![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
A comprehensive overview of this genus, Artemisia examines all aspects of the herbs uses and applications, its mode of action and clinical importance. Following a comprehensive introduction to the genus, the book discusses the botanical, phytochemical and biological aspects of a number of important species of Artemisis. Considering that the discovery of artemisinin, a highly active antimalarial agent from the Chinese herb A. annua is of considerable importance, this volume devotes several chapters to the traditional uses, cultivation and phytochemistry of this species and to the development of artemisinin-derived antimalarial agents, their mode of action and clinical use.
This collection reviews current advances in the breeding and cultivation of key tropical and subtropical fruits. Chapters summarise key advances across the value chain for citrus fruit cultivation, including citrus genetics, nutrition and other aspects of cultivation, the use of precision agriculture and developments in integrated pest management (IPM). Two case studies on limes and mandarins highlight the range of improvements in cultivation. The book also summarises recent developments in breeding and cultivation techniques for a range of soft tropical fruits, including banana, kiwifruit, lychee, papaya, pineapple and pomegranate. The final part of the book covers developments in breeding and cultivation techniques for a range of stone and other tropical fruit, including avocado, coconut, guava, jackfruit, mangos and olives.
Charles Darwin, the father of the theory of evolution, described the evolutionary origin of flowering plants, which appear to have risen abruptly during the late Cretaceous Period, as an "abominable mystery." The first seed plants appeared in the fossil record some 230 million years earlier, but the transitions leading to the flowering plants left few fossils and remain obscure. The evolutionary history of photosynthetic organisms is full of mysteries great and small, including the origin of photosynthesis itself, the origins of multiple independent lines of algae, the loss of flagella in the red algae, the origin of sporophytes in vascular and non-vascular plants, the early diversification of seed plants, and the origin of the unique monocots. In Plant Life: A Brief History, botanist Frederick Essig traces how familiar features of plants evolved sequentially over hundreds of millions of years as various environmental challenges and opportunities were met. This chronological narrative begins with the origin of photosynthesis and the rise of cyanobacteria, continues with the evolution and diversification of photosynthetic eukaryotes and their invasion of dry land, explores the varied adaptations for sexual reproduction and dispersal in the terrestrial environment, and concludes with the diverse growth forms of the flowering plants. As different groups of photosynthetic organisms are introduced, the book emphasizes the adaptations that enabled them to gain dominance in existing habitats or move into new habitats. Readers will acquire a deeper understanding of the diverse photosynthetic organisms humans depend upon for food, oxygen, medicine, building materials, and aesthetic pleasure. With accessible writing and a myriad of figures and illustrations, Essig provides a broad overview of plant evolution that will appeal to students and general audiences alike. Plant Life: A Brief History is a valiant step in the quest to unravel the "abominable mysteries" of plant evolution, and offers a compelling introduction to the exciting and complex world of evolutionary biology.
Vetiveria is one of the most versatile genera in plant kingdom. For example, the species Vetiveria zizanoides produces oderous roots from which a precious essential oil is distilled and used in a variety of applications from perfumery to ethnopharmacology. The same roots give the plant particular characteristics that make it a valuable natural barrier against erosion. Vetiveria: The Genus Vetiveria describes the anatomy, physiology, biochemistry, essential oil biogenesis and chemical composition, ethnopharmacology and distillation. The book covers the production of plants for oil exploration, the use of Vetiver as an ecological tool against erosion, flood, soil pollution, and many other applications.
Agronomic crops have been a source of foods, beverages, fodders, fuels, medicines and industrial raw materials since the dawn of human civilization. Over time, these crops have come to be cultivated using scientific methods instead of traditional methods. However, in the era of climate change, agronomic crops are increasingly subjected to various environmental stresses, which results in substantial yield loss. To meet the food demands of the ever-increasing global population, new technologies and management practices are being adopted to boost yield and maintain productivity under both normal and adverse conditions. To promote the sustainable production of agronomic crops, scientists are currently exploring a range of approaches, which include varietal development, soil management, nutrient and water management, pest management etc. Researchers have also made remarkable progress in developing stress tolerance in crops through various approaches. However, finding solutions to meet the growing food demands remains a challenge. Although there are several research publications on the above-mentioned problems, there are virtually no comprehensive books addressing all of the recent topics. Accordingly, this book, which covers all aspects of production technologies, management practices, and stress tolerance of agronomic crops in a single source, offers a highly topical guide.
This book provides a comprehensive review of advances in breeding techniques for cereals such as wheat, barley maize and rye. Part 1 discusses ways of better exploiting genetic diversity through techniques such as trait introgression. Parts 2-3 then summarise developments in the use of doubled haploids and hybrid breeding methods. Parts 4-5 review advances in high throughput phenotyping and its use in identifying markers for breeding using techniques such as genome-wide association studies and nested association mapping.
This book presents a comprehensive overview of plant stresses caused by salt, drought, extreme temperatures, oxygen and toxic compounds, which are responsible for huge losses in crop yields. It discusses the latest research on the impact of salinity and global environment changes, and examines the advances in the identification and characterization of the mechanisms that allow plants to tolerate biotic and abiotic stresses. Further it presents our current understanding of metabolic fluxes and the various transporters that collectively open the possibility of applying in vitro technology and genetic engineering to improve stress tolerance. Exploring advanced methods that augment traditional plant tissue culture and breeding techniques toward the development of new crop varieties that can tolerate biotic and abiotic stresses to achieve sustainable food production, this book is a valuable resource for plant scientists and researchers.
This book focuses on the conventional breeding approach, and on the latest high-throughput genomics tools and genetic engineering / biotechnological interventions used to improve rice quality. It is the first book to exclusively focus on rice as a major food crop and the application of genomics and genetic engineering approaches to achieve enhanced rice quality in terms of tolerance to various abiotic stresses, resistance to biotic stresses, herbicide resistance, nutritional value, photosynthetic performance, nitrogen use efficiency, and grain yield. The range of topics is quite broad and exhaustive, making the book an essential reference guide for researchers and scientists around the globe who are working in the field of rice genomics and biotechnology. In addition, it provides a road map for rice quality improvement that plant breeders and agriculturists can actively consult to achieve better crop production.
This book provides an overview of the current state of knowledge of the genetics and genomics of the agriculturally important Cucurbitaceae plant family, which includes crops such as watermelon, melon, cucumber, summer and winter squashes, pumpkins, and gourds. Recent years have resulted in tremendous increases in our knowledge of these species due to large scale genomic and transcriptomic studies and production of draft genomes for the four major species, Citrullus lanatus, Cucumis melo, Cucumis sativus, and Cucurbita spp. This text examines genetic resources and structural and functional genomics for each species group and across species groups. In addition, it explores genomic-informed understanding and commonalities in cucurbit biology with respect to vegetative growth, floral development and sex expression, fruit growth and development, and important fruit quality traits.
In nature, plants are constantly challenged by various abiotic and biotic stresses that can restrict their growth, development and yields. In the course of their evolution, plants have evolved a variety of sophisticated and efficient mechanisms to sense, respond to, and adapt to changes in the surrounding environment. A common defensive mechanism activated by plants in response to abiotic stress is the production and accumulation of compatible solutes (also called osmolytes). This include amino acids (mainly proline), amines (such as glycinebetaine and polyamines), and sugars (such as trehalose and sugar alcohols), all of which are readily soluble in water and non-toxic at high concentrations. The metabolic pathways involved in the biosynthesis and catabolism of compatible solutes, and the mechanisms that regulate their cellular concentrations and compartmentalization are well characterized in many important plant species. Numerous studies have provided evidence that enhanced accumulation of compatible solutes in plants correlates with increased resistance to abiotic stresses. New insights into the mechanisms associated with osmolyte accumulation in transgenic plants and the responses of plants to exogenous application of osmolyte, will further enhance our understanding of the mechanisms by which compatible solutes help to protect plants from damage due to abiotic stress and the potential roles compatible solutes could play in improving plants growth and development under optimal conditions for growth. Although there has been significant progress made in understanding the multiple roles of compatible solute in abiotic stress tolerance, many aspects associated with compatible solute-mediated abiotic stress responses and stress tolerance still require more research. As well as providing basic up-to-date information on the biosynthesis, compartmentalization and transport of compatible solute in plants, this book will also give insights into the direct or indirect involvement of these key compatible solutes in many important metabolic processes and physiological functions, including their antioxidant and signaling functions, and roles in modulating plant growth, development and abiotic stress tolerance. In this book, Osmoprotectant-mediated abiotic stress tolerance in plants: recent advances and future perspectives, we present a collection of 16 chapters written by leading experts engaged with compatible solute-induced abiotic stress tolerance in plants. The main objective of this volume is to promote the important roles of these compatible solutes in plant biology, by providing an integrated and comprehensive mix of basic and advanced information for students, scholars and scientists interested in, or already engaged in, research involving osmoprotectant. Finally, this book will be a valuable resource for future environmental stress-related research, and can be considered as a textbook for graduate students and as a reference book for front-line researchers working on the relationships between osmoprotectant and abiotic stress responses and tolerance in plants.
This book represents the authors' lifetime dedication to the study of inhibitors and phytohormones as well as its practical applications for achieving a more sustainable agriculture. Their work focuses on the functions of various groups of active molecules, their direct effect upon plant growth, but also implications for their impact upon the surrounding environment are explored. The main idea of the book evolved from the need to determine a balance among natural growth inhibitors and phytohormones. This approach was pursued through a better understanding of their biochemical pathways, their effects on plants physiological functions, and their influence upon stress factors on plant ontogenesis. Therefore, this effort proposes a more holistic approach to the study of plant physiology, in which the plant-soil interactions are discussed, with a profound description of different allelochemicals and their effects on plants growth. A rigorous attention is also paid to discuss the role of microorganisms in ecosystems and their capability to synthesize physiologically active substances, which trigger also unique plant-microbial interactions. These synergies are leading scientists to the discovery of major breakthroughs in agriculture and pharmacology that are revolutionizing old epistemologies and thus, contributing to the emergence of a philosophy of interconnectedness for the whole biosphere.
The 12th International Symposium on Plant Lipids was held at the University of Toronto, Canada, from July 7th to 12th, 1996. The conference was attended by over 200 scientists from university, government and corporate laboratories from 24 different countries. The topics covered in the symposium ranged from basic physiology, biochemistry and molecular biology of plant lipids to transformation and genetic engineering of crop plants. Oil seed plants were a particular focus of the symposium. There were 62 oral and 96 posters presentations. A special lecture in memory of the founder of this series of symposium, Terry Galliard, was presented by John Shanklin. This Proceedings Book has been dedicated to Grattan Roughan for his important contributions to our knowledge of plant lipid metabolism. This volume contains manuscripts submitted from most of the presentations at the symposium. It provides a useful summary of the major fields of plant lipid studies and our present state of knowledge. The papers are arranged in eight sections covering the major areas in the field of plant physiology, biochemistry and molecular biology of plant lipids. We would like to thank Valerie Imperial, Rajesh Khetarpal and Mary Williams for their invaluable help in organizing and running the meetings and excursions. John P. Williams, Mobashsher U. Khan and Nora W. Lem Toronto, Canada, October 1996 xvii DEDICATION This volume is dedicated to Grattan Roughan.
This book provides a timely review of progress in the area of
primary plant metabolism, and in particular highlights the extent
to which molecular techniques now influence the investigation and
understanding of plant metabolism. The emphasis of the book is
centred on processes related to the dominant pathways of
carbohydrate production and utilisation, and is arranged to reflect
the current focus of researchers on three broadly overlapping areas
of investigation. -- The molecular architecture of selected enzymes
of primary metabolism; Each of the contributors is an internationally recognised researcher who presents a cogent summary of recent advances in the field. The volume will be of particular value to undergraduates, graduates and advanced researchers in plant biology, biotechnology and biochemistry, as well as researchers in related areas of plant physiology, crop production and horticulture who need to keep abreast of current developments in the understanding of the fundamental aspects of plant carbohydrate metabolism.
This book presents a study of meaning relations, linking the philosophical tradition of conceptual analysis with recent theories and methodologies in cognitive semantics. Its main concern is the extent to which analyzing meaning relations between cognate words reveal the infrastructure of the actual and mental lexicon, assuming that language mirrors thought. Sovran aims to elucidate their infrastructure and the metaphorical and perceptual models that constitute abstract concepts, dealing finally with the role of abstraction in poetic metaphors. Overall, this volume addresses major contemporary issues in the philosophy of language and theoretical semantics.
Environmental stresses represent the most limiting factors for agricultural productivity worldwide. These stresses impact not only current crop species, they are also significant barriers to the introduction of crop plants into areas that are not currently being used for agriculture. Stresses associated with temperature, salinity and drought, singly or in combination, are likely to enhance the severity of problems to which plants will be exposed in the coming decades. The present book brings together contributions from many laboratories around the world to discuss and compare our current knowledge of the role stress genes play in plant stress tolerance. In addition, strategies are discussed to introduce these genes and the processes that they encode into economically important crops, and the effect this will have on plant productivity.
Originating in South America, cassava is grown in over 100 countries around the world. It is the third most important source of calories in the tropics after rice and maize. Its caloric value, as well as its ability to tolerate dry conditions and poor soils, makes it a key food security crop in developing countries. As demand for food grows, there is an urgent need to increase yields in the face of such challenges as climate change, threats from pests and diseases and the need to make cultivation more resource-efficient and sustainable. Drawing on an international range of expertise, this collection focuses on ways of improving the cultivation of cassava at each step in the value chain, from breeding to post-harvest storage. Volume 2 starts by reviewing genetic resources, advances in breeding and their application to produce varieties with desirable traits such as higher yield. It then goes on to review developments in understanding and managing pests and diseases. Achieving sustainable cultivation of cassava Volume 2: Genetic resources, breeding, pests and diseases will be a standard reference for agricultural scientists in universities, government and other research centres and companies involved in improving cassava cultivation. It is accompanied by Volume 1 which reviews cultivation techniques.
"These books present a comprehensive coverage of issues facing wheat production globally. The authors represent the top scientists involved in the diverse areas that are important for sustainable wheat production and will this book provides an excellent resource for those interested in wheat improvement and production." Dr Hans-Joachim Braun, Director Global Wheat Program and CRP Wheat, International Maize and Wheat Improvement Center (CIMMYT), Mexico Wheat is the most widely cultivated cereal in the world and a staple food for around 3 billion people. It has been estimated that demand for wheat could increase by up to 60% by 2050. There is an urgent need to increase yields in the face of such challenges as climate change, threats from pests and diseases and the need to make cultivation more resource-efficient and sustainable. Drawing on an international range of expertise, this collection focuses on ways of improving the cultivation of wheat at each step in the value chain, from breeding to post-harvest storage. Volume 1 reviews research in wheat breeding and quality traits as well as diseases and pests and their management. Chapters in Part 1 review advances in understanding of wheat physiology and genetics and how this has informed developments in breeding, including developing varieties with desirable traits such as drought tolerance. Part 2 discusses aspects of nutritional and processing quality. Chapters in Part 3 cover research on key wheat diseases and their control as well as the management of insect pests and weeds. Achieving sustainable cultivation of wheat Volume 1: Breeding, quality traits, pests and diseases will be a standard reference for cereal scientists in universities, government and other research centres and companies involved in wheat cultivation. It is accompanied by Volume 2 which reviews improvements in cultivation techniques.
Rice is one of the most important foods in the world. As the demand for rice continues to increase, there is an urgent need to increase yields in the face of such challenges as climate change, threats from pests and diseases and the need to make cultivation more resource-efficient and sustainable. Drawing on an international range of expertise, this collection focuses on ways of improving the cultivation of rice at each step in the value chain, from breeding to post-harvest storage. Volume 1 reviews research in physiology and breeding and its application to produce varieties with improved traits such as higher yields. It then goes on to discuss nutritional and other aspects of rice quality and the ways these can be enhanced. Achieving sustainable cultivation of rice Volume 1: Breeding for higher quality and yield will be a standard reference for rice scientists in universities, government and other research centres and companies involved in rice cultivation. It is accompanied by Volume 2 which reviews improvements in cultivation techniques, pest and disease management.
The mechanisms underlying endurance and adaptation to environmental stress factors in plants have long been the focus of intense research. Plants overcome environmental stresses by development of tolerance, resistance or avoidance mechanisms, adjusting to a gradual change in its environment which allows them to maintain performance across a range of adverse environmental conditions. Plant Acclimation to Environmental Stress presents the latest ideas and trends on induced acclimation of plants to environmental stresses under changing environment. Written by experts around the globe, this volume adds new dimensions in the field of plant acclimation to abiotic stress factors. Comprehensive and lavishly illustrated, Plant Acclimation to Environmental Stress is a state-of-the-art guide suited for scholars and researchers working in the field of crop improvement, genetic engineering and abiotic stress tolerance.
Iron is a major constituent of the earth crust. However, under alkaline conditions commonly found in arid and semi-arid environments iron becomes unavailable to plants. When plants are affected by a shortage of iron their leaves become yellow (chlorotic), and both plant growth and crop yield are reduced. The roots of plants affected by iron deficiency may develop a series of responses directed to improve iron uptake, such as increased proton excretion and iron reduction capabilities or excretion of iron chela tors called siderophores. Iron deficiency affects major crops worldwide, including some of major economic importance such as fruit trees and others. Correction of iron deficiency is usually implemented through costly application of synthetic chelates. Since these correction methods are very expensive, the competitivity of farmers is often reduced and iron deficiency may become a limiting factor for the maintenance, introduction or expansion of some crops. In spite of the many years devoted to the study of iron deficiency, the knowledge of iron deficiency in soils and plants is still fragmentary in many aspects. We have only incomplete information on the processes at the molecular level that make some plant species and cultivars unable to take and utilize iron from the soil, whereas other plants grow satisfactorily under the same conditions.
Diversity within and among living organisms is both a biological impera tive and a biological conundrum. Phenotypic and genotypic diversity is the critical currency ofecological interactions and the evolution of life. Thus, it is not unexpected to find vast phytochemical diversity among plants. However, among the most compelling questions which arise among those interested in ecological phytochemistry is the extent, nature, and reasons for the diversity of chemieals in plants. The idea that natural products (secondary metabolites) are accidents of metabolism and have no biological function is an old one which has resurfaced recently under a new term "redundancy. " Redundancy in the broader sense can be viewed as duplication of effort. The co-occurrence of several classes of phytochemieals in a given plant may be redundancy. Is there unnecessary duplication of chemical defense systems and ifso, why? What selective forces have produced this result? On the other hand, why does the same compound often have multiple functions? At a symposium of the Phytochemical Society of North America held in August 1995, in Sault Ste. Marie, Ontario, Canada, the topic "Phytochernical Redundancy in Ecological Interactions" was discussed. The chapters in this volume are based on that symposium. They both stimulate thought and provide some working hypotheses for future research. It is being increasingly recognized that functional diversity and multiplicity of function of natural products is the norm rather than the exception."
With the demonstration of the "triple response" in plants by Neljubow at the turn of the century, ethylene has been identified as a substance specifically affecting plant growth. Yet it took a few more decades to show that ethylene is a naturally occurring product of plants having all the characteristics of a phytohormone. Ever since much effort has been devoted to a wide variety of physiological and biochemical problems relevant to ethylene. A first meeting was organized in Israel in 1984 to bring together many people active in this rapidly expanding field of experimental research. It is the aim of the present symposium to provide once more a forum at which researchers might expose and comment progress in their work over the last few years. Speakers were invi ted and their contri buti ons ordered ina number of sessions, each of which was centered on a particular topiC. Much of the benefit came from ensuing discussion sessions which were conducted with much competence and expertise by Anderson, Ben-Arie, Goren, Morgan and Osborne. All of these colleagues are recognized leaders in ethylene research today and the organizers owe a very special gratitude to them for their substantial contribution to the programme. It is well to remember the friendly atmosphere, so essential to the success of the whole meeting and so much enjoyed by every partiCipant. Prompt publi ca tion of the papers was made possi ble by the camera-ready procedure offered by the publisher.
During recent years, research has greatly expanded our understanding of the sophisticated molecular network of responses which enable plants to develop, survive and propagate under a wide range of conditions. In Plant Signal Transduction: Methods and Protocols, an international panel of experts provide well-established methods vital to analyzing plant signal transduction on the molecular level. Featuring experimental procedures on several of the most popular model organisms, the volume focuses on in planta analyses and the proteins involved in signal transduction in order to aid with the establishment of laboratory techniques or the modification of the protocols for other plants. As part of the highly successful Methods in Molecular Biology series, the chapters include brief introductions to the subject, lists of necessary materials, readily reproducible laboratory protocols, and tips on trouble-shooting and avoiding known pitfalls. Comprehensive and cutting-edge, Plant Signal Transduction: Methods and Protocols will benefit plant scientists wishing to improve their experimental approaches and delve further into this exciting and important field of study"
This book includes papers from keynote lecture and oral presentations of Plant and Microbe Adaptations to Cold (PMAC) 2012, an international conference on winter hardiness of crop and pathogenic microbes. The PMAC has been started in 1997 in Japan as an interdisciplinary forum for scientists and extension people working in the field in plant pathology, plant physiology, microbiology, and crop breeding to increase our knowledge and improve our understanding of overwintering of crops, forages and grasses and solve the problems associated with losses due to freezing and heavy snow cover. Successive meetings have been held in Iceland (2000), Canada (2003), Italy (2006), and Norway (2009). PMAC2012 will be a special meeting with a focus on global climate change, food security and agriculture sustainability and the whole program will be arranged to reflect this theme. The topics covered by this proceedings includes, global warming in agricultural environment, plant adaptations to cold, microbial adaptations to cold, plant-microbe interaction under cold, and molecular breeding for winter hardiness. The researches range from molecular biology to ecology and breeding. Experts in the field will report cutting edge research and thoughtful strategies for sustainability.
The threat of climate displacement looms large over a growing number of countries. Based on the more than six years of work by Displacement Solutions in ten climate-affected countries, academic work on displacement and climate adaptation, and the country-level efforts of civil society groups in several frontline countries, this report explores the key contention that land will be at the core of any major strategy aimed at preventing and resolving climate displacement. This innovative and timely volume coordinated and edited by the Founder of Displacement Solutions, Scott Leckie, examines a range of legal, policy and practical issues relating to the role of land in actively addressing the displacement consequences of climate change. It reveals the inevitable truth that climate displacement is already underway and being tackled in countries such as Bangladesh, Kiribati, Papua New Guinea, Solomon Islands, Tuvalu and the United States, and proposes a series of possible land solution tools that can be employed to protect the rights of people and communities everywhere should they be forced to flee the places they call home. |
You may like...
Practical Foundations of Business System…
Haim Kilov, Ken Baclavski
Hardcover
R4,195
Discovery Miles 41 950
Managing Software Engineering Knowledge
Aybuke Aurum, Ross Jeffery, …
Hardcover
R2,871
Discovery Miles 28 710
Evolutionary Algorithms for Embedded…
Rolf Drechsler, Nicole Drechsler
Hardcover
R2,761
Discovery Miles 27 610
Requirements Management - The Interface…
Colin Hood, Simon Wiedemann, …
Hardcover
R1,434
Discovery Miles 14 340
|