![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
Roots represent half of the plant body and arguably the more interesting half. Despite its obvious importance for the whole plant, until recently our knowledge of the root apparatus was very limited, mostly due to the inadequacy of the techniques available. Recent advances in the visualization and measurement of roots have resulted in significant progress in our understanding of root architecture, growth and behaviour. In this book international experts highlight the most advanced techniques, both lab and field methods, and discuss them in detail. "Measuring Roots" combines academic and practical aspects of this topic, making it a universal handbook for all researchers and others interested in root-measuring methods. "
Phosphorus (P) is a finite resource which is essential for life. It is a limiting nutrient in many ecosystems but also a pollutant which can affect biodiversity in terrestrial ecosystems and change the ecology of water bodies. This book collects the latest information on biological processes in soil P cycling, which to date have remained much less understood than physico-chemical processes. The methods section presents spectroscopic techniques and the characterization of microbial P forms, as well as the use of tracers, molecular approaches and modeling of soil-plant systems. The section on processes deals with mycorrhizal symbioses, microbial P solubilization, soil macrofauna, phosphatase enzymes and rhizosphere processes. On the system level, P cycling is examined for grasslands, arctic and alpine soils, forest plantations, tropical forests, and dryland regions. Further, P management with respect to animal production and cropping, and the interactions between global change and P cycling, are treated.
Due to their sessile lifestyle, plants need to efficiently adapt to changing environmental conditions during their life cycle. Nutrient acquisition from the soil has to be able to adapt to considerable fluctuations in concentrations to ensure adequate distribution between tissues, cells and organelles. The storage and retrieval of nutrients, metabolites or toxic substances in vacuoles plays an important part in cellular homeostasis in plants. The long-range transport and maintenance of turgor is critically dependent on the availability of water and rate of evaporation, while at the same time photosynthetic products have to be transported to all plant parts. As a result plants contain a large number of ATP-dependent pumps and secondary transporters that, in order to adapt to the changing environment, need to be regulated by a complex network of sensing and signaling mechanisms. Plants share many basic elements of signal transduction with animals, but also contain plant-specific signaling molecules and mechanisms. In this volume, the role of transporters and pumps in the regulation of movement, long-range transport and compartmentalization of water, solutes, nutrients and classical signaling molecules is highlighted, and the function, regulation and membrane-transporter interaction and their roles in plant signaling controlling plant physiology and development are discussed.
Phospholipidshavelongbeenknownfortheirkeyroleinmaintainingthebilayer structureofmembranesandinphysicallyseparatingthecytosolfromorganelles andtheextracellularspace. Inthepastdecade,acompletelynovelandunexpected functionemerged,full?llingacrucialroleincellsignaling. Itwasthediscoveryin animalcells,thatagonist-activatedcellsurfacereceptorsledtotheactivationofa phospholipase C (PLC), to hydrolyze the minor lipid, phosphatidylinositol 4- bisphosphateintotwosecondmessengers,inositol1,4,5-trisphosphate(InsP)and 3 2+ diacylglycerol(DAG). WhileInsP diffusesintothecytosol,whereitreleasesCa 3 2+ from an intracellular store by activating a ligand-gated Ca -channel, DAG remainsinthemembranetorecruitandactivatemembersoftheproteinkinase Cfamily. Overtheyears,avarietyofotherlipidbased-signalingcascadesweredisc- ered. Theseinclude,phospholipaseA,generatinglyso-phospholipidsandfreefatty acids(tobeconvertedintoprostaglandinsandleukotrienes),phospholipaseD,to generatethelipidsecondmessenger,phosphatidicacid(PA),andphosphoinositide 3-kinase (PI3K), generating a distinct set of polyphosphoinositides (PPI) ph- phorylated at the D3-position of the inositol ring, all with separate signaling functions. Sphingolipids,representinganotherimportantgroupofsignalinglipids, alsocameacross. Themajorityoftheselipid-basedsignalingpathwayshavebeendiscoveredin plantcellstoo. Moreover,theyhavebeenfoundtobeactivatedinresponsetoa widevarietyofbioticandabioticstresssignals,butalsotobebasicallyinvolvedin plantgrowthanddevelopment. Whilemanyoftheenzymes,lipids,andtheirtargets involved arewell conserved, major differences with the mammalian paradigms havealsoemerged. Thisbookhighlightsthecurrentstatusofplantlipidsignaling. Allchaptershave beenwrittenbyexpertsinthe?eldandcoverinformationforbothbeginnersand advancedlipidologists. PartIincludesphospholipases(Chaps. 1-3),partII,lipid kinases (Chaps. 4-7), part III, lipid phosphatases (Chaps. 8-9), part IV, ix x Preface inositolphosphates and PPI metabolism (Chaps. 10-13), part V, PA signaling (Chaps. 14-17),andpartVI,additionallipidsignals,e. g. oxylipins,NAPEand sphingolipids(Chaps18-20). Ithasbeenagreatpleasuretobetheeditorofthis bookandtobeawitnessofthislipid-signalingadventure. Amsterdam,June2009 TeunMunnik Contents PartI Phospholipases PhospholipaseAinPlantSignalTransduction...3 Gu..ntherF. E. Scherer TheEmergingRolesofPhospholipaseCinPlantGrowth andDevelopment...23 PeterE. DowdandSimonGilroy PlantPhospholipaseD...39 WenhuaZhang,XiaoboWan,YueyunHong,WeiqiLi,andXueminWang PartII Kinases Phosphatidylinositol4-PhosphateisRequiredforTip GrowthinArabidopsisthaliana ...65 AmyL. SzumlanskiandErikNielsen PIP-KinasesasKeyRegulatorsofPlantFunction ...79 TillIschebeckandIngoHeilmann PlantPhosphatidylinositol3-Kinase...95 YureeLee,TeunMunnik,andYoungsookLee DiacylglycerolKinase...107 StevenA. AriszandTeunMunnik xi xii Contents PartIII Phosphatases SignalingandthePolyphosphoinositidePhosphatasesfromPlants ...117 GlendaE. Gillaspy PhosphatidicAcidPhosphatasesinSeedPlants...131 YukiNakamuraandHiroyukiOhta PartIV PPIMetabolism InsP inPlantCells ...145 3 YangJuIm,BrianQPhillippy,andImaraYPerera InositolPolyphosphatesandKinases...161 JillStevenson-PaulikandBrianQ. Phillippy PhosphoinositidesandPlantCellWallSynthesis ...175 RuiqinZhong,RyanL. McCarthy,andZheng-HuaYe ImagingLipidsinLivingPlants ...185 JoopE. M. VermeerandTeunMunnik PartV PASignaling PhosphatidicAcid:AnElectrostatic/Hydrogen-BondSwitch?...2 03 EdgarEduardKooijmanandChristaTesterink NitricOxideandPhosphatidicAcidSignalinginPlants...223 AyelenM. Diste'fano,M. LucianaLanteri,ArjentenHave, CarlosGarc?'a-Mata,LorenzoLamattina,andAnaM. Laxalt 3-Phosphoinositide-DependentProteinKinaseisaSwitchboard fromSignalingLipidstoProteinPhosphorylationCascades...243 ChristineZalejskiandLa'szlo'Bo..gre PartVI AdditionalLipidSignals DiacylglycerolPyrophosphate,ANovelPlantSignalingLipid...263 EmmanuelleJeannette,SophieParadis,andChristineZalejski OxylipinSignalingandPlantGrowth...277 AlinaMosblech,IvoFeussner,andIngoHeilmann Contents xiii FattyAcidAmideHydrolaseandtheMetabolismof N-AcylethanolamineLipidMediatorsinPlants...293 KentD. ChapmanandElisonB. Blanca?or SphingolipidSignalinginPlants...307 LouiseV. MichaelsonandJohnathanA. Napier Index ...323 Contributors Steven A. Arisz Section Plant Physiology, Swammerdam Institute for Life Sciences,UniversityofAmsterdam,SciencePark904,NL-1098XH,Amsterdam, TheNetherlands ElisonB. Blanca?or SamuelRobertsNobleFoundation,PlantBiologyDivision, Ardmore,OK73401,USA,eblanca?or@noble.
Coupled with biomechanical data, organic geochemistry and cladistic
analyses utilizing abundant genetic data, scientific studies are
revealing new facets of how plants have evolved over time. This
collection of papers examines these early stages of plant
physiology evolution by describing the initial physiological
adaptations necessary for survival as upright structures in a dry,
terrestrial environment. The Evolution of Plant Physiology also
encompasses physiology in its broadest sense to include
biochemistry, histology, mechanics, development, growth,
reproduction and with an emphasis on the interplay between
physiology, development and plant evolution.
Plant dormancy involves synchronization of environmental cues with developmental processes to ensure plant survival; however, negative impacts of plant dormancy include pre-harvest sprouting, non-uniform germination of crop and weed seeds, and fruit loss due to inappropriate bud break. Thus, our continued quest to disseminate information is important in moving our understanding of plant dormancy forward and to develop new ideas for improving food, feed, and fiber production and efficient weed control, particularly under global climate change. Proceeding from the 5th International Plant Dormancy Symposium will provide an overview related on our current understanding of how environmental factors impact cellular, molecular, and physiological processes involved in bud and seed dormancy, and perspectives and/or reviews on achievements, which should stimulate new ideas and lines of investigation that increase our understanding of plant dormancy and highlight directions for future research.
"The path of carbon in photosynthesis"for Progress in Botany: 50 years of Calvin-Benson cycle - 30 years of Kelly-Latzko reviews While writing this Foreword and trying to focus my thoughts on the bioch- istry of photosynthesis, a handsome slim hardcover booklet of 104 pages bound in dark blue linen is in front of me on my desk: "The Path of Carbon in Photosynthesis" J. A. Bassham and M. Calvin,1957 I acquired it in the month of my oral Ph. D. -exams, April 1960, to get prepared with the Nobel-laureate's text. In 2004 in his last swan-song review for Progress in Botany Grahame J. Kelly celebrated "The Calvin cycle's golden jubilee"in an overview of 50 years of carbon flowing for the progress in botany. He had met Erwin Latzko in 1970 in another then foremost and now historic place of the biochemistry of photosynthesis, the laboratory of Martin Gibbs at Brandeis University, Massachusetts. Four years later Latzko and Kelly (1974) published their first joint review on photosynthetic carbon metabolism, starting off a long flow of articles on the flow of carbon in the series Progress in Botany. Most faithfully they produced regular accounts of the progress in Progress in Botany every second year, and when Erwin Latzko decided to retire after the 1996 review Grahame Kelly carried on alone.
This book explores the agricultural, commercial, and ecological future of plants in relation to mineral nutrition. It covers various topics regarding the role and importance of mineral nutrition in plants including essentiality, availability, applications, as well as their management and control strategies. Plants and plant products are increasingly important sources for the production of energy, biofuels, and biopolymers in order to replace the use of fossil fuels. The maximum genetic potential of plants can be realized successfully with a balanced mineral nutrients supply. This book explores efficient nutrient management strategies that tackle the over and under use of nutrients, check different kinds of losses from the system, and improve use efficiency of the plants. Applied and basic aspects of ecophysiology, biochemistry, and biotechnology have been adequately incorporated including pharmaceuticals and nutraceuticals, agronomical, breeding and plant protection parameters, propagation and nutrients managements. This book will serve not only as an excellent reference material but also as a practical guide for readers, cultivators, students, botanists, entrepreneurs, and farmers.
This book introduces the reader to synthetic or artificial seeds, which refer to alginate encapsulated somatic embryos, vegetative buds or any other micropropagules that can be used as seeds and converted into plantlets after propagating under in vitro or in vivo conditions. Moreover, synthetic seeds retain their potential for regeneration even after low-temperature storage. The production of synthetic or artificial seeds using micropropagules opens up new vistas in agricultural biotechnology. Encapsulated propagules could be used for in vitro regeneration and mass multiplication at reasonable cost. In addition, these propagules may be used for germplasm preservation of elite plant species and the exchange of plant materials between national and international laboratories. This book offers state-of-the-art findings on methods, applications and prospects of synthetic or artificial seeds.
Jointly published with INRA, Paris.This book covers all aspects of the transfer of nitrogen from the soil and air to a final resting place in the seed protein of a crop plant. It describes the physiological and molecular mechanisms of ammonium and nitrate transport and assimilation, including symbiotic nitrogen fixation by the Rhizobiacea. Amino acid metabolism and nitrogen traffic during plant growth and development and details of protein biosynthesis in the seeds are also extensively covered. Finally, the effects of the application of nitrogen fertilisers on plant growth, crop yield and the environment are discussed.Written by international experts in their field, Plant Nitrogen is essential reading for all plant biochemists, biotechnologists, molecular biologists and physiologists as well as plant breeders, agricultural engineers, agronomists and phytochemists.
This is an outstanding survey describing medical drugs of plant origin, such as Echinacea edications, lentinan and mistletoe lectin, which have proven to be effective as immunostimulants. At a time when ever greater importance is being placed on preventive and alternative medicine, the study provides the reader with information on the physiological mechanisms of action and range of application of phytopreparations capable of inducing immunostimulatory effects when administered prophylactically or therapeutically. "Immunomodulatory Agents from Plants" addresses scientists in the pharmaceutical industry; physicians - general practitioners, internists and oncologists - who work with traditional immunostimulants; and also pharmacists wishing to improve customer service by gaining a firmer understanding of the science underlying and the clinical facts associated with drugs presently on the market.
The 11th International Symposium on Insect-Plant Relationships (SIP11), held on August 4-10, 2001, in Helsingor, Denmark, followed the tradition of previous SIP meetings and covered topics of different levels from chemistry, physiology, and ethology to ecology, genetics, and evolution of insect-plant relationships. The present volume includes a representative selection of fully refereed papers as well as a complete list of all the contributions which were presented at the meeting. Reviews of selected topics as well as original experimental data are included. The book provides valuable information for students and research workers interested in chemical and biological aspects of interactions between individuals and populations of different organisms. "
The purpose of this publication is to elucidate the biological aspect of the abiotic stress response from the field to the molecular level in horticultural plants. This book is unique in that it concerns the basic aspect of abiotic stress biology and research progress at the molecular level in model plants or major field crops, as it focuses mainly on the abiotic stress response in existing horticultural plants. Many readers interested in plant abiotic stress biology are aware of the application of the latest findings to agricultural production, and this book will have a special appeal for those readers. The book will be of interest to scientists and graduate students who are involved in the research, development, production, processing, and marketing of horticultural products, including those in developing countries who are interested in high tech and advanced science in this field. The application of the latest findings to agricultural production is particularly useful. Stress tolerance mechanisms in horticultural crops are gaining importance, because most agricultural regions are predicted to experience considerably more extreme environmental fluctuations due to global climate change. Further, because of recent progress in next-generation sequencing technologies, the postgenomic era is impending not only in model plants and major cereal crops but also in horticultural crops, which comprise a great diversity of species. This book provides information on the physiological aspects of the abiotic stress response in horticultural plants, which is considered essential for postgenomic research.
During the last ten years, knowledge about the multitude of adaptive responses of plants to low oxygen stress has grown immensely. The oxygen sensor mechanism has been discovered, the knowledge about the interaction network of gene expression is expanding and metabolic adaptations have been described in detail. Furthermore, morphological changes were investigated and the regulative mechanisms triggered by plant hormones or reactive oxygen species have been revealed. This book provides a broad overview of all these aspects of low oxygen stress in plants. It integrates knowledge from different disciplines such as molecular biology, biochemistry, ecophysiology and agricultural / horticultural sciences to comprehensively describe how plants cope with low oxygen stress and discuss its ecological and agronomical consequences. This book is written for plant scientists, biochemists and scientists in agriculture and ecophysiology.
This volume covers topics such as the structure and identification
of functional domains of G proteins, and activation of G proteins
by receptors or other regulators. The text takes an integrated
approach to studying common experimental questions at many
different levels related to G proteins. Methods related to G
proteins using molecular modeling, systems biology, protein
engineering, protein biochemistry, cell biology, and physiology are
all accessible in the same volume.
This is the third edition of an established and successful
university textbook. The original structure and philosophy of the
book continue in this new edition, providing a genuine synthesis of
modern ecological and physiological thinking, while entirely
updating the detailed content. New features include a fresh,
unified treatment of toxicity, emphasizing common features of plant
response to ionic, gaseous, and other toxins, explicit treatment of
issues relating to global change, and a section on the role of fire
in plant physiology and communities. The illustrations in the text
are improved over previous editions, including color plates for the
first time, and the authors' continuing commitment to providing
wide citation of the relevant literature has further improved the
reference list. This revision of Environmental Physiology of Plants
will ensure the reputation of this title as a useful and relevant
text well into the 21st century.
Plant neurobiology is a newly emerging field of plant sciences. It covers signalling and communication at all levels of biological organization from molecules up to ecological communities. In this book, plants are presented as intelligent and social organisms with complex forms of communication and information processing. Authors from diverse backgrounds such as molecular and cellular biology, electrophysiology, as well as ecology treat the most important aspects of plant communication, including the plant immune system, abilities of plants to recognize self, signal transduction, receptors, plant neurotransmitters and plant neurophysiology. Further, plants are able to recognize the identity of herbivores and organize the defence responses accordingly. The similarities in animal and plant neuronal/immune systems are discussed too. All these hidden aspects of plant life and behaviour will stimulate further intense investigations in order to understand the communicative plants in their whole complexity. "
Plant tissue culture and advanced biotechnologies have proven to be influential tools that complement conventional breeding and accelerate development of many medicinal plants. Various approaches, such as pathway engineering, precursor feeding, transformation, elicitation with biotic and abiotic elicitors and scaling up in bioreactors, have been explored to improve the production of secondary metabolites from different medicinal plants. This book provides a comprehensive description of various studies, carried out on in vitro culture and hairy root cultures of Catharanthus roseus, Silybum marianum and Digitalis species which have been considered as alternative sources for the production of anti-tumour compounds, flavonolignans and cardenolides. Specific focus is on elicitation strategy for increasing production of bioactive compounds of C. roseus L., S. marianum and Digitalis species to overcome the constrains of conventional propagation. This book is valuable for researchers or students working on medicinal plants, phytochemistry, and plant tissue culture. It also serves as a reference for the pharmaceutical industry.
From this modern and profusely illustrated book, the reader will learn not just the basics, which are amply reviewed, but also how plant anatomy is integrated with a wide variety of other disciplines, such as plant breeding, forensic analysis, medicine, food science, wood and fiber products, and the arts. The author presents the basic concepts and terminology of plant anatomy with a special emphasis on its significance and applications to other disciplines, and addresses the central role of anatomy by consolidating previously scattered information into a single volume. Integrative Plant Anatomy highlights the important contribution made by studying anatomy to the solutions of a number of present and future problems. It succeeds in integrating diverse areas of botany, as well as the non-biological sciences, the arts, and numerous other fields of human endeavor. * Presents both the classical and modern approaches to the
subject
The past decade has seen major advances in the cloning of genes
encoding enzymes of plant secondary metabolism. This has been
further enhanced by the recent project on the sequencing of the
"Arabidopsis" genome. These developments provide the molecular
genetic basis to address the question of the "Evolution of
Metabolic Pathways." This volume provides in-depth reviews of our
current knowledge on the evolutionary origin of plant secondary
metabolites and the enzymes involved in their biosynthesis. The
chapters cover five major topics: 1. Role of secondary metabolites
in evolution; 2. Evolutionary origins of polyketides and terpenes;
3. Roles of oxidative reactions in the evolution of secondary
metabolism; 4. Evolutionary origin of substitution reactions:
acylation, glycosylation and methylation; and 5. Biochemistry and
molecular biology of brassinosteroids.
Carbohydrate reserves constitute the major part of edible portion of the plants. Latest researches in major crops like wheat, rice, maize, barley, potato, sugarcane, sugarbeet, Jerusalem artichoke, chicory and carbohydrates in trees have been included in this book. The book will be of great value to the basic plant biochemists, molecular biologists, biotechnologists, and genetic crop engineers and to the agricultural scientists working in different disciplines related to crop productivity. This compilation may act as a medium to initiate discussions among these scientists leading to new researches in the area of crop productivity and reserve carbohydrate metabolism.
th We compiled this volume mostly from presentations at the 6 International Plant Cold Hardiness Seminar (PCHS) after consulting with Professor Tony H. H. Chen, Oregon State University, USA, Professor Pekka Heino, University of Helsinki, Finland, th and Dr. Gareth J. Warren, University of London, Surrey, UK. The 6 International PCHS was held at the Unitas Congress Center, Helsinki, Finland from July 1-5, 2001. There were 110 registered scientists at the serttinar representing 20 countries: Australia, Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, Gennany, Hungary, Iceland, Italy, Japan, Norway, Poland, Spain, Sweden, Taiwan, United Kingdom, and United States of America. The infonnation compiled represents the state of the art of research in phmt cold hardiness in tenns of gene regulation, gene expression, signal transduction, the physiology of cold hardiness and, ultimately, the genetic engineering for cold tolerant plants. The International PCHS was initiated in 1977 at the University of Minnesota, St. Paul, Minnesota. It has been traditionally held at 5-year intervals at various locations. th Because of the rapid advances of research in plant cold hardiness, attendees at the 6 meeting unanimously adopted a resolution to hold the seminar in 3-year intervals instead of 5 in the future. Consequently, the next seminar will be held in 2004 in Sapporo, Japan, and Professor Seizo Fujikawa from Hokkaido University will serve as the host.
Photosynthetic Adaptation: Chloroplast to Landscape thoroughly studies photosynthetic mechanisms at each structural level, from cells to leaves, crown, and canopy. The authors question whether photosynthetic adaptations take place primarily at the metabolic and biochemical level or through changes in structure and form, or both. In the interest of genetic engineering and agricultural applications, the authors analyze the relative importance of genes that control both metabolic and light reactions as well as the structure, arrangement, and orientation of photosynthesis.
The aerial surfaces of many plant species are covered in hairs (trichomes). Their utility as model systems to understand cell-to-cell movement and cell differentiation, as well as their potential utility in biotechnology, has generated renewed interest in these structures. In this volume, plant scientists from diverse backgrounds present reviews which summarise current understanding of these structures. Their ultrastructure, biochemistry, differentiation and development, as well as their physiological and ecological roles, are discussed.
Lipids in Photosynthesis: Essential and Regulatory Functions, provides an essential summary of an exciting decade of research on relationships between lipids and photosynthesis. The book brings together extensively cross-referenced and peer-reviewed chapters by prominent researchers. The topics covered include the structure, molecular organization and biosynthesis of fatty acids, glycerolipids and nonglycerolipids in plants, algae, lichens, mosses, and cyanobacteria, as well as in chloroplasts and mitochondria. Several chapters deal with the manipulation of the extent of unsaturation of fatty acids and the effects of such manipulation on photosynthesis and responses to various forms of stress. The final chapters focus on lipid trafficking, signaling and advanced analytical techniques. Ten years ago, Siegenthaler and Murata edited "Lipids in Photosynthesis: Structure, Function and Genetics," which became a classic in the field. "Lipids in Photosynthesis: Essential and Regulatory Functions," belongs, with its predecessor, in every plant and microbiological researcher's bookcase. |
You may like...
Boolean Functions and Computation Models
Peter Clote, Evangelos Kranakis
Hardcover
Load Balancing in Parallel Computers…
Chenzhong Xu, Francis C.M. Lau
Hardcover
R5,264
Discovery Miles 52 640
SIMD Programming Manual for Linux and…
Paul Cockshott, Kenneth Renfrew
Hardcover
R2,946
Discovery Miles 29 460
Parallel Programming in OpenMP
Rohit Chandra, Ramesh Menon, …
Paperback
R1,398
Discovery Miles 13 980
Distributed and Parallel Systems - From…
Peter Kacsuk, Gabriele Kotsis
Hardcover
R5,273
Discovery Miles 52 730
Languages, Compilers and Run-Time…
Boleslaw K. Szymanski, Balaram Sinharoy
Hardcover
R4,199
Discovery Miles 41 990
Parallel Computers 2 - Architecture…
R.W. Hockney, C.R. Jesshope
Paperback
R1,876
Discovery Miles 18 760
|