![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
This edited volume focuses on the characterization, reclamation, bioremediation, and phytoremediation of salt affected soils and waterlogged sodic soils. Innovative technologies in managing marginal salt affected lands merit immediate attention in the light of climate change and its impact on crop productivity and environment. The decision-making process related to reclamation and management of vast areas of salt affected soils encompasses consideration of economic viability, environmental sustainability, and social acceptability of different approaches. The chapters in this book highlight the significant environmental and social impacts of different ameliorative techniques used to manage salt affected soils. Readers will discover new knowledge on the distribution, reactions, changes in bio-chemical properties and microbial ecology of salt affected soils through case studies exploring Indian soils. The contributions presented by experts shed new light on techniques such as the restoration of degraded lands by growing halophyte plant species, diversification of crops and introduction of microbes for remediation of salt infested soils, and the use of fluorescent pseudomonads for enhancing crop yields.
This text details the plant-assisted remediation method, "phytoremediation", which involves the interaction of plant roots and associated rhizospheric microorganisms for the remediation of soil contaminated with high levels of metals, pesticides, solvents, radionuclides, explosives, crude oil, organic compounds and various other contaminants. Many chapters highlight and compare the efficiency and economic advantages of phytoremediation to currently practiced soil and water treatment practices. Volume 5 of Phytoremediation: Management of Environmental Contaminants provides the capstone of the series. Taken together, the five volumes provide a broad-based global synopsis of the current applications of phytoremediation using plants and the microbial communities associated with their roots to decontaminate terrestrial and aquatic ecosystems.
This study, based on a literature review and simulations, shows the efficiency of cover crops at catching nitrate in most agriculture situations. It also analyzes both the negative impacts they can have and the ecosystem services they can provide. The introduction of a cover crop between two main crops helps catch the soil mineral nitrogen before the period of drainage and consequently reduces nitrate leaching and nitrate concentration in the drainage water. This study allows quantifying the efficiency of cover crops at catching nitrate and optimizing their implantation conditions over a large range of French pedoclimatic conditions. The presence of high nitrate levels in surface and ground waters, due to excessive nitrogen fertilization and natural production of nitrate by soil organic matter mineralization, is a double challenge for public health and environment protection.
This book highlights the implications of nanotechnology in plant sciences, particularly its potential to improve food and agricultural systems, through innovative, eco-friendly approaches, and as a result to increase plant productivity. Topics include various aspects of nanomaterials: biophysical and biochemical properties; methods of treatment, detection and quantification; methods of quantifying the uptake of nanomaterials and their translocation and accumulation in plants. In addition, the effects on plant growth and development, the role of nanoparticles in changes in gene and protein expression, and delivery of genetic materials for genetic improvement are discussed. It also explores how nanotechnology can improve plant protection and plant nutrition, and addresses concerns about using nanoparticles and their compliances. This book provides a comprehensive overview of the application potential of nanoparticles in plant science and serves as a valuable resource for students, teachers, researchers and professionals working on nanotechnology.
This book summarizes our current knowledge on belowground defence strategies in plants by world-class scientists actively working in the area. The volume includes chapters covering belowground defence to main soil pathogens such as Fusarium, Rhizoctonia, Verticillium, Phytophthora, Pythium and Plasmodiophora, as well as to migratory and sedentary plant parasitic nematodes. In addition, the role of root exudates in belowground plant defence will be highlighted, as well as the crucial roles of pathogen effectors in overcoming root defences. Finally, accumulating evidence on how plants can differentiate beneficial soil microbes from the pathogenic ones will be covered as well. Better understanding of belowground defences can lead to the development of environmentally friendly plant protection strategies effective against soil-borne pathogens which cause substantial damage on many crop plants all over the world. The book will be a useful reference for plant pathologists, agronomists, plant molecular biologists as well as students working on these and related areas.
This book provides an up-to-date overview of redox signaling in plant cells and its key role in responses to different stresses. The chapters, which are original works or reviews, focus on redox signaling states; cellular tolerance under different biotic and abiotic stresses; cellular redox homeostasis as a central modulator; redox homeostasis and reactive oxygen species (ROS); redox balance in chloroplasts and mitochondria; oxidative stress and its role in peroxisome homeostasis; glutathione-related enzyme systems and metabolism under metal stress; and abiotic stress-induced redox changes and programmed cell death. The book is an invaluable source of information for plant scientists and students interested in redox state chemistry and cellular tolerance in plants.
The knowledge of ecology and epidemiology of rhizomania is particularly useful to understand the means and practices able to limit or avoid its further diffusion. Some promising methods of biological control using coexisting and non-pathogenic organisms could potentially help improve the action of the not completely effective genetic resistances. This integrated protection would be valuable, especially in the even more frequent development of resistance-breaking strains in the BNYVV, where the known types of resistance, alone or in combination, seem to have lost part of their original ability to protect the crop. Therefore, further efforts will be needed to discover new traits likely still present in the wild species of the genus Beta. The availability of large collections of germplasm stored in the International Beta gene-banks should ensure the enhanced efficiency of genetic resistance by means of conventional and marker-assisted selection methods. Some almost immune transgenic varieties seem already to be waiting for release where and when it will be possible. The introduction chapter describes briefly the sugar beet crop, the more common diseases, and the damage caused by rhizomania. The following chapters discuss biological properties of the causal virus, BNYVV, and its vector, Polymyxa betae, and their interactions with the environment and the host-plant. In particular, the great advances in research of the molecular biology of BNYVV should be noteworthy, which have been established by a wide range of the most modern methods. Recent work focused on the genetic diversity and evolution of BNYVV is moving forward our understanding of the dramatic worldwide epidemics of rhizomania. Newly developed molecular techniques also lead to practical applications, such as quantification of inoculum in ecological and epidemiological research.
This book provides an overview of the current state of knowledge of the genetics and genomics of the agriculturally important Cucurbitaceae plant family, which includes crops such as watermelon, melon, cucumber, summer and winter squashes, pumpkins, and gourds. Recent years have resulted in tremendous increases in our knowledge of these species due to large scale genomic and transcriptomic studies and production of draft genomes for the four major species, Citrullus lanatus, Cucumis melo, Cucumis sativus, and Cucurbita spp. This text examines genetic resources and structural and functional genomics for each species group and across species groups. In addition, it explores genomic-informed understanding and commonalities in cucurbit biology with respect to vegetative growth, floral development and sex expression, fruit growth and development, and important fruit quality traits.
This book serves the larger community of plant researchers working on the taxonomy, species delimitation, phylogeny, and biogeography of pseudo-cereals, with a special emphasis on amaranths. It also provides extensive information on the nutritive value of underutilized pseudo-cereals, the goal being to broaden the vegetable list. Amaranthus is a cosmopolitan genus of annual or short-lived perennial plants. Most of the species are summer annual weeds and are commonly referred to as pigweed. Only a few are cultivated as vitamin-rich vegetables and ornamentals. The protein-rich seeds of a handful of species, known as grain amaranths, are consumed as pseudo-cereals. Amaranthusmanifests considerable morphological diversity among and even within certain species, and there is no general agreement on the taxonomy or number of species. Currently the genus Amaranthus is believed to include three recognized subgenera and 70 species. Amatanthus is considered to potentially offer an alternative crop in temperate and tropical climate. The classification of amaranths is ambiguous due to the lack of discrete and quantitative species-defining characteristics and the wide range of phenotypic plasticity, as well as introgression and hybridization involving weedy and crop species. It is a known fact that both vegetable and grain amaranths have evolved from their respective weed progenitors. There are more than 180 different weed species that are herbicide-resistant, and amaranths are considered to be leading members of the resistant biotypes. Amaranth species provide ample scope for investigating herbicide resistance mechanisms. Amaranths also show variability in terms of their mating behavior and germplasm, adaptability to different growing conditions, and wide range of variability in sexual systems, from monoecy to dioecy. A solid grasp of these parameters is essential to the future utilization of amaranths as super crops. There are quite a few amaranth research center and germplasm collections all over the world that maintain and evaluate working germplasms. To date, the genetic improvement of amaranths has primarily involved the application of conventional selection methods. But advances in genomics and biotechnology have dramatically enriched the potential to manipulate the amaranth genome, especially improving the amount and availability of nutrients. In conclusion, the book covers all aspects of amaranths, including their food value, significance as vegetables and pseudo-cereals, taxonomy, phylogeny, germplasm variability, breeding behavior and strategies, cultivation practices, and variability in terms of their sexual systems. It offers a valuable resource for all students, researchers and experts working in the field of plant taxonomy and diversity.
Setaria viridis and S.italica make up a model grass system to investigate C4 photosynthesis, cell wall biosynthesis, responses to drought, herbicide, and other environmental stressors, genome dynamics, developmental genetics and morphology, and interactions with microorganisms. Setaria viridis (green foxtail) is one of the world's most widespread weeds, and its small size, native variation, rapidly burgeoning genetic and genomic resources, and transformability are making it the system of choice for both basic research and its translation into crop improvement. Its domesticated variant, S. italica (foxtail millet), is a drought-hardy cereal grown in China, India and Africa, and new breeding techniques show great potential for improving yields and nutrition for drought-prone regions. This book brings together for the first time evolutionary, genomic, genetic, and morphological analyses, together with protocols for growing and transforming Setaria, and approaches to high throughput genotyping and candidate gene analysis. Authors include major Setaria researchers from both the USA and overseas.
This text details the plant-assisted remediation method, "phytoremediation," which involves the interaction of plant roots and associated rhizospheric microorganisms for the remediation of soil contaminated with high levels of metals, pesticides, solvents, radionuclides, explosives, crude oil, organic compounds and various other contaminants. Each chapter highlights and compares the beneficial and economical alternatives of phytoremediation to currently practiced soil removal and burial practices.
This book details the plant-assisted remediation method, "phytoremediation", which involves the interaction of plant roots and associated rhizospheric microorganisms for the remediation of soil contaminated with high levels of metals, pesticides, solvents, radionuclides, explosives, crude oil, organic compounds and various other contaminants. Each chapter highlights and compares the beneficial and economical alternatives of phytoremediation to currently practiced soil removal and burial practices.
This book focuses on the evolution of plant viruses, their molecular classification, epidemics and management, covering topics relating to evolutionary mechanisms, viral ecology and emergence, appropriate analysis methods, and the role of evolution in taxonomy. The currently emerging virus species are increasingly becoming a threat to our way of life, both economically and physically. Plant viruses are particularly significant as they affect our food supply and are capable of rapidly spreading to new plant species. In basic research, plant viruses have become useful models to analyze the molecular biology of plant gene regulation and cell-cell communication. The small size of DNA genome of viruses possesses minimal coding capacity and replicates in the host cell nucleus with the help of host plant cellular machinery. Thus, studying virus cellular processes provides a good basis for explaining DNA replication, transcription, mRNA processing, protein expression and gene silencing in plants. A better understanding of these cellular processes will help us design antiviral strategies for plants. The book provides in-depth information on plant virus gene interactions with hosts, localization and expression and the latest advances in our understanding of plant virus evolution, their responses and crop improvement. Combining characterization of plant viruses and disease management and presenting them together makes it easy to compare all aspects of resistance, tolerance and management strategies. As such, it is a useful resource for molecular biologists and plant virologists alike.
This book describes the three gasotransmitters nitric oxide (NO), hydrogen sulphide (H2S) and carbon monoxide (CO) and their function as intracellular signalling molecules in plants. Common properties are shared by NO, H2S and CO: they are beneficial at low concentrations but hazardous in higher amounts; they are small molecules of gas; they can freely cross cell membranes; their effects do not rely on receptors; they are generated enzymatically and their production is regulated; their functions can be mimicked by exogenous application; and their cellular effects may or may not be mediated by second messengers, but have specific cellular and molecular targets. In plants, many aspects of the biology of gasotransmitters remain completely unknown and generate intriguing questions, which will be discussed in this book.
This work synthesizes research and practical work, including various techniques and applications of botany and nanoparticles, including enzymology, pharmaceuticals, phenolics, antioxidants, metal particles, synthesis of nanoparticles by plants and microbes, and more. The text discusses the latest research as well as key sources of information condensed from other scholars across the globe, providing a comprehensive resource for scholars working in nanobotany, as well as chemists and researchers in the pharmaceutical industry.
Medicinal flora plays an important role in health care systems across the world. Out of the half million flowering plants, around 50.000 species are valued for their therapeutic properties. During the last few decades, 20% of the world's population used plants and/or their derived products as a source of medicine. WHO stated that 80% population around the globe, specifically the rural communities, depend on medicinal plants for their basic healthcare needs. To this end, plant-based phytochemicals are known to have hepato-protective, anti-carcinogenic, anti-allergic, anti-inflammatory, antimicrobial, antioxidant actions. This book is a guide to ~280 plant species of medicinal flora that demonstrates global relevance. Our goal is to share local knowledge about phytomedicines to a worldwide audience. It is an illustrated reference that documents and preserves the existing knowledge on these plant taxa, with a social and cultural (ethnobotanical) emphasis. This book also provides comprehensive and useful information about traditional uses of medicinal plants by the local communities for the treatment of various prevalent diseases. It contains comprehensive descriptions of each species including family, synonyms, English name, distribution, altitude, habitat, morphological description, life form, part used, mode of utilization, diseases category, recipes, other medicinal uses, phytochemical activity and toxicity.
This brief reviews the pollination aspects of both wild and domesticated fruit tree species in a global climate change context. It explores cross-pollination mediated by insects, vertebrates and abiotic factors, self-pollination and their global warming implications. The authors identify the link between abiotic factors such as precipitation and severe droughts in the context of tree pollination and climate change. Furthermore, pollination and conservation implications in agriculture as well as wild tree populations are explored. Emphasis has been given to fruit trees growing in tropical, subtropical and temperate environments.
This book provides researchers and advanced students associated with plant and pharmaceutical sciences with comprehensive information on medicinal trees, including their identification, morphological characteristics, traditional and economic uses, along with the latest research on their medicinal compounds. The text covers the ecological distribution of over 150 trees, which are characterized mainly on the basis of their unique properties and phytochemicals of medicinal importance (i.e., anti-allergic, anti-diabetic, anti-carcinogenic, anti-microbial, and possible anti-HIV compounds). Due to the incredibly large diversity of medicinal trees, it is not possible to cover all within one publication, so trees with unique medicinal properties that are relatively more common in many countries are discussed here in order to make it most informative for a global audience. With over 100 illustrations taken at different stages of plant development, this reference work serves as a tool for tree identification and provides morphological explanations. It includes the latest botanical research, including biochemical advancements in phytochemistry techniques such as chromatographic and spectrometric techniques. In addition, the end of each chapter presents the most up-to-date references for further sources of exploration.
This proceedings volume contains a selection of invited and contributed papers of the 10th International Workshop on Sulfur Metabolism in Plants, which was held in Goslar, Germany September 1-4, 2015. The focus of this workshop was on the fundamental, environmental and agricultural aspects of sulfur in plants, and presents an overview of the progress in the research developments in this field in the 28 years since the first of these workshops. The volume covers various aspects of the regulation of the uptake and assimilation of sulfate in plants from a molecular to a whole plant level with an emphasis on the significance of sulfur metabolism in plant responses to stress and in food security.
This book addresses aspects of rice production in rice-growing areas of the world including origin, history, role in global food security, cropping systems, management practices, production systems, cultivars, as well as fertilizer and pest management. As one of the three most important grain crops that helps to fulfill food needs all across the globe, rice plays a key role in the current and future food security of the world. Currently, no book covers all aspects of rice production in the rice-growing areas of world. This book fills that gap by highlighting the diverse production and management practices as well as the various rice genotypes in the salient, rice-producing areas in Asia, Europe, Africa, the Americas, and Australia. Further, this text highlights harvesting, threshing, processing, yields and rice products and future research needs. Supplemented with illustrations and tables, this text is essential for students taking courses in agronomy and production systems as well as for agricultural advisers, county agents, extension specialists, and professionals throughout the industry.
Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation presents a single research resource on the latest in cadmium toxicity and tolerance in plants. The book covers many important areas, including means of Cd reduction, from plant adaptation, including antioxidant defense, active excretion and chelation, to phytoextraction, rhizo filtration, phytodegradation, and much more. In addition, it explores important insights into the physiological and molecular mechanisms of Cd uptake and transport and presents options for improving resistance to Cd stresses. It will be ideal for both researchers and students working on cadmium pollution, plant responses and related fields of environmental contamination and toxicology.
The world's mediterranean-type climate regions (including areas within the Mediterranean, South Africa, Australia, California, and Chile) have long been of interest to biologists by virtue of their extraordinary biodiversity and the appearance of evolutionary convergence between these disparate regions. These regions contain many rare and endemic species. Their mild climate makes them appealing places to live and visit and this has resulted in numerous threats to the species and communities that occupy them. Threats include a wide range of factors such as habitat loss due to development and agriculture, disturbance, invasive species, and climate change. As a result, they continue to attract far more attention than their limited geographic area might suggest. This book provides a concise but comprehensive introduction to mediterranean-type ecosystems. It is an accessible text which provides an authoritative overview of the topic. As with other books in the Biology of Habitats Series, the emphasis in this book is on the organisms that dominate these regions although their management, conservation, and restoration are also considered.
This book critically reviews advances in our understanding of the biology of vascular epiphytes since Andreas Schimper's 1888 seminal work. It addresses all aspects of their biology, from anatomy and physiology to ecology and evolution, in the context of general biological principles. By comparing epiphytes with non-epiphytes throughout, it offers a valuable resource for researchers in plant sciences and related disciplines. A particular strength is the identification of research areas that have not received the attention they deserve, with conservation being a case in point. Scientists have tended to study pristine systems, but global developments call for information on epiphytes in human-disturbed systems and the response of epiphytes to global climate change.
This volume showcases current ethnobiological accounts of the ways that people use plants to promote human health and well-being. The goal in this volume is to highlight some contemporary examples of how plants are central to various aspects of healthy environments and healthy minds and bodies. Authors employ diverse analytic frameworks, including: interpretive and constructivist, cognitive, political-ecological, systems theory, phenomenological, and critical studies of the relationship between humans, plants and the environment. The case studies represent a wide geographical range and explore the diversity in the health appeals of plants and herbs. The volume begins by considering how plants may intrinsically be 'healthful' and the notion that ecosystem health may be a literal concept used in contemporary efforts to increase awareness of environmental degradation. The book continues with the exploration of the ways in which medically-pluralistic societies demonstrate the entanglements between the environment, the state and its citizens. Profit driven models for the extraction and production of medicinal plant products are explored in terms of health equity and sovereignty. Some of the chapters in this volume work to explore medicinal plant knowledge and the globalization of medicinal plant knowledge. The translocal and global networks of medicinal plant knowledge are pivotal to productions of medicinal and herbal plant remedies that are used by people in all variety of societies and cultural groups. Humans produce health through various means and interact with our environments, especially plants, in order to promote health. The ethnographic accounts of people, plants, and health in this volume will be of interest to the fields of anthropology, biology and ethnobiology, as well as allied disciplines.
Bananas and plantains are among the most important food and cash crops in the world. They are cultivated in more than 135 countries, across the tropics and subtropics, with an annual global production of ca. 130 million metric tonnes. Though bananas are one of the most important components of food security in many developing countries, banana production is threatened by both abiotic and biotic stresses. These include a wide range of diseases and pests, such as bunchy top virus, burrowing nematodes, black Sigatoka or black leaf streak, Fusarium wilt, etc. In recent years, considerable progress has been made and several biotechnological and genomic tools have been employed to help understand and unravel the mysterious banana genome. Molecular and genomic studies have helped to decipher the Musa genome and its evolution. Genetic linkage map and whole genome sequencing of both Musa acuminata and Musa balbisiana (progenitors of cultivated banana) have completely changed the way of thinking and the approach on banana crop improvement. Whole-genome sequencing has helped to improve the selection of quantitative traits such as yield, as well as the selection of optimal parents for developing required hybrids in breeding programs. Gene isolation and the analysis of mutants have helped in the characterization of genes of agronomic value and the associated regulatory sequences. With the advent of molecular markers and new statistical tools, it is now possible to measure the diversity, identify genes and useful alleles linked to important agronomic traits. Further these alleles can be incorporated into cultivars through marker assisted selection or through transgenic approach. Transgenic approaches are potential tools for direct transfer of these genes into popular cultivars, which are generally not amenable for conventional breeding techniques, in specific with crops such as bananas which are sterile, triploid and heterozygous thereby making it difficult to reconstruct the recurrent genotypes in banana. Transgenic techniques thus have helped overcome the difficulty of working with sterile, triploid banana crop. In the last five years, enormous amount of new information and techniques have been generated for banana. A comprehensive book entitled "Banana: Genomics and Transgenic Approaches for Genetic improvement" on banana genomics, latest transgenic technologies and tools available for improved crop development in banana will address all these requirements. |
![]() ![]() You may like...
Learn Raspberry Pi with Linux
Peter Membrey, David Hows
Paperback
Resonances in the Earth-Ionosphere…
A. P. Nickolaenko, M. Hayakawa
Hardcover
R6,407
Discovery Miles 64 070
The Business of Indie Games - Everything…
Alex Josef, Alex Van Lepp, …
Hardcover
R4,037
Discovery Miles 40 370
The Daunting Climate Change - Science…
Jayarama Reddy Puthalpet
Hardcover
R5,875
Discovery Miles 58 750
The Art Of Peace And War - Undertanding…
David Kilcullen, Greg Mills
Paperback
Handbook of Pesticides - Methods of…
Leo M.L. Nollet, Hamir S. Rathore
Paperback
R1,646
Discovery Miles 16 460
|