultural crops. The author discusses specific physiological processes in relation to horticultural management, maintaining a focus throughout on how horticultural practices influence plant productivity and quality. Principles of Horticultural Physiology begins by guiding students through the basics of plant physiology; plant anatomy and plant classification, before covering plant hormones, growth and development, and factors related to the external environment including water, light, temperature and soil. Greenhouse culture is also discussed, as well as practical management techniques including seeding, pruning and grafting. The book concludes with real-world horticultural considerations of harvesting crops, packaging and transportation, postharvest physiology and marketing plant products, as well as a fascinating chapter on plants and human nutrition. One of the text's chief virtues is the accessible way the author conveys sometimes complex information in an easy to follow style. An ideal resource for undergraduate students of horticulture, this book will act as a guide throughout the entire course.
​Plant dormancy involves synchronization of environmental cues with developmental processes to ensure plant survival; however, negative impacts of plant dormancy include pre-harvest sprouting, non-uniform germination of crop and weed seeds, and fruit loss due to inappropriate bud break. Thus, our continued quest to disseminate information is important in moving our understanding of plant dormancy forward and to develop new ideas for improving food, feed, and fiber production and efficient weed control, particularly under global climate change. Proceeding from the 5th International Plant Dormancy Symposium will provide an overview related on our current understanding of how environmental factors impact cellular, molecular, and physiological processes involved in bud and seed dormancy, and perspectives and/or reviews on achievements, which should stimulate new ideas and lines of investigation that increase our understanding of plant dormancy and highlight directions for future research. ​
This collection discusses the variety of specific molecular reactions by means of which plants respond to physiological and toxic stress conditions. It focuses on the characterization of the molecular mechanisms that underlie the induction of toxicity and the triggered responses and resistances. The nine chapters, all written by prominent researchers, examine heavy metal toxicity, aluminum toxicity, arsenic toxicity, salt toxicity, drought stress, light stress, temperature stress, flood stress and UV-B stress. In addition, information on the fundamentals of stress responses and resistance mechanisms is provided. The book addresses researchers and students working in the fields of plant physiology and biochemistry.​
This second edition of a well-received book focuses on rhythmic behaviour in plants, which regulates all developmental and adaptive responses and can thus be regarded as quintessential to life itself. The chapters provide a timely update on recent advances in this field and comprehensively summarize the current state of knowledge concerning the molecular and physiological mechanisms behind circadian and ultradian oscillations in plants, their physiological implications for growth and development and adaptive responses to a dynamic environment. Written by a diverse group of leading researchers, the book will spark the interest of readers from many branches of science: from physicists and chemists wishing to learn about the multi-faceted rhythms in plants, to biologists and ecologists involved in the state-of-the-art modelling of complex rhythmic phenomena.
This book offers an up-to-date review of the regulatory role of nitric oxide (NO) changes in the morphological, physio-biochemical as well as molecular characteristics of plants under abiotic stress. The first of two parts comprises four chapters and focuses on the properties, chemical reactions involving NO and reactive nitrogen species in plants. The second part, consisting of eleven chapters, describes the current understanding of the role of NO in the regulation of gene expression, NO signaling pathways and its role in the up-regulation of the endogenous defense system and programmed cell death. Furthermore, its interactions with other signaling molecules and plant hemoglobins under environmental and soil related abiotic stresses, including post-harvest stress in fruits, vegetables and ornamentals and wounding are discussed in detail. Together with the companion book Nitric Oxide in Plants: Metabolism and Role in Stress Physiology, this volume provides a concise overview of the field and offers a valuable reference work for teachers and researchers in the fields of plant physiology, biochemistry and agronomy.
This book presents a holistic view of the complex and dynamic responses of plants to nanoparticles, the signal transduction mechanisms involved, and the regulation of gene expression. Further, it addresses the phytosynthesis of nanoparticles, the role of nanoparticles in the antioxidant systems of plants and agriculture, the beneficial and harmful effects of nanoparticles on plants, and the application of nanoparticles and nanotubes to mass spectrometry, aiming ultimately at an analysis of the metabolomics of plants. The growing numbers of inventions in the field of nanotechnology are producing novel applications in the fields of biotechnology and agriculture. Nanoparticles have received much attention because of the unique physico-chemical properties of these compounds. In the life sciences, nanoparticles are used as “smart†delivery systems, prompting the Nobel Prize winner P. Ehrlich to refer to these compounds as “magic bullets.†Nanoparticles also play an important role in agriculture as compound fertilizers and nano-pesticides, acting as chemical delivery agents that target molecules to specific cellular organelles in plants. The influence of nanoparticles on plant growth and development, however, remains to be investigated. Lastly, this book reveals the research gaps that must be bridged in the years to come in order to achieve larger goals concerning the applications of nanotechnology in the plants sciences. In the 21st century, nanotechnology has become a rapidly emerging branch of science. In the world of physical sciences, nanotechnological tools have been exploited for a broad range of applications. In recent years, nanoparticles have also proven useful in several branches of the life sciences. In particular, nanotechnology has been employed in drug delivery and related applications in medicine.
This monograph provides an overview of beneficial plant-bacterial interactions in a straightforward and easy-to-understand format, and includes a wealth of unique illustrations elaborating every major point. Study questions that emphasize the key points are provided at the end of each chapter. One way to feed all of the people in the world’s growing population is through the increased use of plant-growth-promoting bacteria in agriculture. These bacteria not only directly promote growth but also protect plants against a wide range of biotic and abiotic stresses. Moreover, they can be used to support procedures for biologically cleaning up the environment. Plant-growth-promoting bacteria are already being used successfully on a small scale in several countries, and as this technology matures, the world may witness a major paradigm shift in agricultural practice.
This volume covers broad aspects of cell expansion in three different cell types: root hairs, pollen tubes, and hypocothyl cells. Chapters focus on the cutting-edge methods to study in detail several complex aspects of cell expansion such as secretion, endocytosis and recycling, cellular signaling and trafficking, and protein and polysaccharides cell wall biosynthesis in real time during cell expansion. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Cell Expansion: Methods and Protocols is an essential reference book for plant scientist, molecular, and cell biologist as well as plant biochemists .
This volume presents the issues and challenges of crop pathogens and plant protection. Composed of the latest knowledge in plant pathology, the book covers topics such as fungal diseases of the groundnut, plant growth promoting rhizobacteria, plant pathogenic fungi in the genomics era, the increased virulence of wheat rusts and oat fungal diseases. Written by experienced and internationally recognized scientists in the field, Future Challenges in Crop Protection Against Fungal Pathogens is a concise yet comprehensive resource valuable for both novice as well as experienced plant scientists and researchers.
Our lives and well being intimately depend on the exploitation of the plant genetic resources available to our breeding programs. Therefore, more extensive exploration and effective exploitation of plant genetic resources are essential prerequisites for the release of improved cultivars. Accordingly, the remarkable progress in genomics approaches and more recently in sequencing and bioinformatics offers unprecedented opportunities for mining germplasm collections, mapping and cloning loci of interest, identifying novel alleles and deploying them for breeding purposes. This book collects 48 highly interdisciplinary articles describing how genomics improves our capacity to characterize and harness natural and artificially induced variation in order to boost crop productivity and provide consumers with high-quality food. This book will be an invaluable reference for all those interested in managing, mining and harnessing the genetic richness of plant genetic resources.
This text details the plant-assisted remediation method, "phytoremediation", which involves the interaction of plant roots and associated rhizospheric microorganisms for the remediation of soil and water contaminated with high levels of metals, pesticides, solvents, radionuclides, explosives, nutrients, crude oil, organic compounds and various other contaminants. Each chapter highlights and compares the beneficial and economical alternatives of phytoremediation to currently practiced soil and water removal and burial practices. This book covers state of the art approaches in Phytoremediation written by leading and eminent scientists from around the globe. Phytoremediation: Management of Environmental Contaminants, Volume 1 supplies its readers with a multidisciplinary understanding in the principal and practical approaches of phytoremediation from laboratory research to field application.
This book is a biography of a scientist who pioneered the development of plant pathology in Australia in the 19th and early 20th century, and was internationally acclaimed. After 20 years as a plant pathologist, he was asked to find the cause and cure of a serious physiological disorder of apples. While the cause eluded him, and everyone else for another 60 years, he again won international gratitude for the improvements he brought to the apple industry. However because he did not find the cause, he was deemed to have failed by his political masters who were malignantly influenced by a jealous rival. The discovery in 2012-2013 of government files covering the period of the bitter pit investigation, from 1911 to 1916; reveal the extent of the unjust criticism of McAlpine while history has vindicated the management recommendations made to reduce bitter-pit losses. The focus on bitter-pit management late in McAlpine's Career also meant that those who value his memory have been less aware of the remarkable achievements of McAlpine in the time before he left Great Britain - the brilliance of his teaching and drawing skills -featured in the early teaching texts for botany and zoology (the latter with his brother) which are now accessible on-line. The objective of this book is to demonstrate that (i) the view that McAlpine had failed in his quest was wrong and seriously unjust (ii) McAlpine achievements extend beyond plant pathology and include significant contributions to the 19th century teaching of botany and zoology, contributions which reinforce the adage - a picture is worth a 1,000 words.
A proper understanding of the structural organization of the plant body is essential to any study in plant biology. Experimental studies in vivo and in situ will lead to structural, physiological, and cellular changes of the experimental material. To study macroscopic and microscopic changes, different histological methods and microtechniques can be used as they provide valuable information of the experimental system. In addition, the observed structural changes allow investigators to set hypothesis for further studies based on one's own observation. Thus, proper selection and utilization of microtechniques are a must for the success of a research program. At present, an up-to-date collection of protocols are not readily available in the literature. The latest work in plant microtechniques was published in 1999 by Ruzin but many others are no longer in print [e.g., Jensen (1964); O'Brien and McCully (1981)]. Furthermore, a majority of published works focus on techniques related to general processing and staining procedures. A comprehensive treatment that encompasses broader applications of microtechniques to other disciplines is lacking [e.g., archeology, wood science, etc.]. There is a need to create a comprehensive volume of botanical methods and protocols which includes traditional and novel techniques that can be used by researchers in plant science and investigators in other disciplines that require plant microtechniques in their research and teaching. This book covers a wide variety of applications and brings them up-to-date to make them understandable and relevant, especially to students using the methods for the first time. It is our intention to create a useful reference for plant histology and related methods that will serve as a foundation for plant scholars, researchers, and teachers in the plant sciences.
This volume addresses recent developments in weed science. These developments include conservation agriculture and conservation tillage, climate change, environmental concerns about the runoff of agrochemicals, resistance of weeds and crops to herbicides, and the need for a vastly improved understanding of weed ecology and herbicide use. The book provides details on harnessing knowledge of weed ecology to improve weed management in different crops and presents information on opportunities in weed management in different crops. Current management practices are also covered, along with guidance for selecting herbicides and using them effectively. Written by experts in the field and supplemented with instructive illustrations and tables, Recent Advances in Weed Management is an essential reference for agricultural specialists and researchers, government agents, extension specialists, and professionals throughout the agrochemical industry, as well as a foundation for advanced students taking courses in weed science.
The genome is more than a linear code as depicted by its DNA sequences as several interacting factors play a crucial role in shaping its organization and function. The complete sequences of a number of plant genomes and the recent advances of high-throughput technologies has fueled research efforts in the field of Plant Nuclear Biology unveiling numerous insights about the mechanisms underlying genome regulation. Genomic information is being integrated into molecular- and cellular-level mechanisms of the plant processes. A host of nuclear processes underlie key developmental processes as well as biotic and abiotic interactions. Non-coding RNAs have been increasingly recognized as players in gene expression and genome defense and integrity. However, in vivo, genomes exist as elaborate physical structures, and their functional properties are strongly determined by their cellular organization. Various types of subcellular structure have been identified in the nucleus, which are associated with transcription factors, RNA processing proteins and epigenetic regulators. Interestingly, these nuclear bodies display different behaviors in response to the environment. This book compiles a series of landmark discussions of the recent advances in plant nuclear biology research focusing in the functional relevance of the arrangement of genomes and nuclear processes that impact plant physiology and development.
Twenty-nine, prominent, international researchers provide contributions which deal with understanding the basic ecophysiological and molecular principles governing the functioning of plant systems in relation to their environment. Divided into two headings: biotic and abiotic; the first consists of abiotic, natural environmental factors--light, ultraviolet radiation, chilling and freezing, high temperatures, drought, flooding, salt and trace metals. The latter half presents anthropogenic aspects including allelochemicals, herbicides, polyamines, air pollutants, carbon dioxide, radioisotopes and fire.
The sequencing of genomes has been completed for an increasing number of crop species, and researchers have now succeeded in isolating and characterising many important QTLs/genes. High expectations from genomics, however, are waving back toward the recognition that crop physiology is also important for realistic improvement of crop productivity. Complex processes and networks along various hierarchical levels of crop growth and development can be thoroughly understood with the help of their mathematical description - modelling. The further practical application of these understandings also requires quantitative predictions. In order to better support design, engineering and breeding for new crops and cultivars for improving agricultural production under global warming and climate change, there is an increasing call for an interdisciplinary research approach, which combines modern genetics and genomics, traditional physiology and biochemistry, and advanced bioinformatics and modelling. Such an interdisciplinary approach has been practised in various research groups for many years. However, it does not seem to be fully covered in the format of book publications. We want to initiate a book project on crop systems biology - narrowing the gaps between genotypes and phenotypes and the gaps between crop modelling and genetics/genomics, for publication in 2013/2014. The book will be meant for those scientists and graduate students from fundamental plant biology and applied crop science who are interested in bridging the gap between these two fields. We have invited a group of scientists (who have very good track records in publishing excellent papers in this field or in a closely related area) to contribute chapters to this new book, and they have agreed to do so.
Use of Microbes for the Alleviation of Soil Stresses, Volume 1 describes the most important details and advances related to the alleviation of soil stresses by soil microbes. Comprised of seven chapters, the book reviews the mechanisms by which plant growth promoting rhizobacteria (PGPR) alleviate plant growth under stress; the role of mycorrhizal fungi on the alleviation of drought stress in host plants; how PGPR may alleviate salinity stress on the growth of host plants; and the role of PGPR on the growth of the host plant under the stress of sub optimal root zone temperature. Written by experts in their respective fields, Use of Microbes for the Alleviation of Soil Stresses, Volume 1 is a comprehensive and valuable resource for researchers and students interested in the field of microbiology and soil stresses.
This volume illustrates the complex root system, including the various essential roles of roots as well as their interaction with diverse microorganisms localized in or near the root system. Following initial chapters describing the anatomy and architecture as well as the growth and development of root systems, subsequent chapters focus on the various types of root symbiosis with bacteria and fungi in the rhizosphere. A third section covers the physiological strategies of roots, such as nitrate assimilation, aquaporins, the role of roots in plant defense responses and in response to droughts and salinity changes. The book's final chapters discuss the prospects of applied engineering of roots, i.e., inventing new root structures or functions through genetic modification, but also with conventional breeding and manipulation of root symbionts. The budding field of root engineering is expected to promote a second green revolution.
This book is an overview of our current understanding of aluminium toxicity and tolerance in plants. It covers all relevant aspects from molecular and cellular biology, to genetic approaches, root biology and plant physiology. The contribution of arbuscular mycorrhizal fungi to alleviating aluminium toxicity is also discussed. Over 40% of total agricultural land resources are acidic in nature, with aluminium being the major toxicant. Plant roots are particularly susceptible to aluminium stress, but much of the complex mechanism underlying its toxicity and tolerance is unknown and aluminium stress perception in plants remains poorly understood. The diverse facets of aluminium stress adaptation covered in this book are relevant to plant biology students at all levels, as well researchers and it provides a valuable contribution to our understanding of plant adaptation to the changing environment.
Abiotic stress cause changes in soil-plant-atmosphere continuum and is responsible for reduced yield in several major crops. Therefore, the subject of abiotic stress response in plants - metabolism, productivity and sustainability - is gaining considerable significance in the contemporary world. Abiotic stress is an integral part of "climate change," a complex phenomenon with a wide range of unpredictable impacts on the environment. Prolonged exposure to these abiotic stresses results in altered metabolism and damage to biomolecules. Plants evolve defense mechanisms to tolerate these stresses by upregulation of osmolytes, osmoprotectants, and enzymatic and non-enzymatic antioxidants, etc. This volume deals with abiotic stress-induced morphological and anatomical changes, abberations in metabolism, strategies and approaches to increase salt tolerance, managing the drought stress, sustainable fruit production and postharvest stress treatments, role of glutathione reductase, flavonoids as antioxidants in plants, the role of salicylic acid and trehalose in plants, stress-induced flowering. The role of soil organic matter in mineral nutrition and fatty acid profile in response to heavy metal stress are also dealt with. Proteomic markers for oxidative stress as a new tools for reactive oxygen species and photosynthesis research, abscisic acid signaling in plants are covered with chosen examples. Stress responsive genes and gene products including expressed proteins that are implicated in conferring tolerance to the plant are presented. Thus, this volume would provides the reader with a wide spectrum of information including key references and with a large number of illustrations and tables. Dr. Parvaiz is Assistant Professor in Botany at A.S. College, Srinagar, Jammu and Kashmir, India. He has completed his post-graduation in Botany in 2000 from Jamia Hamdard New Delhi India. After his Ph.D from the Indian Institute of Technology (IIT) Delhi, India in 2007 he joined the International Centre for Genetic Engineering and Biotechnology, New Delhi. He has published more than 20 research papers in peer reviewed journals and 4 book chapters. He has also edited a volume which is in press with Studium Press Pvt. India Ltd., New Delhi, India. Dr. Parvaiz is actively engaged in studying the molecular and physio-biochemical responses of different plants (mulberry, pea, Indian mustard) under environmental stress. Prof. M.N.V. Prasad is a Professor in the Department of Plant Sciences at the University of Hyderabad, India. He received B.Sc. (1973) and M.Sc. (1975) degrees from Andhra University, India, and the Ph.D. degree (1979) in botany from the University of Lucknow, India. Prasad has published 216 articles in peer reviewed journals and 82 book chapters and conference proceedings in the broad area of environmental botany and heavy metal stress in plants. He is the author, co-author, editor, or co-editor for eight books. He is the recipient of Pitamber Pant National Environment Fellowship of 2007 awarded by the Ministry of Environment and Forests, Government of India.
The secretory activity of plants is a manifestation of the fundamental property of all living organisms: the ability to exchange substances and energy with the environment. This book summarizes today's knowledge of all such secretory activities of higher plants. It equally considers the cellular aspects, intratissular and external secretion, gas excretion and the excretion of substances under extreme conditions as well as the biological effects of plant excreta. The first edition of the book was published in Russian in Moscow in 1989 (Nauka Publishing House), then the English larger variant - in Heidelberg-Berlin 1993 (Springer-Verlag). |
![]() ![]() You may like...
Computing Algorithms with Applications…
V. K. Giri, Nishchal K. Verma, …
Hardcover
R4,432
Discovery Miles 44 320
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
![]()
Leveraging Biomedical and Healthcare…
Firas Kobeissy, Kevin Wang, …
Paperback
Flash Memory Integration - Performance…
Jalil Boukhobza, Pierre Olivier
Hardcover
R1,942
Discovery Miles 19 420
|