![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
Asexual reproduction is found in many taxonomic groups and considerable effort has been directed by biologists towards understanding its mechanisms, evolution and ecological significance. This research monograph, which is the culmination of several years of research by the author, offers a though-provoking contribution to this debate. It is primarily aimed at biologists undertaking research into the evolution, genetic control and ecological costs and benefits of different patterns of reproduction, although it should also be of interest to senior undergraduates.
In Flower Development: Methods and Protocols, researchers in the field detail protocols for experimental approaches that are currently used to study the formation of flowers, from genetic methods and phenotypic analyses, to genome-wide experiments, modeling, and system-wide approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls Authoritative and practical, Flower Development: Methods and Protocols is an essential guide for plant developmental biologists, from the novice to the experienced researcher, and for those considering venturing into the field.
To be published in 30 volumes,Flora of North America represents the first and only comprehensive taxonomic guide to the extraordinary diversity of plant life blanketing our continent north of Mexico. The collaborative effort of more than 30 major U.S. and Canadian botanical institutions, this ground-breaking scholarly series revises and synthesizes literally thousands of floristic monographs and regional floras published over the last three centuries. family, Rosaceae. Flora of North America Volume 9 includes four families - Picramniaceae (bitter-bush family), Staphyleaceae (bladdernut family), Crossosomataceae (crossosoma family), and Rosaceae (rose family). This volume contains treatments of nearly 700 species with over 98% of them being species of Rosaceae. Every genus has representative taxa illustrated to aid in plant identification and to demonstrate the morphological variation that exists for these families in North America.by Many economically important plants with edible fruits are members of the Rosaceae, with both native and introducede species known and consumed by people: apples, pears,clature, peaches, almonds, apricots, plums, cherries, strawberries,e blackberries, and raspberries are probably the most commonly utilized. Other members of the Rosaceae, many of greatare horticultural interest worldwide, are also noteworthy in the North American flora, including roses, hawthorns,h keys to cinquefoils, firethorns, quinces, chokecherries, shadbushes, mountain ashes, and loquats. Concise, easy to use, and beautifully bound and illustrated, Flora of North America is an indispensable working resource for botanists, conservationists, ecologists, agronomists,now foresters, range and land managers, horticulturists - anyone with a series interest in the distribution, habitat, morphology, and survival of the wide-ranging plant life around us.
This detailed volume explores techniques to study reactive oxygen species (ROS) in plants and to characterize their roles in development and stress responses. Beginning with a section on strategies to induce ROS production, the book continues with methods to visualize ROS and detect changes in redox homeostasis, small-scale and targeted analyses for investigating the effects of ROS accumulation during stress on plant physiology and metabolism, as well as systems biology approaches to understand ROS functions. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Reactive Oxygen Species in Plants: Methods and Protocols serves as a vital resource that any researcher, and in particular young researchers, can use and adapt to further our knowledge of this dynamic area of plant science.
This contributed volume explores how plant growth-promoting rhizobacterias (PGPR) provide a wide range of benefits to the plant. Further, it discusses the key roles PGPR play in nutrient acquisition and assimilation, improved soil texture, secreting, and modulating extracellular molecules. The book outlines how plant secondary metabolites are natural sources of biologically active compounds used in a wide range of applications, and surveys the significant role of volatile organic compounds (VOCs) in plant communication by mediating above- and below-ground interactions between plants and the surrounding organisms. This volume compiles research from leading scientists from across the globe, linking the translation of basic knowledge to innovative applied research. The book focuses on the following three categories: 1) understanding the secondary metabolites produced by PGPR, the signaling mechanisms and how they affect plant growth, 2) the plausible role of volatile organic compounds produced by PGPR, their role and the signaling mechanism for plant growth promotion, and 3) Applications of VOCs and secondary metabolites of PGPR for seed germination, plant growth promotion; stress tolerance and in-plant health and immunity.
This textbook is clearly structured with fourteen richly illustrated chapters and practical examples for easy understanding and direct implementation. The methods and findings developed in the authors' group are presented in detailed, revised chapters. Readers will find valuable updates on the molecular basis of biotechnological processes, secondary metabolite production and genetic engineering. In addition, the basic principles of important biotechnologies, as well as examples of specially designed crops that deliver improved productivity under stress conditions, are presented. This second edition sets the direction for future research on the basic aspects of plant tissue culture and its applications in the fields of secondary metabolite production and genetic engineering. It provides both general and specific information for students, teachers, academic researchers and industrial teams who are interested in new developments in plant tissue culture and its applications.
The sixth International Symposium on Genetics and Molecular Biology of Plant Nutriti9n was held in Elsinore, Denmark from August 17-21, 1998 and organised by th RiS0 National Laboratory in the year of its 40 anniversary. The 98 participants represented 23 countries and 80 scientific contributions with 43 oral and 37 poster presentations. The symposium addressed the molecular mechanisms, physiology and genetic regulation of plant nutrition. The Symposium brought together scientists from a range of different disciplines to exchange information and ideas on the molecular biology of mineral nutrition of plants. The symposium emphasised: * Bridging the gab between molecular biology, applied genetics, plant nutrition and plant breeding. * The development of methodologies to improve the efficiency and effectiveness of nutrition of plants * Quality of plant products. With sessions on: Nitrogen; Phosphorous; Micronutrients; Symbiosis; Membranes; Stress; Heavy Metals and Plant Breeding. In comparison with the previous conferences in this series more emphasis was placed on use of molecular techniques to clarify physiological mechanisms and processes, gene expression and regulation, as well as genetic marker assisted analysis. Significant of molecular genetic markers and other progress was reported in exploitation biotechnologies in breeding programmes.
Plant organelles have intrigued biologists since the discovery of their endosymbiontic origin and maternal inheritance. The first application of organelle biotechnology was the role of cytoplasmic male sterility in hybrid seed production and "Green Revolution." In modern times, plant organelles are again leading the way for the creation of genetically modified crops. On a global scale, 75% of GM crops are engineered for herbicide resistance and most of these herbicides target pathways that reside within plastids. Several thousand proteins are imported into chloroplasts that participate in biosynthesis of fatty acids, amino acids, pigments, nucleotides and numerous metabolic pathways including photosynthesis. Thus, from green revolution to golden rice, plant organelles have played a critical role in revolutionizing agriculture. This book details not only basic concepts and current understanding of plant organelle genetics and molecular biology but also focuses on the synergy between basic biology and biotechnology. Forty four authors from nine countries have contributed twenty four chapters containing many figures and tables. Section 1 on organelle genomes and proteomes discusses molecular features of plastid and mitochondrial genomes, evolutinary origins, somatic and sexual inheritance, proteomics, bioinformatics and functional genomics. Section 2 on organelle gene expression and signalling discusses transcription, translation, RNA processing/editing, introns and splicing, protein synthesis, proteolysis, import of proteins into chloroplast and mitochondria and their regulation. Section 3 on organelle biotechnology discusses chloroplast and nuclear genetic engineering forbiotic/abiotic stress tolerance, improved fatty acid/amino acid biosynthesis, biopharmaceuticals, biopolymers and biomaterials, cytoplasmic male sterility for hybrid seed production, plant improvement and restoration of fertility. This book is designed to serve as a comprehensive volume and reference guide for teachers, advanced undergraduates and graduate students and researchers in plant molecular biology and biotechnology.
Jatropha curcas, or physic nut, is a small tree that, in tropical climates, produces fruits with seeds containing ~38% oil. The physic nut has the potential to be highly productive and is amenable to subculture in vitro and to genetic modification. It also displays remarkable diversity and is relatively easy to cross hybridize within the genus. Thanks to these promising features, J. curcas is emerging as a promising oil crop and is gaining commercial interest among the biofuel research communities. However, as a crop, physic nut has been an economic flop since 2012, because the species was not fully domesticated and the average productivity was less than 2 t/ha, which is below the threshold of profitability.^7 t/ha could be reached and it is contributing to new markets in some countries. As such, it is important fro research to focus on the physiology and selective breeding of Jatropha . This book provides a positive global update on Jatropha, a crop that has suffered despite its promising agronomic and economic potential. The editors have used their collective expertise in agronomy, botany, selective breeding, biotechnology, genomics and bioinformatics to seek out high-quality contributions that address the bottleneck features in order to improve the economic trajectory of physic nut breeding.
This edited book highlights the plant and cell/organ culture systems, and environmental and genetic transformation-based modulation of biochemical pathways. Special focus is given to microRNA-based technology, heterologous systems expression of enzymes and pathways leading to products of interest, as well as applications using both model and non-model plant species. Metabolic engineering is usually defined as the re-routing of one or more enzymatic reactions to generate new compounds, increase the production of existing compounds, or facilitate the degradation of compounds. Plants are the foundation of numerous compounds which are synthesized via assimilated complex biosynthetic routes. Plants have evolved an incredible arrangement of metabolic pathways leading to molecules/compounds capable of responding promptly and effectively to stress situations imposed by biotic and abiotic factors, some of which supply the ever-growing needs of humankind for natural chemicals, such as pharmaceuticals, nutraceuticals, agrochemicals, food and chemical additives, biofuels, and biomass. However, in foreseeable future we will be forced to think about the accessibility of resources for the generations to come. For these reasons, the book proposes alternative options of food/food supplement, medicines and other essential items, by using plant metabolic engineering approach. This book is of interest to teachers, researchers and academic experts. Also, the book serves as additional reading material for undergraduate and graduate students of biotechnology and molecular biology of plants.
Photosynthesis and the Environment examines how photosynthesis may be influenced by environmental changes. Structural and functional aspects of the photosynthetic apparatus are examined in the context of responses to environmental stimuli; particular attention being given to the processing of light energy by thylakoids, metabolic regulation, gas exchange and source-sink relations. The roles of developmental and genetic responses in determining photosynthetic performance are also considered. The complexity of the responses to environmental change is demonstrated by detailed analyses of the effects of specific environmental variables (light, temperature, water, CO2, ozone and UV-B) on photosynthetic performance. Where appropriate attention is given to recent developments in the techniques used for studying photosynthetic activities. The book is intended for advanced undergraduate and graduate students and a wide range of scientists with research interests in environmental effects on photosynthesis and plant productivity.
Medicinal plants are globally valuable sources of herbal products. Plant-based remedies have been used for centuries and have had no alternative in the western medicine repertoire, while others and their bioactive derivatives are in high demand and have been the central focus of biomedical research. As Medicinal plants move from fringe to mainstream with a greater number of individuals seeking treatments free of side effects, considerable attention has been paid to utilize plant-based products for the prevention and cure of human diseases. An unintended consequence of this increased demand, however, is that the existence of many medicinal plants is now threatened, due to their small population size, narrow distribution area, habitat specificity, and destructive mode of harvesting. In addition, climate change, habitat loss and genetic drift have further endangered these unique species. Although extensive research has been carried out on medicinal and aromatic plants, there is relatively little information available on their global distribution patterns, conservation and the associated laws prevailing. This book reviews the current status of threatened medicinal plants in light of increased surge in the demand for herbal medicine. It brings together chapters on both wild (non-cultivated) and domestic (cultivated) species having therapeutic values. Thematically, conventional and contemporary approaches to conservation of such threatened medicinal plants with commercial feasibility are presented. The topics of interest include, but not limited to, biotechnology, sustainable development, in situ and ex situ conservation, and even the relevance of IPR on threatened medicinal plants. We believe this book is useful to horticulturists, botanists, policy makers, conservationists, NGOs and researchers in the academia and the industry sectors.
This book focuses on the effects of genotoxic agents causing oxidative stress in plants. The book explores different kind of chemicals which induces genotoxicity, their mechanism of action and effects on plant health. Impacts at the physiological and molecular levels are discussed. The book is of interest to teachers, researchers and plant scientists. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences. National and international agricultural scientists will also find this to be a useful read.
This book presents recent developments involving the role of nanoparticles on plant physiology and growth. Nanotechnology applications include improvement of agricultural production using bio-conjugated NPs (encapsulation), transfer of DNA in plants for development of insect pest-resistant varieties, nanoformulations of agrochemicals such as pesticides and fertilizers for crop improvement, and nanosensors/nanobiosensors in crop protection for identification of diseases and residues of agrochemicals. Recent findings on the increased use of nanotechnology in agriculture by densely populated countries such as China and India indicate that this technology may impart a substantial impact on reducing hunger, malnutrition, and child mortality.
Global population is mounting at an alarming stride to surpass 9.3 billion by 2050, whereas simultaneously the agricultural productivity is gravely affected by climate changes resulting in increased biotic and abiotic stresses. The genus Brassica belongs to the mustard family whose members are known as cruciferous vegetables, cabbages or mustard plants. Rapeseed-mustard is world's third most important source of edible oil after soybean and oil palm. It has worldwide acceptance owing to its rare combination of health promoting factors. It has very low levels of saturated fatty acids which make it the healthiest edible oil that is commonly available. Apart from this, it is rich in antioxidants by virtue of tocopherols and phytosterols presence in the oil. The high omega 3 content reduces the risk of atherosclerosis/heart attack. Conventional breeding methods have met with limited success in Brassica because yield and stress resilience are polygenic traits and are greatly influenced by environment. Therefore, it is imperative to accelerate the efforts to unravel the biochemical, physiological and molecular mechanisms underlying yield, quality and tolerance towards biotic and abiotic stresses in Brassica. To exploit its fullest potential, systematic efforts are needed to unlock the genetic information for new germplasms that tolerate initial and terminal state heat coupled with moisture stress. For instance, wild relatives may be exploited in developing introgressed and resynthesized lines with desirable attributes. Exploitation of heterosis is another important area which can be achieved by introducing transgenics to raise stable CMS lines. Doubled haploid breeding and marker assisted selection should be employed along with conventional breeding. Breeding programmes aim at enhancing resource use efficiency, especially nutrient and water as well as adoption to aberrant environmental changes should also be considered. Biotechnological interventions are essential for altering the biosynthetic pathways for developing high oleic and low linolenic lines. Accordingly, tools such as microspore and ovule culture, embryo rescue, isolation of trait specific genes especially for aphid, Sclerotinia and alternaria blight resistance, etc. along with identification of potential lines based on genetic diversity can assist ongoing breeding programmes. In this book, we highlight the recent molecular, genetic and genomic interventions made to achieve crop improvement in terms of yield increase, quality and stress tolerance in Brassica, with a special emphasis in Rapeseed-mustard.
This book summarizes the latest studies on plant reproduction and multiple aspects of signaling in reproductive development. It also presents the most advanced processes in CrRLK1L receptor and RALF peptide studies during plant development. Focusing on signaling in pollen tube integrity and sperm release regulation, it provides significant insights into the BUPS-ANX receptor complex and the corresponding ligands RALF4/19 to promote pollen tube growth with proper cell integrity. It also proposes a working model of female tissue-derived RALF34 competing with RALF4/19 from the BUPS-ANX to trigger pollen tube rupture and sperm release. Offering a detailed overview of the spatiotemporal regulation mechanism underlying the control of pollen tube integrity and sperm release, the book fills a major gap in our understanding of plant reproductive processes, and as such is a valuable resource for those working in the area of plant signaling.
Widely known as the 'tree of life', coconut (Cocos nucifera L.) provides a bountiful source for making a wide variety of healthy foods and industrial items. Its cultivation, however, has been encountering seriously destructive issues including lethal diseases and natural adversities which are currently distressing livelihoods of millions of small-holder farmers around the world. There is an urgent mandate to resolve these issues by meeting sustainable seedling production, facilitating genetic conservation, as well as developing disease identification and modern breeding. This book introduces improvements in coconut biotechnology by covering the advances in micropropagation, germplasm conservation, and molecular pathogenic diagnosis. This comprehensive volume will be a useful source of information and references to researchers, graduate students, agricultural developers, and scholars in the plant sciences. In order to benefit general readers, the book also covers fundamental aspects of biology, diversity, and evolution of this marvelous palm species.
Salinity is one of the acute problems causing enormous yield loss in many regions of the world. This phenomenon is particularly pronounced in arid and semiarid regions. Halophytes can remove salt from various types of problematic soils due to their unique morphological, physiological and anatomical adaptations to these environments. Halophytes are also used for the treatment of certain diseases but scientific documentation in terms of current phytotherapic applications is deficient in this unique group of plants. Different ethnic groups around the world use medicinal halophytes according to their own beliefs and ancestor’s experiences. However, their knowledge about the use of salt tolerant medicinal plants is usually confined to their own community. There is thus a knowledge gap on halophytes which should be bridged and preserved. This book provides a comprehensive account on the distribution of halophytes, their ethnobotanical and medicinal aspects, economic importance, and chemical constituents along with scientific description. The book therefore serves as a valuable resource for professionals and researchers working in the fields of plant stress biology and ethnobotanical aspects.
This book illustrates the currently available strategies for managing phytonematodes. It discusses the latest findings on plant-pathogen-microbiome interactions and their impacts on ecosystems, and provides extensive information on the application of microorganisms in the sustainable management of phytonematodes. This is followed by an in-depth discussion of the application of potential strains of biocontrol fungi, endophytes and actinomycetes to enhance plants' ability to fend off phytonematode attacks, leading to improved plant health. In conclusion, the book addresses new aspects like the biofabrication of nanoparticles and their application in plant disease management, and presents an extensive list for further reading.
This manual details the techniques involved in the study of plant microbe interactions (PMI). Covering a wide range of basic and advanced techniques associated with research on biological nitrogen fixation, microbe-mediated plant nutrient use efficiency, the biological control of plant diseases and pests such as nematodes, it will appeal to postgraduate students, research scholars and postdoctoral fellows, as well as teachers from various fields, including pathology, entomology and agronomy. It consists of five broad sections featuring different units. Information panels at the beginning of each unit present essential knowledge as well as advances in a particular topic. The manual can also serve as a textbook for undergraduate courses like Techniques for Plant-Microbe Interactions; Biological Control of Plant Diseases; and Nutrient Use Efficiency. Providing basic insights and working protocols from all related disciplines, this unique laboratory manual is a valuable resource for researchers interested in investigating PMI.
This edited book is focusing on the novel and innovative procedures in tissue culture for large scale production of plantation and horticulture crops. It is bringing out a comprehensive collection of information on commercial scale tissue culture with the objective of producing high quality, disease-free and uniform planting material. Developing low cost commercial tissue culture can be one of the best possible way to attain the goal of sustainable agriculture. Tissue culture provides a means for rapid clonal propagation of desired cultivars, and a mechanism for somatic hybridization and in vitro selection of novel genotypes. Application of plant tissue culture technology in horticulture and plantation crops provides an efficient method to improve the quality and nutrition of the crops. This book includes a description of highly efficient, low cost in vitro regeneration protocols of important plantation and horticulture crops with a detailed guideline to establish a commercial plant tissue culture facility including certification, packaging and transportation of plantlets. The book discusses somatic embryogenesis, virus elimination, genetic transformation, protoplast fusion, haploid production, coculture of endophytic fungi, effects of light and ionizing radiation as well as the application of bioreactors. This book is useful for a wide range of readers such as, academicians, students, research scientists, horticulturists, agriculturists, industrial entrepreneurs, and agro-industry employees.
The cell wall and its constituent polysaccharides and proteins control nearly all plant-based biological and biophysical processes. Understanding the cell wall is, therefore, not only fundamental to the plant sciences but is also pertinent to aspects of human and animal nutrition and health as well as plant-microbe and plant-animal interactions. In The Plant Cell Wall: Methods and Protocols, experts in the field describe detailed methods which are currently being applied to investigate the many aspects of the plant cell wall including its structure, biochemical composition, and metabolism. The book delves into a range of techniques involving plant tissue culture, which can be applied to investigating cell wall structure and metabolism, methods directed towards structural analysis and occurrence of carbohydrates, the development and use of microscopy-based tools and techniques, procedures which measure the physical properties of the wall, and methods based on the application of molecular genetic approaches. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, The Plant Cell Wall: Methods and Protocols seeks to serve both professionals and novices with its well-honed methodologies in an effort to further our knowledge of this essential cellular feature.
World population is growing at an alarming rate and may exceed 9.7 billion by 2050, whereas agricultural productivity has been negatively affected due to yield limiting factors such as biotic and abiotic stresses as a result of global climate change. Wheat is a staple crop for ~20% of the world population and its yield needs be augmented correspondingly in order to satisfy the demands of our increasing world population. "Green revolution", the introduction of semi-dwarf, high yielding wheat varieties along with improved agronomic management practices, gave rise to a substantial increase in wheat production and self-sufficiency in developing countries that include Mexico, India and other south Asian countries. Since the late 1980's, however, wheat yield is at a standoff with little fluctuation. The current trend is thus insufficient to meet the demands of an increasing world population. Therefore, while conventional breeding has had a great impact on wheat yield, with climate change becoming a reality, newer molecular breeding and management tools are needed to meet the goal of improving wheat yield for the future. With the advance in our understanding of the wheat genome and more importantly, the role of environmental interactions on productivity, the idea of genomic selection has been proposed to select for multi-genic quantitative traits early in the breeding cycle. Accordingly genomic selection may remodel wheat breeding with gain that is predicted to be 3 to 5 times that of crossbreeding. Phenomics (high-throughput phenotyping) is another fairly recent advancement using contemporary sensors for wheat germplasm screening and as a selection tool. Lastly, CRISPR/Cas9 ribonucleoprotein mediated genome editing technology has been successfully utilized for efficient and specific genome editing of hexaploid bread wheat. In summary, there has been exciting progresses in the development of non-GM wheat plants resistant to biotic and abiotic stress and/or wheat with improved nutritional quality. We believe it is important to highlight these novel research accomplishments for a broader audience, with the hope that our readers will ultimately adopt these powerful technologies for crops improvement in order to meet the demands of an expanding world population.
This volume contains the contributions from the speakers at the NATO Advanced Research Workshop on "Structure of the Photosynthetic Bacterial Reaction Center X-ray Crystallography and Optical Spectroscopy with Polarized Light" which was held at the "Maison d'Hotes" of the Centre d'Etudes Nucleaires de Cadarache in the South of France, 20-25 September, 1987. This meeting continued in the spirit of a previous workshop which took place in Feldafing (FRG), March 1985. Photosynthetic reaction centers are intrinsic membrane proteins which, by performing a photoinduced transmembrane charge separation, are responsible for the conversion and storage of solar energy. Since the pioneering work of Reed and Clayton (1968) on the isolation of the reaction center from photosynthetic bacteria, optical spectroscopy with polarized light has been one of the main tools used to investigate the geometrical arrangement of the various chromophores in these systems. The recent elucidation by X-ray crystallography of the structure of several bacterial reaction centers, a breakthrough initiated by Michel and Deisenhofer, has provided us with the atomic coordinates of the pigments and some details about their interactions with neighboring aminoacid residues. This essential step has given a large impetus both to experimentalists and to theoreticians who are now attempting to relate the X-ray structural model to the optical properties of the reaction center and ultimately to its primary biological function.
Crop growth and production is dependent on various climatic factors. Both abiotic and biotic stresses have become an integral part of plant growth and development. There are several factors involved in plant stress mechanism. The information in the area of plant growth and molecular mechanism against abiotic and biotic stresses is scattered. The up-to-date information with cited references is provided in this book in an organized way. More emphasis has been given to elaborate the injury and tolerance mechanisms and growth behavior in plants against abiotic and biotic stresses. This book also deals with abiotic and biotic stress tolerance in plants, molecular mechanism of stress resistance of photosynthetic machinery, stress tolerance in plants: special reference to salt stress - a biochemical and physiological adaptation of some Indian halophytes, PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications, salicylic acid: role in plant physiology & stress tolerance, salinity induced genes and molecular basis of salt tolerance mechanism in mangroves, reproductive stage abiotic stress tolerance in cereals, calorimetry and Raman spectrometry to study response of plant to biotic and abiotic stresses, molecular physiology of osmotic stress in plants and mechanisms, functions and toxicity of heavy metals stress in plants, submergence stress tolerance in plants and adoptive mechanism, Brassinosteroid modulated stress responses under temperature stress, stress tolerant in plants: a proteomics approach, Marker-assisted breeding for stress resistance in crop plants, DNA methylation associated epigenetic changes in stress tolerance of plants and role of calcium-mediated CBL-CIPK network in plant mineral nutrition & abiotic stress. Each chapter has been laid out with introduction, up-to-date literature, possible stress mechanism, and applications. Under abiotic stress, plant produces a large quantity of free radicals, which have been elaborated. We hope that this book will be of greater use for the post-graduate students, researchers, physiologist and biotechnologist to sustain the plant growth and development. |
You may like...
Twelve Lectures on Multilingualism
David Singleton, Larissa Aronin
Hardcover
R2,927
Discovery Miles 29 270
Agent-Based Modeling and Network…
Akira Namatame, Shu-Heng Chen
Hardcover
R2,970
Discovery Miles 29 700
Product Experience
Hendrik N. J. Schifferstein, Paul Hekkert
Hardcover
R4,202
Discovery Miles 42 020
Recent Advances in Operator Theory and…
Marinus A. Kaashoek, Sebastiano Seatzu, …
Hardcover
R4,113
Discovery Miles 41 130
Entertainment Computing -- ICEC 2013…
Junia C. Anacleto, Esteban W. G. Clua, …
Paperback
R1,408
Discovery Miles 14 080
Calculus, International Metric Edition
Bruce Edwards, Ron Larson
Paperback
|