![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
Glutathione ( -glutamyl-cysteinyl-glycine) is a ubiquitously distributed sulfurcontaining antioxidant molecule that plays key roles in the regulation of plant growth, development, and abiotic and biotic stress tolerance. It is one of the most powerful low-molecular-weight thiols, which rapidly accumulates in plant cells under stress. Recent in-depth studies on glutathione homeostasis (biosynthesis, degradation, compartmentalization, transport, and redox turnover) and the roles of glutathione in cell proliferation and environmental stress tolerance have provided new insights for plant biologists to conduct research aimed at deciphering the mechanisms associated with glutathione-mediated plant growth and stress responses, as well as to develop stress-tolerant crop plants. Glutathione has also been suggested to be a potential regulator of epigenetic modifications, playing important roles in the regulation of genes involved in the responses of plants to changing environments. The dynamic relationship between reduced glutathione (GSH) and reactive oxygen species (ROS) has been well documented, and glutathione has been shown to participate in several cell signaling and metabolic processes, involving the synthesis of protein, the transport of amino acids, DNA repair, the control of cell division, and programmed cell death. Two genes, gamma-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2), are involved in GSH synthesis, and genetic manipulation of these genes can modulate cellular glutathione levels. Any fluctuations in cellular GSH and oxidized glutathione (GSSG) levels have profound effects on plant growth and development, as glutathione is associated with the regulation of the cell cycle, redox signaling, enzymatic activities, defense gene expression, systemic acquired resistance, xenobiotic detoxification, and biological nitrogen fixation. Being a major constituent of the glyoxalase system and ascorbate-glutathione cycle, GSH helps to control multiple abiotic and biotic stress signaling pathways through the regulation of ROS and methylglyoxal (MG) levels. In addition, glutathione metabolism has the potential to be genetically or biochemically manipulated to develop stress-tolerant and nutritionally improved crop plants. Although significant progress has been made in investigating the multiple roles of glutathione in abiotic and biotic stress tolerance, many aspects of glutathione-mediated stress responses require additional research. The main objective of this volume is to explore the diverse roles of glutathione in plants by providing basic, comprehensive, and in-depth molecular information for advanced students, scholars, teachers, and scientists interested in or already engaged in research that involves glutathione. Finally, this book will be a valuable resource for future glutathione-related research and can be considered as a textbook for graduate students and as a reference book for frontline researchers working on glutathione metabolism in relation to plant growth, development, stress responses, and stress tolerance.
This study, based on a literature review and simulations, shows the efficiency of cover crops at catching nitrate in most agriculture situations. It also analyzes both the negative impacts they can have and the ecosystem services they can provide. The introduction of a cover crop between two main crops helps catch the soil mineral nitrogen before the period of drainage and consequently reduces nitrate leaching and nitrate concentration in the drainage water. This study allows quantifying the efficiency of cover crops at catching nitrate and optimizing their implantation conditions over a large range of French pedoclimatic conditions. The presence of high nitrate levels in surface and ground waters, due to excessive nitrogen fertilization and natural production of nitrate by soil organic matter mineralization, is a double challenge for public health and environment protection.
This book discusses the latest developments in plant-mediated fabrication of metal and metal-oxide nanoparticles, and their characterization by using a variety of modern techniques. It explores in detail the application of nanoparticles in drug delivery, cancer treatment, catalysis, and as antimicrobial agent, antioxidant and the promoter of plant production and protection. Application of these nanoparticles in plant systems has started only recently and information is still scanty about their possible effects on plant growth and development. Accumulation and translocation of nanoparticles in plants, and the consequent growth response and stress modulation are not well understood. Plants exposed to these particles exhibit both positive and negative effects, depending on the concentration, size, and shape of the nanoparticles. The impact on plant growth and yield is often positive at lower concentrations and negative at higher ones. Exposure to some nanoparticles may improve the free-radical scavenging potential and antioxidant enzymatic activities in plants and alter the micro-RNAs expression that regulate the different morphological, physiological and metabolic processes in plant system, leading to improved plant growth and yields. The nanoparticles also carry out genetic reforms by efficient transfer of DNA or complete plastid genome into the respective plant genome due to their miniscule size and improved site-specific penetration. Moreover, controlled application of nanomaterials in the form of nanofertilizer offers a more synchronized nutrient fluidity with the uptake by the plant exposed, ensuring an increased nutrient availability. This book addresses these issues and many more. It covers fabrication of different/specific nanomaterials and their wide-range application in agriculture sector, encompassing the controlled release of nutrients, nutrient-use efficiency, genetic exchange, production of secondary metabolites, defense mechanisms, and the growth and productivity of plants exposed to different manufactured nanomaterials. The role of nanofertilizers and nano-biosensors for improving plant production and protection and the possible toxicities caused by certain nanomaterials, the aspects that are little explored by now, have also been generously elucidated.
Linum (flax) is a genus of about 200 species in the flowering plant family Linaceae. The genus includes common flax, which is one of the best fibers to produce linen, the seeds to produce linseed oil and has health-related properties of flax in human and animal nutrition. This book describes the genetics and genomics of Linum including the development of extensive experimental resources (e.g. whole genome sequence, efficient transformation methods, insertional mutant collections, large germplasm collections, resequenced genomes) that have led much progress and its economic importance. The methods and use of Linum to address a wide range of applications (e.g. disease resistance, cell wall composition, abiotic stress tolerance, floral development, natural diversity) is also discussed.
This volume showcases current ethnobiological accounts of the ways that people use plants to promote human health and well-being. The goal in this volume is to highlight some contemporary examples of how plants are central to various aspects of healthy environments and healthy minds and bodies. Authors employ diverse analytic frameworks, including: interpretive and constructivist, cognitive, political-ecological, systems theory, phenomenological, and critical studies of the relationship between humans, plants and the environment. The case studies represent a wide geographical range and explore the diversity in the health appeals of plants and herbs. The volume begins by considering how plants may intrinsically be 'healthful' and the notion that ecosystem health may be a literal concept used in contemporary efforts to increase awareness of environmental degradation. The book continues with the exploration of the ways in which medically-pluralistic societies demonstrate the entanglements between the environment, the state and its citizens. Profit driven models for the extraction and production of medicinal plant products are explored in terms of health equity and sovereignty. Some of the chapters in this volume work to explore medicinal plant knowledge and the globalization of medicinal plant knowledge. The translocal and global networks of medicinal plant knowledge are pivotal to productions of medicinal and herbal plant remedies that are used by people in all variety of societies and cultural groups. Humans produce health through various means and interact with our environments, especially plants, in order to promote health. The ethnographic accounts of people, plants, and health in this volume will be of interest to the fields of anthropology, biology and ethnobiology, as well as allied disciplines.
This book describes important anatomical adaptations in halophytes, based on a large review of relevant literature (since the 17th century) and recent research findings. Scientists involved in the study of plant biology, from a molecular to ecosystemic level, will find information about all major structural strategies of salt tolerant plants. The book starts with an introductory theoretical background, where several aspects related to the definition and classification of halophytes and saline environments are included. Major anatomical adaptations are then grouped around major concepts: succulence, tracheoidioblasts, salt secretion, Kranz anatomy, successive cambia, and bulliform cells. Each of them is treated following a general scheme: introductory considerations, anatomical basis, and ecological implications; a review of relevant literature is then conducted and the text is supported by a large number of figures, especially ink drawings and color micrographs.
This volume provides the plant scientific community with a collection of established and recently developed experimental protocols to study plant gravitropism. The first few chapters in this book discuss topics such as methods to properly orient plant material for gravitropism studies; protocols for data collection and image analysis; and techniques to investigate ion, organelle, and auxin transporter dynamics, particularly in living cells, as the plant is responding to a change in its orientation. The next few chapters talk about topics that are essential for understanding the complexities underlying tropisms and plant movements in general, and outline basic protocols on handling ornamental flowering shoots for basic plant gravitropism studies. The book concludes with chapters that discuss plant biological studies in space in order to take advantage of unique microgravity conditions not available in Earth-based studies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Informative and cutting-edge, Plant Gravitropism is the perfect book for researchers in the plant scientific community because it is not only useful for plant gravitropism studies, but also addresses a range of interesting problems in plant growth and development.
The research and its outcomes presented here focuses on tropospheric or ground level ozone, in particular due to its surfacing as a major threat to crop productivity around the world. This book presents the ozone concentration data for a variety of geographical regions, examines the factors responsible for its increasing concentrations and its potential effects on physiological and biochemical responses culminating in crop productivity losses which, in turn may pose a serious threat to global food security. Beside this, certain ameliorative measures that could be adopted to assess ozone injury in plants are also discussed. Global climate change scenarios predict a significant increase in future tropospheric ozone concentration. Particular attention is therefore given to evaluate the effect of global climate change on ozone concentrations. Readers will also discover how yield losses due to ozone are related to changes in the socio-economic conditions of the society, especially in South Asian regions. Students and researchers studying crop and soil science, environmental scientists, risk assessment professionals and policy makers will find this book of interest.
With a focus on food safety, this book highlights the importance of microbes in sustainable agriculture. Plants, sessile organisms that are considered as primary producers in the ecosystem and communicate with above- and below-ground communities that consist of microbes, insects, and other vertebrate and invertebrate animals, are subjected to various kinds of stress. Broadly speaking, these can be subdivided into abiotic and biotic stresses. Plants have evolved to develop elaborate mechanisms for coping with and adapting to the environmental stresses. Among other stresses, habitat-imposed biotic stress is one serious condition causing major problems for crop productivity. Most plants employ plant-growth-promoting microorganisms (PGPMs) to combat and protect themselves from stresses and also for better growth. PGPMs are bacteria associated with plant roots and they augment plant productivity and immunity. They are also defined as root-colonizing bacteria that have beneficial effects on plant growth and development. Remarkably, PGPMs including mycorrhizae, rhizobia, and rhizobacteria (Acinetobacter, Agrobacterium, Arthrobacter, Azospirillum, Bacillus, Bradyrhizobium, Frankia, Pseudomonas, Rhizobium, Serratia, Thiobacillus) form associations with plant roots and can promote plant growth by increasing plants' access to soil minerals and protecting them against pathogens. To combat the pathogens causing different diseases and other biotic stresses, PGPMs produce a higher level of resistance in addition to plants' indigenous immune systems in the form of induced systemic resistance (ISR). The ISR elicited by PGPMs has suppressed plant diseases caused by a range of pathogens in both the greenhouse and field. As such, the role of these microbes can no longer be ignored for sustainable agriculture. Today, PGPMs are also utilized in the form of bio-fertilizers to increase plant productivity. However, the use of PGPMs requires a precise understanding of the interactions between plants and microbes, between microbes and microbiota, and how biotic factors influence these relationships. Consequently, continued research is needed to develop new approaches to boost the efficiency of PGPMs and to understand the ecological, genetic and biochemical relationships in their habitat. The book focuses on recent research concerning interactions between PGPMs and plants under biotic stress. It addresses key concerns such as - 1. The response of benign microbes that benefit plants under biotic stress 2. The physiological changes incurred in plants under harsh conditions 3. The role of microbial determinants in promoting plant growth under biotic stress The book focuses on a range of aspects related to PGPMs such as their mode of action, priming of plant defence and plant growth in disease challenged crops, multifunctional bio-fertilizers, PGPM-mediated disease suppression, and the effect of PGPMs on secondary metabolites etc. The book will be a valuable asset to researchers and professionals working in the area of microbial-mediated support of plants under biotic stress.
Soil salinity is a key abiotic-stress and poses serious threats to crop yields and quality of produce. Owing to the underlying complexity, conventional breeding programs have met with limited success. Even genetic engineering approaches, via transferring/overexpressing a single 'direct action gene' per event did not yield optimal results. Nevertheless, the biotechnological advents in last decade coupled with the availability of genomic sequences of major crops and model plants have opened new vistas for understanding salinity-responses and improving salinity tolerance in important glycophytic crops. Our goal is to summarize these findings for those who wish to understand and target the molecular mechanisms for producing salt-tolerant and high-yielding crops. Through this 2-volume book series, we critically assess the potential venues for imparting salt stress tolerance to major crops in the post-genomic era. Accordingly, perspectives on improving crop salinity tolerance by targeting the sensory, ion-transport and signaling mechanisms are presented here in volume 1. Volume 2 will focus on the potency of post-genomic era tools that include RNAi, genomic intervention, genome editing and systems biology approaches for producing salt tolerant crops.
The entire range of the developmental process in plants is regulated by a shift in the hormonal concentration, tissue sensitivity and their interaction with the factors operating around the plants. Phytohormones play a crucial role in regulating the direction of plant in a coordinated fashion in association with metabolism that provides energy and the building blocks to generate the form that we recognize as a plant. Out of the recognized hormones, attention has largely been focused on Auxins, Gibberellins, Cytokinins, Abscisic acid, Ethylene and more recently on Brassinosteroids. In this book we are providing the information about a brassinosteroids that again confirm its status as phytohormones because it has significant impact on various aspects of the plant life and its ubiquitous distribution throughout the plant kingdom. Brassinosteroids are generating a significant impact on plant growth and development, photosynthesis, transpiration, ion uptake and transport, induces specific changes in leaf anatomy and chloroplast structure. This book is not an encyclopedia of reviews but includes a selected collection of newly written, integrated, illustrated reviews describing our knowledge of brassinosteroids. The aim of this book is to tell all about brassinosteroids, by the present time. The various chapters incorporate both theoretical and practical aspects and may serve as baseline information for future researches through which significant development is possible. It is intended that this book will be useful to the students, teachers and researchers, both in universities and research institutes, especially in relation to biological and agricultural sciences.
From climate change to farming systems to genetic modification of organisms, Crop Physiology, Second Edition provides a practical tool for understanding the relationships and challenges of successful cropping. With a focus on genetic improvement and agronomy, this book addresses the challenges of environmentally sound production of bulk and quality food, fodder, fiber, and energy which are of ongoing international concern. The second edition of Crop Physiology continues to provide a unique analysis of these topics while reflecting important changes and advances in the relevant science and implementation systems. Contemporary agriculture confronts the challenge of increasing demand in terms of quantitative and qualitative production targets. These targets have to be achieved against the background of soil and water scarcity, worldwide and regional shifts in the patterns of land use driven by both climate change and the need to develop crop-based sources of energy, and the environmental and social aspects of agricultural sustainability.
The importance of the plant growth regulator auxin for plant growth has long been recognized, even before the discovery of its chemical structures in the early 20th century. Physiological studies in the decades since have demonstrated that auxin is unidirectionally transported in plants, a process dubbed polar auxin transport. It is the polar auxin transport process that generates a local auxin concentration gradient and regulates a broad array of physiological and developmental processes. The discoveries of auxin transport carrier proteins that mediate auxin influx into and efflux out of transport-competent cells and auxin receptor proteins for auxin signaling in the last few decades represent significant milestones in auxin research and open up opportunities to probe the cellular and molecular processes that regulate auxin transport and integrate environmental cues with signaling processes. Remarkably, components of the polar auxin transport machinery are present in both lower plants such as mosses and higher plants including monocots and eudicots, illustrating the key role of polar auxin transport in plant evolution. This book highlights topics ranging from physiological and genetic studies of polar auxin transport in plant development, to growth responses to the environment and plant-microbe interactions, to hormonal cross-talks with various cellular and molecular regulatory processes essential for polar auxin transport.
This book will shed light on the effect of salt stress on plants development, proteomics, genomics, genetic engineering, and plant adaptations, among other topics. Understanding the molecular basis will be helpful in developing selection strategies for improving salinity tolerance. The book will cover around 25 chapters with contributors from all over the world.
This volume presents the issues and challenges of crop pathogens and plant protection. Composed of the latest knowledge in plant pathology, the book covers topics such as fungal diseases of the groundnut, plant growth promoting rhizobacteria, plant pathogenic fungi in the genomics era, the increased virulence of wheat rusts and oat fungal diseases. Written by experienced and internationally recognized scientists in the field, "Future Challenges in Crop Protection Against Fungal Pathogens "is a concise yet comprehensive resource valuable for both novice as well as experienced plant scientists and researchers.
This book describes the unique characean experimental system, which provides a simplified model for many aspects of the physiology, transport and electrophysiology of higher plants. The first chapter offers a thorough grounding in the morphology, taxonomy and ecology of Characeae plants. Research on characean detached cells in steady state is summarised in Chapter 2, and Chapter 3 covers characean detached cells subjected to calibrated and mostly abiotic types of stress: touch, wounding, voltage clamp to depolarised and hyperpolarised potential difference levels, osmotic and saline stress. Chapter 4 highlights cytoplasmic streaming, cell-to-cell transport, gravitropism, cell walls and the role of Characeae in phytoremediation. The book is intended for researchers and students using the characean system and will also serve as an invaluable reference resource for electrophysiologists working on higher plants.
This book discusses and addresses the rapidly increasing world population demand for food, which is expected to double by 2050. To meet these demands farmers will need to improve crop productivity, which relies heavily on nitrogen (N) fertilization. Production of N fertilizers, however, consumes huge amounts of energy and the loss of excess N fertilizers to leaching results in the pollution of waterways and oceans. Therefore, increasing plant nitrogen use efficiency (NUE) is essential to help farmers produce more while conserving the environment. This book assembles some of the best work of top researchers from academic and industrial institutions in the area of NUE and provides valuable insight to scholars and researchers by its comprehensive discussion of current and future strategies to improve NUE through genetic manipulation. This book should also be highly valuable to policy makers, environmentalists, farmers, biotechnology executives, and to the hard-core researchers working in the lab.
Plants are endowed with innate immune system, which acts as a surveillance system against possible attack by pathogens. Plant innate immune systems have high potential to fight against viral, bacterial, oomycete and fungal pathogens and protect the crop plants against wide range of diseases. However, the innate immune system is a sleeping system in unstressed healthy plants. Fast and strong activation of the plant immune responses aids the host plants to win the war against the pathogens. Plant hormone signaling systems including salicylate (SA), jasmonate (JA), ethylene (ET), abscisic acid (ABA), auxins, cytokinins, gibberellins and brassinosteroids signaling systems play a key role in activation of the sleeping immune systems. Suppression or induction of specific hormone signaling systems may result in disease development or disease resistance. Specific signaling pathway has to be activated to confer resistance against specific pathogen in a particular host. Two forms of induced resistance, systemic acquired resistance (SAR) and induced systemic resistance (ISR), have been recognized based on the induction of specific hormone signaling systems. Specific hormone signaling system determines the outcome of plant-pathogen interactions, culminating in disease development or disease resistance. Susceptibility or resistance against a particular pathogen is determined by the action of the signaling network. The disease outcome is often determined by complex network of interactions among multiple hormone signaling pathways. Manipulation of the complex hormone signaling systems and fine tuning the hormone signaling events would help in management of various crop diseases. The purpose of the book is to critically examine the potential methods to manipulate the multiple plant hormone signaling systems to aid the host plants to win the battle against pathogens.
Ascorbic acid (AsA), vitamin C, is one of the most abundant water-soluble antioxidant in plants and animals. In plants AsA serves as a major redox buffer and regulates various physiological processes controlling growth, development, and stress tolerance. Recent studies on AsA homeostasis have broadened our understanding of these physiological events. At the mechanistic level, AsA has been shown to participate in numerous metabolic and cell signaling processes, and the dynamic relationship between AsA and reactive oxygen species (ROS) has been well documented. Being a major component of the ascorbate-glutathione (AsA-GSH) cycle, AsA helps to modulate oxidative stress in plants by controlling ROS detoxification alone and in co-operation with glutathione. In contrast to the single pathway responsible for AsA biosynthesis in animals, plants utilize multiple pathways to synthesize AsA, perhaps reflecting the importance of this molecule to plant health. Any fluctuations, increases or decreases, in cellular AsA levels can have profound effects on plant growth and development, as AsA is associated with the regulation of the cell cycle, redox signaling, enzyme function and defense gene expression. Although there has been significant progress made investigating the multiple roles AsA plays in stress tolerance, many aspects of AsA-mediated physiological responses require additional research if AsA metabolism is to be manipulated to enhance stress-tolerance. This book summarizes the roles of AsA that are directly or indirectly involved in the metabolic processes and physiological functions of plants. Key topics include AsA biosynthesis and metabolism, compartmentation and transport, AsA-mediated ROS detoxification, as well as AsA signaling functions in plant growth, development and responses to environmental stresses. The main objective of this volume is therefore to supply comprehensive and up-to-date information for students, scholars and scientists interested in or currently engaged in AsA research.
This book reviews the current state of information on reactive oxygen and nitrogen species and their role in cell communication during plant growth, development and adaptation to stress conditions. It addresses current research advances made in the area of reactive oxygen and nitrogen species (ROS and RNS) signaling. These free radical molecules are important in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. Due to their short half-life, high diffusion capability and ability to react with different components in the cell, ROS and RNS participate in various processes connected with signaling and communication in plants. The book's respective chapters address the latest advances made in the niche area of ROS and RNS in plants. It offers a valuable guide for researchers and students alike, providing insights into cutting-edge free radical research. The information on specialized topics presented is also highly relevant for applied fields such as food security, agricultural practices and medicinal use of plants.
Estimation of the metabolite complement of plant material involves a wide range of techniques and technologies and that breadth continues to increase. Metabolomics research typically involves multiple sites for material preparation and analysis and most investigations are "high throughput", meaning that chemical analysis of sample sets are inevitably carried out over an extended period of time. In, Plant Metabolomics: Methods and Protocols expert researchers in the field detail many of the stages which are now commonly used to study plant metabolomics workflow. Stages of this workflow, up to and including the statistical analysis, accurate and detailed collection of meta-data are also essential for good process management, to satisfy reporting requirements and to ensure wider interpretability and reuse results.Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Through and intuitive Plant Metabolomics: Methods and Protocols, seeks to aid scientists in the further study of the methods for all the stages of the plant metabolomics workflow.
This book provides extensive and comprehensive information to researchers and academicians who are interested in radionuclide contamination, its sources and environmental impact. It is also useful for graduate and undergraduate students specializing in radioactive-waste disposal and its impact on natural as well as manmade environments. A number of sites are affected by large legacies of waste from the mining and processing of radioactive minerals. Over recent decades, several hundred radioactive isotopes (radioisotopes) of natural elements have been produced artificially, including 90Sr, 137Cs and 131I. Several other anthropogenic radioactive elements have also been produced in large quantities, for example technetium, neptunium, plutonium and americium, although plutonium does occur naturally in trace amounts in uranium ores. The deposition of radionuclides on vegetation and soil, as well as the uptake from polluted aquifers (root uptake or irrigation) are the initial point for their transfer into the terrestrial environment and into food chains. There are two principal deposition processes for the removal of pollutants from the atmosphere: dry deposition is the direct transfer through absorption of gases and particles by natural surfaces, such as vegetation, whereas showery or wet deposition is the transport of a substance from the atmosphere to the ground by snow, hail or rain. Once deposited on any vegetation, radionuclides are removed from plants by the airstre am and rain, either through percolation or by cuticular scratch. The increase in biomass during plant growth does not cause a loss of activity, but it does lead to a decrease in activity concentration due to effective dilution. There is also systemic transport (translocation) of radionuclides within the plant subsequent to foliar uptake, leading the transfer of chemical components to other parts of the plant that have not been contaminated directly.
Experience shows that biotic stresses occur with different levels of intensity in nearly all agricultural areas around the world. The occurrence of insects, weeds and diseases caused by fungi, bacteria or viruses may not be relevant in a specific year but they usually harm yield in most years. Global warming has shifted the paradigm of biotic stresses in most growing areas, especially in the tropical countries, sparking intense discussions in scientific forums. This book was written with the idea of collecting in a single publication the most recent advances and discoveries concerning breeding for biotic stresses, covering all major classes of biotic challenges to agriculture and food production. Accordingly, it presents the state-of-the-art in plant stresses caused by all microorganisms, weeds and insects and how to breed for them. Complementing Plant Breeding for Abiotic Stress Tolerance, this book was written for scientists and students interested in learning how to breed for biotic stress scenarios, allowing them to develop a greater understanding of the basic mechanisms of resistance to biotic stresses and develop resistant cultivars.
This volume summarizes recent advances in our understanding of the mechanisms that produce successful symbiotic partnerships involving microorganisms. It begins with a basic introduction to the nature of and mechanistic benefits derived from symbiotic associations. Taking that background knowledge as the starting point, the next sections include chapters that examine representative examples of coevolutionary associations that have developed between species of microbes, as well as associations between microbes and plants. The authors conclude with a section covering a broad range of associations between microbes and invertebrate animals, in which they discuss the spectrum of hosts, with examples ranging from bryozoans and corals to nematodes, arthropods, and cephalopods. Join the authors on this journey of understanding! |
You may like...
Logic and Philosophy Today, Volume 1
Amithabha Gupta, Johan Van Benthem
Paperback
R538
Discovery Miles 5 380
Logics of Variable Inclusion
Stefano Bonzio, Francesco Paoli, …
Hardcover
R2,891
Discovery Miles 28 910
Logic and the Foundations of Game and…
Giacomo Bonanno, Michael Wooldridge, …
Paperback
R1,435
Discovery Miles 14 350
|