![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
This book reviews various aspects of papaya genomics, including existing genetic and genomic resources, recent progress on structural and functional genomics, and their applications in papaya improvement. Organized into four sections, the volume explores the origin and domestication of papaya, classic genetics and breeding, recent progress on molecular genetics, and current and future applications of genomic resources for papaya improvement. Bolstered by contributions from authorities in the field, Genetics and Genomics of Papaya is a valuable resource that provides the most up to date information for papaya researchers and plant biologists.
This book takes the place of "Biology of Seagrasses: A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region", co-edited by A.W.D. Larkum, A.J. MaCComb and S.A. Shepherd and published by Elsevier in 1989. The first book has been influential, but it is now 25 years since it was published and seagrass studies have progressed and developed considerably since then. The design of the current book follows in the steps of the first book. There are chapters on taxonomy, floral biology, biogeography and regional studies. The regional studies emphasize the importance of Australia having over half of the world's 62 species, including some ten species published for Australia since the previous book. There are a number of chapters on ecology and biogeography; fish biology and fisheries and dugong biology are prominent chapters. Physiological aspects again play an important part, including new knowledge on the role of hydrogen sulphide in sediments and on photosynthetic processes. Climate change, pollution and environmental degradation this time gain an even more important part of the book. Decline of seagrasses around Australia are also discussed in detail in several chapters. Since the first book was published two new areas have received special attention: blue carbon and genomic studies. Seagrasses are now known to be a very important player in the formation of blue carbon, i.e. carbon that has a long turnover time in soils and sediments. Alongside salt marshes and mangroves, seagrasses are now recognized as playing a very important role in the formation of blue carbon. And because Australia has such an abundance and variety of seagrasses, their role in blue carbon production and turnover is of great importance. The first whole genomes of seagrasses are now available and Australia has played an important role here. It appears that seagrasses have several different suites of genes as compared with other (land) plants and even in comparison with freshwater hydrophytes. This difference is leading to important molecular biological studies where the new knowledge will be important to the understanding and conservation of seagrass ecosystems in Australia. Thus by reason of its natural abundance of diverse seagrasses and a sophisticated seagrass research community in Australia it is possible to produce a book which will be attractive to marine biologists, coastal scientists and conservationists from many countries around the world.
Plant biotechnology has now become a key tool in improving crop productivity and enhancing commercial value of plant products. The book complies various methods of in vitro propagation and genetic manipulation of important aromatic and medicinal plants. It puts together latest techniques and innovations in the field of plant biotechnology such as effective protocols of genetic manipulation, isolation of secondary metabolites, use of somaclonal variation, stress management in plants. It also explores the role of various physiological and biochemical factors affecting the genetic stability of in-vitro cultured plants. These themes are of interest to both graduate and postgraduate students. Further this book will be useful for to researchers, academicians and industrialist to review latest progress and future prospects of these technologies.
Estimation of the metabolite complement of plant material involves a wide range of techniques and technologies and that breadth continues to increase. Metabolomics research typically involves multiple sites for material preparation and analysis and most investigations are "high throughput", meaning that chemical analysis of sample sets are inevitably carried out over an extended period of time. In, Plant Metabolomics: Methods and Protocols expert researchers in the field detail many of the stages which are now commonly used to study plant metabolomics workflow. Stages of this workflow, up to and including the statistical analysis, accurate and detailed collection of meta-data are also essential for good process management, to satisfy reporting requirements and to ensure wider interpretability and reuse results.Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Through and intuitive Plant Metabolomics: Methods and Protocols, seeks to aid scientists in the further study of the methods for all the stages of the plant metabolomics workflow.
This book provides extensive and comprehensive information to researchers and academicians who are interested in radionuclide contamination, its sources and environmental impact. It is also useful for graduate and undergraduate students specializing in radioactive-waste disposal and its impact on natural as well as manmade environments. A number of sites are affected by large legacies of waste from the mining and processing of radioactive minerals. Over recent decades, several hundred radioactive isotopes (radioisotopes) of natural elements have been produced artificially, including 90Sr, 137Cs and 131I. Several other anthropogenic radioactive elements have also been produced in large quantities, for example technetium, neptunium, plutonium and americium, although plutonium does occur naturally in trace amounts in uranium ores. The deposition of radionuclides on vegetation and soil, as well as the uptake from polluted aquifers (root uptake or irrigation) are the initial point for their transfer into the terrestrial environment and into food chains. There are two principal deposition processes for the removal of pollutants from the atmosphere: dry deposition is the direct transfer through absorption of gases and particles by natural surfaces, such as vegetation, whereas showery or wet deposition is the transport of a substance from the atmosphere to the ground by snow, hail or rain. Once deposited on any vegetation, radionuclides are removed from plants by the airstre am and rain, either through percolation or by cuticular scratch. The increase in biomass during plant growth does not cause a loss of activity, but it does lead to a decrease in activity concentration due to effective dilution. There is also systemic transport (translocation) of radionuclides within the plant subsequent to foliar uptake, leading the transfer of chemical components to other parts of the plant that have not been contaminated directly.
This volume summarizes recent advances in our understanding of the mechanisms that produce successful symbiotic partnerships involving microorganisms. It begins with a basic introduction to the nature of and mechanistic benefits derived from symbiotic associations. Taking that background knowledge as the starting point, the next sections include chapters that examine representative examples of coevolutionary associations that have developed between species of microbes, as well as associations between microbes and plants. The authors conclude with a section covering a broad range of associations between microbes and invertebrate animals, in which they discuss the spectrum of hosts, with examples ranging from bryozoans and corals to nematodes, arthropods, and cephalopods. Join the authors on this journey of understanding!
This book highlights the advances in essential oil research, from the plant physiology perspective to large-scale production, including bioanalytical methods and industrial applications. The book is divided into 4 sections. The first one is focused on essential oil composition and why plants produce these compounds that have been used by humans since ancient times. Part 2 presents an update on the use of essential oils in various areas, including food and pharma industries as well as agriculture. In part 3 readers will find new trends in bioanalytical methods. Lastly, part 4 presents a number of approaches to increase essential oil production, such as in vitro and hairy root culture, metabolic engineering and biotechnology. Altogether, this volume offers a comprehensive look at what researchers have been doing over the last years to better understand these compounds and how to explore them for the benefit of the society.
This book focuses on the conventional breeding approach, and on the latest high-throughput genomics tools and genetic engineering / biotechnological interventions used to improve rice quality. It is the first book to exclusively focus on rice as a major food crop and the application of genomics and genetic engineering approaches to achieve enhanced rice quality in terms of tolerance to various abiotic stresses, resistance to biotic stresses, herbicide resistance, nutritional value, photosynthetic performance, nitrogen use efficiency, and grain yield. The range of topics is quite broad and exhaustive, making the book an essential reference guide for researchers and scientists around the globe who are working in the field of rice genomics and biotechnology. In addition, it provides a road map for rice quality improvement that plant breeders and agriculturists can actively consult to achieve better crop production.
Experience shows that biotic stresses occur with different levels of intensity in nearly all agricultural areas around the world. The occurrence of insects, weeds and diseases caused by fungi, bacteria or viruses may not be relevant in a specific year but they usually harm yield in most years. Global warming has shifted the paradigm of biotic stresses in most growing areas, especially in the tropical countries, sparking intense discussions in scientific forums. This book was written with the idea of collecting in a single publication the most recent advances and discoveries concerning breeding for biotic stresses, covering all major classes of biotic challenges to agriculture and food production. Accordingly, it presents the state-of-the-art in plant stresses caused by all microorganisms, weeds and insects and how to breed for them. Complementing Plant Breeding for Abiotic Stress Tolerance, this book was written for scientists and students interested in learning how to breed for biotic stress scenarios, allowing them to develop a greater understanding of the basic mechanisms of resistance to biotic stresses and develop resistant cultivars.
This volume focuses on various approaches to studying long non-coding RNAs (lncRNAs), including techniques for finding lncRNAs, localization, and observing their functions. The chapters in this book cover how to catalog lncRNAs in various plant species; determining subcellular localization; protein interactions; structures; and RNA modifications. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and innovative, Plant Long Non-Coding RNAs: Methods and Protocols is a valuable resource that aids researchers in understanding the functions of lncRNAs in different plant species, and helps them explore currently uncharted facets of plant biology.
This volume covers protocols on techniques ranging from MAMP isolations from diverse microorganisms, PRR identifications from different plant species, MAMP-PRR binding, and a series of signaling responses and events revealed by various biochemical, cellular, genetic and bioinformatic tools. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Pattern Recognition Receptors: Methods and Protocols aims to ensure successful results in the further study of this vital field.
The functional characterization of a key enzyme in the phosphatidylinositol (PI) signaling pathway in the model plant Arabidopsis thaliana is the focus of the research summarised in this thesis. Moreover, a particular focus is the exploration of the biological functions of Arabidopsis phophatidylinositol monophosphate 5-kinase 2 (PIP5K2) which catalyzes the synthesis of phophatidylinositol (4,5) bisphosphate, the precursor of two important second messengers (inositol 1,4,5-trisphosphate and diacylglycerol). Through molecular and genetic approaches, the author isolated and characterized the expression pattern, physiological functions and the underlying mechanism of Arabidopsis PIP5K2. It is found that PIP5K2 is involved in regulating lateral root formation and root gravity response through modulating auxin accumulation and polar auxin transport and also plays a critical role in salt tolerance. These findings shed new light on the crosstalk between PI signaling and auxin response, both of which have crucial regulatory roles in plant development.
This volume illustrates the complex root system, including the various essential roles of roots as well as their interaction with diverse microorganisms localized in or near the root system. Following initial chapters describing the anatomy and architecture as well as the growth and development of root systems, subsequent chapters focus on the various types of root symbiosis with bacteria and fungi in the rhizosphere. A third section covers the physiological strategies of roots, such as nitrate assimilation, aquaporins, the role of roots in plant defense responses and in response to droughts and salinity changes. The book s final chapters discuss the prospects of applied engineering of roots, i.e., inventing new root structures or functions through genetic modification, but also with conventional breeding and manipulation of root symbionts. The budding field of root engineering is expected to promote a second green revolution."
This edited volume focuses on the characterization, reclamation, bioremediation, and phytoremediation of salt affected soils and waterlogged sodic soils. Innovative technologies in managing marginal salt affected lands merit immediate attention in the light of climate change and its impact on crop productivity and environment. The decision-making process related to reclamation and management of vast areas of salt affected soils encompasses consideration of economic viability, environmental sustainability, and social acceptability of different approaches. The chapters in this book highlight the significant environmental and social impacts of different ameliorative techniques used to manage salt affected soils. Readers will discover new knowledge on the distribution, reactions, changes in bio-chemical properties and microbial ecology of salt affected soils through case studies exploring Indian soils. The contributions presented by experts shed new light on techniques such as the restoration of degraded lands by growing halophyte plant species, diversification of crops and introduction of microbes for remediation of salt infested soils, and the use of fluorescent pseudomonads for enhancing crop yields.
r ed Algae in Genome Age book most people reading this book have childhood memories about being enthralled at the beach with those rare and mysterious living forms we knew as seaweeds. We were fascinated at that time by their range of red hues and textures, and most of all, their exotic beauty. t o a scientist, red algae represent much more than apparent features. t heir complex forms have attracted morphologists for centuries; their intricate life cycles have brought more than one surprise to plant biologists familiar only with ferns and fowering plants; their unusual tastes have been appreciated for mill- nia, and their valuable chemical constituents have been exploited for nearly as long, most recently by biotech companies; their diversity in marine, freshwater, and t- restrial environments has offered centuries of engaging entertainment for botanists eager to arrange them in orderly classifcation systems; still, the red algae continue to teach us how many more challenges need to be overcome in order to understand their biodiversity, biological functions, and evolutionary histories.
This collection discusses the variety of specific molecular reactions by means of which plants respond to physiological and toxic stress conditions. It focuses on the characterization of the molecular mechanisms that underlie the induction of toxicity and the triggered responses and resistances. The nine chapters, all written by prominent researchers, examine heavy metal toxicity, aluminum toxicity, arsenic toxicity, salt toxicity, drought stress, light stress, temperature stress, flood stress and UV-B stress. In addition, information on the fundamentals of stress responses and resistance mechanisms is provided. The book addresses researchers and students working in the fields of plant physiology and biochemistry.
The book focuses on the principles and practices of tropical maize improvement with special emphasis on early and extra-early maize to feed the increasing population in Sub-Saharan Africa. It highlights the similarities and differences between results obtained in temperate regions of the world and WCA in terms of corroboration or refutation of genetic principles and theory of maize breeding. The book is expected to be of great interest to maize breeders, advanced undergraduates, graduate students, professors and research scientists in the national and international research institutes all over the world, particularly Sub-Saharan Africa. It will also serve as a useful reference for agricultural extension and technology transfer systems, Non-governmental Organizations (NGOs) and Community-Based Organizations (CBOs), seed companies and community-based seed enterprises, policy makers, and all those who are interested in generating wealth from agriculture and alleviating hunger and poverty in Sub-Saharan Africa.
The present edited book is an attempt to update the state of art of the knowledge on metabolism of ROS and antioxidants and their relationship in plant adaptation to abiotic stresses involving physiological, biochemical and molecular processes. The chapters are much focused on the current climate issues and how ROS metabolism can manipulate with antioxidant system to accelerate detoxification mechanism. It will enhance the mechanistic understanding on ROS and antioxidants system and will pave the path for agricultural scientists in developing tolerant crops to achieve sustainability under the changing environmental conditions. The increase in abiotic stress factors has become a major threat to sustainability of crop production. This situation has led to think ways which can help to come out with potential measures; for which it is necessary to understand the influence of abiotic stress factors on crops performance and the mechanisms by which these factors impact plants. It has now become evident that abiotic stress impacts negatively on plant growth and development at every stage of plant's life. Plants adapt to the changing environment with the adjustment at physiological, biochemical and molecular levels. The possible mechanisms involved in the negative effects of abiotic stress factors are excess production of reactive oxygen species (ROS). They alter physiological and molecular mechanisms leading to poor performance of plants. Plants however, are able to cope with these adverse effects by inducing antioxidant systems as the priority. Nevertheless, the dual role of ROS has now been ascertained which provides an evidence for regulation of plant metabolism positively on a concentration-dependent manner. Under conditions of high ROS production, the antioxidant system plays a major role in diminishing the effects of ROS. Thus, ROS production and antioxidant system are interwoven with abiotic stress conditions. The antioxidants have the capacity to hold the stability in metabolism in order to avoid disruption due to environmental disturbances.
Cancer is one of the leading death cause of human population increasingly seen in recent times. Plants have been used for medicinal purposes since immemorial times. Though, several synthetic medicines are useful in treating cancer, they are inefficient and unsafe. However, plants have proved to be useful in cancer cure. Moreover, natural compounds from plants and their derivatives are safe and effective in treatment and management of several cancer types. The anticancer plants such as Catharanthus roseus, Podophyllum peltatum, Taxus brevifolia, Camptotheca acuminate, Andrographis paniculata, Crateva nurvala, Croton tonkinensis, Oplopanax horridus etc., are important source of chemotherapeutic compounds. These plants have proven their significance in the treatment of cancer and various other infectious diseases. Nowadays, several well-known anticancer compounds such as taxol, podophyllotoxins, camptothecin, vinblastine, vincristine, homoharringtonine etc. have been isolated and purified from these medicinal plants. Many of them are used effectively to combat cancer and other related diseases. The herbal medicine and their products are the most suitable and safe to be used as an alternative medicine. Based on their traditional uses and experimental evidences, the anticancer products or compounds are isolated or extracted from the medicinally important plants. Many of these anticancer plants have become endangered due to ruthless harvesting in nature. Hence, there is a need to conserve these species and to propagate them in large scale using plant tissue culture. Alternatively, plant cell tissue and organ culture biotechnology can be adopted to produce these anticancer compounds without cultivation. The proper knowledge and exploration of these isolated molecules or products could provide an alternative source to reduce cancer risk, anti-tumorigenic properties, and suppression of carcinogen activities. Anticancer plants: Volume 1, Properties and Application is a very timely effort in this direction. Discussing the various types of anticancer plants as a source of curative agent, their pharmacological and neutraceutical properties, cryo-preservations and recent trends to understand the basic cause and consequences involved in the diseases diagnosis. We acknowledge the publisher, Springer for their continuous inspiration and valuable suggestions to improvise the content of this book. We further extend our heartfelt gratitude to all our book contributors for their support, and assistance to complete this assignment. I am sure that these books will benefit the scientific communities including academics, pharmaceuticals, nutraceuticals and medical practitioners.
Plants live in a constantly changing environment from which they cannot physically escape. Plants therefore need signalling and response mechanisms to adapt to new local conditions. The ef?cacy of such mechanisms underlies the plant performance during stress and therefore also impacts greatly on agricultural productivity. M- ulation of ion channel activity not only provides a means for rapid signal generation 2+ but also allows adjustment of cellular physiology. For example, Ca permeable ion 2+ channels can transduce environmental stimuli into Ca -encoded messages which can modify the gene expression. Furthermore, ion channel activity is essential to control cellular ion homeostasis that impacts on plant responses to drought, salinity, pathogens, nutrient de?ciency, heavy metals, xenobiotics and other stresses. This volume focuses on the crucial roles of different types of ion channel in plant stress responses. Functions of ion channels are discussed in the context of mechanisms to relay external and endogenous signals during stress and as mechanisms to regulate cellular ion homeostasis and enzymatic activities in the context of biotic and abiotic stress. The chapters presented cover cation and anion channels located in various cellular compartments and tissues.
Precise regulation of gene expression in both time and space is vital to plant growth, development and adaptation to biotic and abiotic stress conditions. This is achieved by multiple mechanisms, with perhaps the most important control being exerted at the level of transcription. However, with the recent discovery of microRNAs another ubiquitous mode of gene regulation that occurs at the post-transcriptional level has been identified. MicroRNAs can silence gene expression by targeting complementary or partially complementary mRNAs for degradation or translational inhibition. Recent studies have revealed that microRNAs play fundamental roles in plant growth and development, as well as in adaptation to biotic and abiotic stresses. This book highlights the roles of individual miRNAs that control and regulate diverse aspects of plant processes.
Considerable advances have been made in our understanding of the eukaryotic cell cycle at the molecular level over the past two decades or so, particularly in yeast and in animal systems. However, only in the past three or four years has progress been made in plants at the molecular level. The present volume brings together molecular biologists, cell biologists and physiologists to discuss this recent progress and how it related to our understanding of the regulation of plant growth and development. The opening paper summarises the progress which has been made with fission yeast. Subsequent papers explore what is known about cell cycle control at the molecular level in plants, and about cell cycle regulation in specific physiological systems, ending with summary papers on cell division in roots and shoots. The book comprises up-to-date findings on a fundamental aspect of plant growth and development, and as such should be of particular interest to advanced undergraduates, postgraduates and research scientists in the fields of molecular biology, cell biology and physiology.
The entire range of the developmental processes in plants is regulated by a shift in the hormonal concentration, tissue sensitivity and their interaction with the factors operating around them. Out of the recognized hormones, attention has largely been focused on five - Auxins, Gibberellins, Cytokinin, Abscisic acid and Ethylene. However, the information about the most recent group of phytohormone (Brassinosteroids) has been incorporated in this book. This volume includes a selection of newly written, integrated, illustrated reviews describing our knowledge of Brassinosteroids and aims to describe them at the present time. Various chapters incorporate both theoretical and practical aspects and may serve as baseline information for future researches through which significant developments are possible. This book will be useful to the students, teachers and researchers, both in universities and research institutes, especially in relation to biological and agricultural sciences.
Petunia belongs to the family of the Solanaceae and is closely related to important crop species such as tomato, potato, eggplant, pepper and tobacco. With around 35 species described it is one of the smaller genera and among those there are two groups of species that make up the majority of them: the purple flowered P.integrifolia group and the white flowered P.axillaris group. It is assumed that interspecific hybrids between members of these two groups have laid the foundation for the huge variation in cultivars as selected from the 1830 s onwards. Petunia thus has been a commercially important ornamental since the early days of horticulture. Despite that, Petunia was in use as a research model only parsimoniously until the late fifties of the last century. By then seed companies started to fund academic research, initially with the main aim to develop new color varieties. Besides a moment of glory around 1980 (being elected a promising model system, just prior to the Arabidopsis boom), Petunia has long been a system in the shadow. Up to the early eighties no more then five groups developed classical and biochemical genetics, almost exclusively on flower color genes. Then from the early eighties onward, interest has slowly been growing and nowadays some 20-25 academic groups around the world are using Petunia as their main model system for a variety of research purposes, while a number of smaller and larger companies are developing further new varieties. At present the system is gaining credibility for a number of reasons, a very important one being that it is now generally realized that only comparative biology will reveal the real roots of evolutionary development of processes like pollination syndromes, floral development, scent emission, seed survival strategies and the like. As a system to work with, Petunia combines advantages from several other model species: it is easy to grow, sets abundant seeds, while self- and cross pollination is easy; its lifecycle is four months from seed to seed; plants can be grown very densely, in 1 cm2 plugs and can be rescued easily upon flowering, which makes even huge selection plots easy to handle. Its flowers (and indeed leaves) are relatively large and thus obtaining biochemical samples is no problem. Moreover, transformation and regeneration from leaf disc or protoplast are long established and easy-to-perform procedures. On top of this easiness in culture, Petunia harbors an endogenous, very active transposable element system, which is being used to great advantage in both forward and reverse genetics screens. The virtues of Petunia as a model system have only partly been highlighted. In a first monograph, edited by K. Sink and published in 1984, the emphasis was mainly on taxonomy, morphology, classical and biochemical genetics, cytogenetics, physiology and a number of topical subjects. At that time, little molecular data was available. Taking into account that that first monograph will be offered electronically as a supplement in this upcoming edition, we would like to put the overall emphasis for the second edition on molecular developments and on comparative issues. To this end we propose the underneath set up, where chapters will be brief and topical. Each chapter will present the historical setting of its subject, the comparison with other systems (if available) and the unique progress as made in Petunia. We expect that the second edition of the Petunia monograph will draw a broad readership both in academia and industry and hope that it will contribute to a further expansion in research on this wonderful Solanaceae."
It was around 1970, I had just completed a 5-year breeding project aiming at fxing fower colour in gerbera progenies: white, yellow, pink, and red; colour homogeneity was sound, but size and shape still required some improvement. The problem was defnitely resolved by Murashige and Skoog, USA who published a reliable protocol for gerbera micropro- gation. In short, my gerbera seed lines were immediately rendered obsolete by this e- cient cloning system, able to produce millions of plants of a matchless and previously unknown homogeneity, the uniformity of fower shape and colour being the basic requi- ments for the market. The success of micropropagation resulted in a tremendous growth in gerbera fower production worldwide, and this species conquered a leading place in the foriculture industry. This personal experience stresses the impact of micropropagation on the genetic improvement research strategies in ornamentals. Micropropagation has become "in- sive", especially in ornamental plant material issues. Today, hundreds of protocols exist; however, only a modest percentage of them are exploited economically. Thus, only micropropagation of plants with a high market price range, like orchids for instance, has proved cost-effective and achieved great success. Micropropagation is a labour-intensive system: hand-power is estimated to rep- sent 60-70% of total costs. This explains the outsourcing of the major labs in developing countries where labour is cheaper. Nevertheless, certain industrial protocols remain a proprietary technology of leading labs, mostly western, with the exception of Japan and Taiwan. |
![]() ![]() You may like...
Oracle Database 11g Performance Tuning…
Sam Alapati, Darl Kuhn, …
Paperback
R1,774
Discovery Miles 17 740
Renegades - Born In The USA
Barack Obama, Bruce Springsteen
Hardcover
![]()
Sapiens - A Brief History Of Humankind
Yuval Noah Harari
Paperback
![]()
Why Don't We Go Into the Garden? - A…
Debbie Carroll, Mark Rendell
Paperback
R682
Discovery Miles 6 820
|