![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
The rapid advances in elucidating the biosynthesis and mode of action of the plant hormone ethylene as well as its involvement in the regulation of the whole plant physiology made imperative the organization of a series of dedicated conferences. This volume contains the main lectures and poster contributions presented at the 7th International Symposium on the Plant Hormone Ethylene held in Pisa in 2006. The book is organized in seven sections dedicated to 1) Ethylene biosynthesis, perception and signal transduction, 2) Interactions between ethylene and other hormones, 3) Role of ethylene in plant growth and differentiation, 4) Fruit development, ripening and quality, 5) Abscission and senescence, 6) Ethylene involvement in biotic and abiotic stresses, and 7) Biotechnology and applied aspects.
Asexual reproduction is found in many taxonomic groups and considerable effort has been directed by biologists towards understanding its mechanisms, evolution and ecological significance. This research monograph, which is the culmination of several years of research by the author, offers a though-provoking contribution to this debate. It is primarily aimed at biologists undertaking research into the evolution, genetic control and ecological costs and benefits of different patterns of reproduction, although it should also be of interest to senior undergraduates.
In Flower Development: Methods and Protocols, researchers in the field detail protocols for experimental approaches that are currently used to study the formation of flowers, from genetic methods and phenotypic analyses, to genome-wide experiments, modeling, and system-wide approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls Authoritative and practical, Flower Development: Methods and Protocols is an essential guide for plant developmental biologists, from the novice to the experienced researcher, and for those considering venturing into the field.
The sixth International Symposium on Genetics and Molecular Biology of Plant Nutriti9n was held in Elsinore, Denmark from August 17-21, 1998 and organised by th RiS0 National Laboratory in the year of its 40 anniversary. The 98 participants represented 23 countries and 80 scientific contributions with 43 oral and 37 poster presentations. The symposium addressed the molecular mechanisms, physiology and genetic regulation of plant nutrition. The Symposium brought together scientists from a range of different disciplines to exchange information and ideas on the molecular biology of mineral nutrition of plants. The symposium emphasised: * Bridging the gab between molecular biology, applied genetics, plant nutrition and plant breeding. * The development of methodologies to improve the efficiency and effectiveness of nutrition of plants * Quality of plant products. With sessions on: Nitrogen; Phosphorous; Micronutrients; Symbiosis; Membranes; Stress; Heavy Metals and Plant Breeding. In comparison with the previous conferences in this series more emphasis was placed on use of molecular techniques to clarify physiological mechanisms and processes, gene expression and regulation, as well as genetic marker assisted analysis. Significant of molecular genetic markers and other progress was reported in exploitation biotechnologies in breeding programmes.
Until very recently genetic maps of higher plants were based almost entirely on morphological and biochemical traits. These maps are rapidly being replaced and/or supplemented with DNA-based marker maps based on the use of powerful new molecular techniques. The new high precision maps can be developed with comparative ease and rapidity. They have a much higher density of markers, which allows revelation of more and more restricted segments of the genome. One of the many revolutionary aspects of this technology is that linkage between molecular markers and traits of interest often can be detected in a single cross. The ability to hybridize probe after probe to the DNA of the same individuals of a segregating population allows one to pursue the analysis until linkage becomes evident. With morphological and biochemical markers used previously, a separate cross was required to test linkage with each new marker. It was seldom that more than three markers could be tested for linkage with the trait of interest in a single cross because of viability problems. With the new techniques described in this volume, a new gene could be placed on the linkage map within a few days instead of the much longer time required with the previous techniques. In this book, a group of leading researchers provide background information and the latest versions of DNA-based marker maps for a variety of important crops. These maps illustrate the state of the art today. The progress made during the past five years has been truly phenomenal.
Maize is one of the most generally grown cereal crops at global level, followed by wheat and rice. Maize is the major crop in China both in terms of yield and acreage. In 2012, worldwide maize production was about 840 million tons. Maize has long been a staple food of most of the global population (particularly in South America and Africa) and a key nutrient resource for animal feed and for food industrial materials. Maize belts vary from the latitude 58° north to the latitude 40° south, and maize ripens every month of the year. Abiotic and biotic stresses are common in maize belts worldwide. Abiotic stresses (chiefly drought, salinity, and extreme temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, production and productivity. In the recent past, intense droughts, waterlogging, and extreme temperatures have relentlessly affected maize growth and yield. In China, 60% of the maize planting area is prone to drought, and the resultant yield loss is 20%–30% per year; in India, 25%–30% of the maize yield is lost as a result of waterlogging each year. The biotic stresses on maize are chiefly pathogens (fungal, bacterial, and viral), and the consequential syndromes, like ear/stalk rot, rough dwarf disease, and northern leaf blight, are widespread and result in grave damage. Roughly 10% of the global maize yield is lost each year as a result of biotic stresses. For example, the European corn borer [ECB, Ostrinianubilalis (Hübner)] causes yield losses of up to 2000 million dollars annually in the USA alone in the northern regions of China, the maize yield loss reaches 50% during years when maize badly affected by northern leaf blight. In addition, abiotic and biotic stresses time and again are present at the same time and rigorously influence maize production. To fulfill requirements of each maize-growing situation and to tackle the above mentions stresses in an effective way sensibly designed multidisciplinary strategy for developing suitable varieties for each of these stresses has been attempted during the last decade. Genomics is a field of supreme significance for elucidating the genetic architecture of complex quantitative traits and characterizing germplasm collections to achieve precise and specific manipulation of desirable alleles/genes. Advances in genotyping technologies and high throughput phenomics approaches have resulted in accelerated crop improvement like genomic selection, speed breeding, particularly in maize. Molecular breeding tools like collaborating all omics, has led to the development of maize genotypes having higher yields, improved quality and resilience to biotic and abiotic stresses. Through this book, we bring into one volume the various important aspects of maize improvement and the recent technological advances in development of maize genotypes with high yield, high quality and resilience to biotic and abiotic stresses
Plant organelles have intrigued biologists since the discovery of their endosymbiontic origin and maternal inheritance. The first application of organelle biotechnology was the role of cytoplasmic male sterility in hybrid seed production and "Green Revolution." In modern times, plant organelles are again leading the way for the creation of genetically modified crops. On a global scale, 75% of GM crops are engineered for herbicide resistance and most of these herbicides target pathways that reside within plastids. Several thousand proteins are imported into chloroplasts that participate in biosynthesis of fatty acids, amino acids, pigments, nucleotides and numerous metabolic pathways including photosynthesis. Thus, from green revolution to golden rice, plant organelles have played a critical role in revolutionizing agriculture. This book details not only basic concepts and current understanding of plant organelle genetics and molecular biology but also focuses on the synergy between basic biology and biotechnology. Forty four authors from nine countries have contributed twenty four chapters containing many figures and tables. Section 1 on organelle genomes and proteomes discusses molecular features of plastid and mitochondrial genomes, evolutinary origins, somatic and sexual inheritance, proteomics, bioinformatics and functional genomics. Section 2 on organelle gene expression and signalling discusses transcription, translation, RNA processing/editing, introns and splicing, protein synthesis, proteolysis, import of proteins into chloroplast and mitochondria and their regulation. Section 3 on organelle biotechnology discusses chloroplast and nuclear genetic engineering forbiotic/abiotic stress tolerance, improved fatty acid/amino acid biosynthesis, biopharmaceuticals, biopolymers and biomaterials, cytoplasmic male sterility for hybrid seed production, plant improvement and restoration of fertility. This book is designed to serve as a comprehensive volume and reference guide for teachers, advanced undergraduates and graduate students and researchers in plant molecular biology and biotechnology.
Jatropha curcas, or physic nut, is a small tree that, in tropical climates, produces fruits with seeds containing ~38% oil. The physic nut has the potential to be highly productive and is amenable to subculture in vitro and to genetic modification. It also displays remarkable diversity and is relatively easy to cross hybridize within the genus. Thanks to these promising features, J. curcas is emerging as a promising oil crop and is gaining commercial interest among the biofuel research communities. However, as a crop, physic nut has been an economic flop since 2012, because the species was not fully domesticated and the average productivity was less than 2 t/ha, which is below the threshold of profitability.^7 t/ha could be reached and it is contributing to new markets in some countries. As such, it is important fro research to focus on the physiology and selective breeding of Jatropha . This book provides a positive global update on Jatropha, a crop that has suffered despite its promising agronomic and economic potential. The editors have used their collective expertise in agronomy, botany, selective breeding, biotechnology, genomics and bioinformatics to seek out high-quality contributions that address the bottleneck features in order to improve the economic trajectory of physic nut breeding.
Forest Microbiology, Volume One: Tree Microbiome: Phyllosphere, Endosphere and Rhizosphere places an emphasis on the microbiology of leaves, needles, stems, roots, litter and soil. This comprehensive title is split into five sections, including the phyllosphere microbiome, endosphere, rhizosphere, archaea, viruses in forest ecosystem and microbiota of forest nurseries and tree pests, challenges and potentials. Microbial communities associated with various host trees and different tree tissues are compared, and generalists and specialists among tree-associated microbes are identified. In addition, biotic and abiotic factors determining the composition and the structure of forest tree microbial communities are presented, along with the concept of microbial 'hubs.' Together, the book's editors have 25 years' worth of experience teaching and conducting research on forest microbiology, making this an essential read for any scientist interested in the forest microbiome.
This edited book is focusing on the novel and innovative procedures in tissue culture for large scale production of plantation and horticulture crops. It is bringing out a comprehensive collection of information on commercial scale tissue culture with the objective of producing high quality, disease-free and uniform planting material. Developing low cost commercial tissue culture can be one of the best possible way to attain the goal of sustainable agriculture. Tissue culture provides a means for rapid clonal propagation of desired cultivars, and a mechanism for somatic hybridization and in vitro selection of novel genotypes. Application of plant tissue culture technology in horticulture and plantation crops provides an efficient method to improve the quality and nutrition of the crops. This book includes a description of highly efficient, low cost in vitro regeneration protocols of important plantation and horticulture crops with a detailed guideline to establish a commercial plant tissue culture facility including certification, packaging and transportation of plantlets. The book discusses somatic embryogenesis, virus elimination, genetic transformation, protoplast fusion, haploid production, coculture of endophytic fungi, effects of light and ionizing radiation as well as the application of bioreactors. This book is useful for a wide range of readers such as, academicians, students, research scientists, horticulturists, agriculturists, industrial entrepreneurs, and agro-industry employees.
This book focuses on the evolution of plant viruses, their molecular classification, epidemics and management, covering topics relating to evolutionary mechanisms, viral ecology and emergence, appropriate analysis methods, and the role of evolution in taxonomy. The currently emerging virus species are increasingly becoming a threat to our way of life, both economically and physically. Plant viruses are particularly significant as they affect our food supply and are capable of rapidly spreading to new plant species. In basic research, plant viruses have become useful models to analyze the molecular biology of plant gene regulation and cell-cell communication. The small size of DNA genome of viruses possesses minimal coding capacity and replicates in the host cell nucleus with the help of host plant cellular machinery. Thus, studying virus cellular processes provides a good basis for explaining DNA replication, transcription, mRNA processing, protein expression and gene silencing in plants. A better understanding of these cellular processes will help us design antiviral strategies for plants. The book provides in-depth information on plant virus gene interactions with hosts, localization and expression and the latest advances in our understanding of plant virus evolution, their responses and crop improvement. Combining characterization of plant viruses and disease management and presenting them together makes it easy to compare all aspects of resistance, tolerance and management strategies. As such, it is a useful resource for molecular biologists and plant virologists alike.
This book provides new insights into the mechanisms of plant hormone-mediated growth regulation and stress tolerance covering the most recent biochemical, physiological, genetic, and molecular studies. It also highlights the potential implications of plant hormones in ensuring food security in the face of climate change. Each chapter covers particular abiotic stress (heat stress, cold, drought, flooding, soil acidity, ozone, heavy metals, elevated CO2, acid rain, and photooxidative stress) and the versatile role of plant hormones in stress perception, signal transduction, and subsequent stress tolerance in the context of climate change. Some chapters also discuss hormonal crosstalk or interaction in plant stress adaptation and highlight convergence points of crosstalk between plant hormones and environmental signals such as light, which are considered recent breakthrough studies in plant hormone research. As exogenous application or genetic manipulation of hormones can alter crop yield under favorable and/or unfavorable environmental conditions, the utilization of plant hormones in modern agriculture is of great significance in the context of global climate change. Thus, it is important to further explore how hormone manipulation can secure a good harvest under challenging environmental conditions. This volume is dedicated to Sustainable Development Goals (SDGs) 2 and 13. The volume is suitable for plant science-related courses, such as plant stress physiology, plant growth regulators, and physiology and biochemistry of phytohormones for undergraduate, graduate, and postgraduate students at colleges and universities. The book can be a useful reference for academicians and scientists involved in research related to plant hormones and stress tolerance.
Environmental conditions and changes, irrespective of source, cause a variety of stresses, one of the most prevalent of which is salt stress. Excess amount of salt in the soil adversely affects plant growth and development, and impairs production. Nearly 20% of the world's cultivated area and nearly half of the world's irrigated lands are affected by salinity. Processes such as seed germination, seedling growth and vigour, vegetative growth, flowering and fruit set are adversely affected by high salt concentration, ultimately causing diminished economic yield and also quality of produce. Most plants cannot tolerate salt-stress. High salt concentrations decrease the osmotic potential of soil solution, creating a water stress in plants and severe ion toxicity. The interactions of salts with mineral nutrition may result in nutrient imbalances and deficiencies. The consequence of all these can ultimately lead to plant death as a result of growth arrest and molecular damage. To achieve salt-tolerance, the foremost task is either to prevent or alleviate the damage, or to re-establish homeostatic conditions in the new stressful environment. Barring a few exceptions, the conventional breeding techniques have been unsuccessful in transferring the salt-tolerance trait to the target species. A host of genes encoding different structural and regulatory proteins have been used over the past 5-6 years for the development of a range of abiotic stress-tolerant plants. It has been shown that using regulatory genes is a more effective approach for developing stress-tolerant plants. Thus, understanding the molecular basis will be helpful in developing selection strategies for improving salinity tolerance. This book will shed light on the effect of salt stress on plants development, proteomics, genomics, genetic engineering, and plant adaptations, among other topics. The book will cover around 25 chapters with contributors from all over the world.
This manual details the techniques involved in the study of plant microbe interactions (PMI). Covering a wide range of basic and advanced techniques associated with research on biological nitrogen fixation, microbe-mediated plant nutrient use efficiency, the biological control of plant diseases and pests such as nematodes, it will appeal to postgraduate students, research scholars and postdoctoral fellows, as well as teachers from various fields, including pathology, entomology and agronomy. It consists of five broad sections featuring different units. Information panels at the beginning of each unit present essential knowledge as well as advances in a particular topic. The manual can also serve as a textbook for undergraduate courses like Techniques for Plant-Microbe Interactions; Biological Control of Plant Diseases; and Nutrient Use Efficiency. Providing basic insights and working protocols from all related disciplines, this unique laboratory manual is a valuable resource for researchers interested in investigating PMI.
This book collects all the latest technologies with their implications on the global rice cultivation. It discusses all aspects of rice production and puts together the latest trends and best practices in the rice production. Rice is produced and consumed worldwide and especially an important crop for Asia. It is a staple food in majority of population living is this continent which distinguishes this from rest of the world. Climatic fluctuations, elevated concentrations of carbon dioxide, enhanced temperature have created extreme weather conditions for rice cultivation. Also, increasing pest attacks make situation complicated for the farmers. Therefore, rice production technology also has to be adjusted accordingly. This book is of interest to teachers, researchers, plant biotechnologists, pathologists, agronomists, soil scientists, food technologists from different part of the globe. Also, the book serves as additional reading material for students of agriculture, soil science, and environmental sciences. National and international agricultural scientists, policy makers will also find this to be a useful read
Photosynthesis and the Environment examines how photosynthesis may be influenced by environmental changes. Structural and functional aspects of the photosynthetic apparatus are examined in the context of responses to environmental stimuli; particular attention being given to the processing of light energy by thylakoids, metabolic regulation, gas exchange and source-sink relations. The roles of developmental and genetic responses in determining photosynthetic performance are also considered. The complexity of the responses to environmental change is demonstrated by detailed analyses of the effects of specific environmental variables (light, temperature, water, CO2, ozone and UV-B) on photosynthetic performance. Where appropriate attention is given to recent developments in the techniques used for studying photosynthetic activities. The book is intended for advanced undergraduate and graduate students and a wide range of scientists with research interests in environmental effects on photosynthesis and plant productivity.
This book describes the exciting biology and chemistry of strigolactones. Outgrowth of shoot branches? Development of lateral roots? Interactions with beneficial microorganisms? Avoiding parasitic plants? Responding to drought conditions? These important "decisions" that plants make are all regulated by a group of hormones called strigolactones. The latest research has yielded a number of new biological concepts, such as a redefinition of plant hormones and their crosstalk, new functional diversity of receptors, hormonal "smoke and mirrors," core signaling pathways, and even phloem transport of receptor proteins. Another important aspect of strigolactones is the related synthetic chemistry, which could pave the way for a variety of potential applications in agriculture and medicine. The book explains in detail the role that strigolactones play in plant development, and addresses the interaction of plants with soil biota and abiotic stress conditions, prospects of strigolactone biochemistry and evolution, and chemical synthesis of natural strigolactones and analogs, together with their potential applications. Including a glossary and end-of-chapter synopses to aid in comprehension, it offers a valuable asset for teachers, lecturers and (post-) graduate students in biology, agronomy and related areas..
A growing interest has been shown recently in the dymanics of nitrogen in agricultural and natural ecosystems. This has been caused by increasing demands for food and fibre by a rapidly expanding world population, and by a growing concern that increased land clearing, cultivation and use of both fertilizer and biologically fixed nitrogen can have detrimental effects on the environment. These include effects on water quality, eutrophication of surface waters and changes in atmospheric composition all caused by increased cycling of nitrogenous compounds. The input and availability of nitrogen frequently affects the productivity of farming systems more than any other single management factor, but often the nitrogen is used inefficiently. Much of the fertilizer nitrogen applied to the soil is not utilised by the crop: it is lost either in solution form, by leaching of nitrate, or in gaseous forms as ammonia, nitrous oxide, nitric oxide or dinitrogen. The leached nitrate can contaminate rivers and ground waters, while the emitted ammonia can contaminate surface waters or combine with atmospheric sulfur dioxide to form aerosols which affect visibility, health and climate. There is also concern that increased evolution of nitrous oxide will deplete the protective ozone layer of the stratosphere. The possibility of a link between the intensity of agricultural use of nitrogen, nitrous oxide emissions and amounts of stratospheric ozone has focussed attention on these interactions.
This edited book covers all aspects of grain legumes including negative impact of abiotic and biotic stresses under the changing global climate. It discusses the role of various subject disciplines ranging from plant breeding, genetics, plant physiology, molecular biology, and genomics to high-throughput phenotyping and other emerging technologies for sustaining global grain and fodder legume production to alleviate impending global food crises. The book offers strategies to ensure plant-based dietary protein security across the globe. It covers all major commercial legume crops used as food, feed and fodder. This book is targeted to graduate and postgraduate students, researchers, progressive farmers and policymakers to inform them of the importance of cultivating grain and fodder legumes for future global food and nutritional security and for maintaining sustainable ecosystem.
This book discusses molecular approaches in plant as response to environmental factors, such as variations in temperature, water availability, salinity, and metal stress. The book also covers the impact of increasing global population, urbanization, and industrialization on these molecular behaviors. It covers the natural tolerance mechanism which plants adopt to cope with adverse environments, as well as the novel molecular strategies for engineering the plants in human interest. This book will be of interest to researchers working on the impact of the changing environment on plant ecology, issues of crop yield, and nutrient quantity and quality in agricultural crops. The book will be of interest to researchers as well as policy makers in the environmental and agricultural domains.
Crop Physiology: Case Histories of Major Crops updates the physiology of broad-acre crops with a focus on the genetic, environmental and management drivers of development, capture and efficiency in the use of radiation, water and nutrients, the formation of yield and aspects of quality. These physiological process are presented in a double context of challenges and solutions. The challenges to increase plant-based food, fodder, fiber and energy against the backdrop of population increase, climate change, dietary choices and declining public funding for research and development in agriculture are unprecedented and urgent. The proximal technological solutions to these challenges are genetic improvement and agronomy. Hence, the premise of the book is that crop physiology is most valuable when it engages meaningfully with breeding and agronomy. With contributions from 92 leading scientists from around the world, each chapter deals with a crop: maize, rice, wheat, barley, sorghum and oat; quinoa; soybean, field pea, chickpea, peanut, common bean, lentil, lupin and faba bean; sunflower and canola; potato, cassava, sugar beet and sugarcane; and cotton.
The cell wall and its constituent polysaccharides and proteins control nearly all plant-based biological and biophysical processes. Understanding the cell wall is, therefore, not only fundamental to the plant sciences but is also pertinent to aspects of human and animal nutrition and health as well as plant-microbe and plant-animal interactions. In The Plant Cell Wall: Methods and Protocols, experts in the field describe detailed methods which are currently being applied to investigate the many aspects of the plant cell wall including its structure, biochemical composition, and metabolism. The book delves into a range of techniques involving plant tissue culture, which can be applied to investigating cell wall structure and metabolism, methods directed towards structural analysis and occurrence of carbohydrates, the development and use of microscopy-based tools and techniques, procedures which measure the physical properties of the wall, and methods based on the application of molecular genetic approaches. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, The Plant Cell Wall: Methods and Protocols seeks to serve both professionals and novices with its well-honed methodologies in an effort to further our knowledge of this essential cellular feature.
This volume contains the contributions from the speakers at the NATO Advanced Research Workshop on "Structure of the Photosynthetic Bacterial Reaction Center X-ray Crystallography and Optical Spectroscopy with Polarized Light" which was held at the "Maison d'Hotes" of the Centre d'Etudes Nucleaires de Cadarache in the South of France, 20-25 September, 1987. This meeting continued in the spirit of a previous workshop which took place in Feldafing (FRG), March 1985. Photosynthetic reaction centers are intrinsic membrane proteins which, by performing a photoinduced transmembrane charge separation, are responsible for the conversion and storage of solar energy. Since the pioneering work of Reed and Clayton (1968) on the isolation of the reaction center from photosynthetic bacteria, optical spectroscopy with polarized light has been one of the main tools used to investigate the geometrical arrangement of the various chromophores in these systems. The recent elucidation by X-ray crystallography of the structure of several bacterial reaction centers, a breakthrough initiated by Michel and Deisenhofer, has provided us with the atomic coordinates of the pigments and some details about their interactions with neighboring aminoacid residues. This essential step has given a large impetus both to experimentalists and to theoreticians who are now attempting to relate the X-ray structural model to the optical properties of the reaction center and ultimately to its primary biological function.
Crop growth and production is dependent on various climatic factors. Both abiotic and biotic stresses have become an integral part of plant growth and development. There are several factors involved in plant stress mechanism. The information in the area of plant growth and molecular mechanism against abiotic and biotic stresses is scattered. The up-to-date information with cited references is provided in this book in an organized way. More emphasis has been given to elaborate the injury and tolerance mechanisms and growth behavior in plants against abiotic and biotic stresses. This book also deals with abiotic and biotic stress tolerance in plants, molecular mechanism of stress resistance of photosynthetic machinery, stress tolerance in plants: special reference to salt stress - a biochemical and physiological adaptation of some Indian halophytes, PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications, salicylic acid: role in plant physiology & stress tolerance, salinity induced genes and molecular basis of salt tolerance mechanism in mangroves, reproductive stage abiotic stress tolerance in cereals, calorimetry and Raman spectrometry to study response of plant to biotic and abiotic stresses, molecular physiology of osmotic stress in plants and mechanisms, functions and toxicity of heavy metals stress in plants, submergence stress tolerance in plants and adoptive mechanism, Brassinosteroid modulated stress responses under temperature stress, stress tolerant in plants: a proteomics approach, Marker-assisted breeding for stress resistance in crop plants, DNA methylation associated epigenetic changes in stress tolerance of plants and role of calcium-mediated CBL-CIPK network in plant mineral nutrition & abiotic stress. Each chapter has been laid out with introduction, up-to-date literature, possible stress mechanism, and applications. Under abiotic stress, plant produces a large quantity of free radicals, which have been elaborated. We hope that this book will be of greater use for the post-graduate students, researchers, physiologist and biotechnologist to sustain the plant growth and development.
Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR as bioinoculants can help meet the expected demand for global agricultural productivity to feed the world's booming population, which is predicted to reach roughly 9 billion by 2050. However, to provide effective bioinoculants, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity. |
![]() ![]() You may like...
IoT for Smart Grids - Design Challenges…
Kostas Siozios, Dimitrios Anagnostos, …
Hardcover
R3,902
Discovery Miles 39 020
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,451
Discovery Miles 54 510
Satellite Formation Flying - Relative…
Danwei Wang, Baolin Wu, …
Hardcover
R4,547
Discovery Miles 45 470
Advances in Mechanics of Microstructured…
Francesco Dell'Isola, Victor A. Eremeyev, …
Hardcover
The Business of iPhone App Development…
Dave Wooldridge, Michael Schneider
Paperback
Computational Fluid Dynamics 2008
Haecheon Choi, H. G. Choi, …
Hardcover
R11,422
Discovery Miles 114 220
|