![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
This book provides a comprehensive and interactive view of recent advances in the cytology, anatomy, and physiology of roots as presented at the 5th International Symposium on Structure and Function of Roots, held on 31 August-4 September, 1998, in Stara Lesna, Slovakia. This edition differs from previous ones by including some aspects of functional genetics and plant morphogenesis. The book is intended to serve both students and researchers as a valuable source of updated information, ideas, and concepts dealing with the most fundamental questions of development and function of plant roots.
In any ecosystem, plant and microbe interaction is inevitable. They not only co-exist but also support each other's survival and provide sustenance in stressful environments. Agro-ecosystems in many regions around the globe are affected by high temperatures, soil salinity/alkalinity, low pH and metal toxicity. High salinity and severe draught are other major constraints affecting agricultural practices and also plants in the wild. A major limiting factor affecting global agricultural productivity is environmental stresses. Apart from decreasing yield, they also have a devastating impact on plant growth. Plants battle with various kind of stresses with the help of symbiotic associations with the rhizospheric microbes. Naturally occuring plant-microbe interactions facilitate the survival of plants under these stressful conditions. The rhizosphere consists of several groups of microbes, plant growth-promoting bacteria (PGPB) is one such group of microbes that assists plants in coping with multiple stresses and also promote plant growth. These efficient microbes support the stress physiology of the plants and can be extremely useful in solving agricultural as well food- security problems. This book provides a detailed, holistic description of plant and microbe interaction. It elucidates various mechanisms of nutrient management, stress tolerance and enhanced crop productivity in the rhizosphere, discussing The rhizospheric flora and its importance in enhancement of plant growth, nutrient content, yield of various crops and vegetables as well as soil fertility and health. Divided into two volumes, the book addresses fundamentals, applications as well as research trends and new prospects for agricultural sustainability. Volume 1: Stress Management and Agricultural Sustainability, includes chapters offering a broad overview of plant stress management with the help of microbes. It also highlights the contribution of enzymatic and molecular events occurring in the rhizosphere due to plant microbe interactions, which in turn help in the biological control of plant disease and pest attacks. Various examples of plant microbe interaction in rhizospheric soil are elaborated to facilitate the development of efficient indigenous microbial consortia to enhance food and nutritional security. Providing a comprehensive information source on microbes and their role in agricultural and soil sustainability, this timely research book is of particular interest to students, academics and researchers working in the fields of microbiology, soil microbiology, biotechnology, agronomy, and the plant protection sciences, as well as for policy makers in the area of food security and sustainable agriculture.
The openings offered by functional genomics reconciles organism biology and molecular biology, in order to define an integrative biology that should allow new insights about how a phenotype is built up from a genotype in interaction with its environment. This book covers a wide area of concepts and methods in genomics. This range from international genome sequencing projects to invaluable bioinformatics tools, analytical methods of gene expression, including final metabolic products, and their specific tissue to cellular compartmentalization. This new knowledge enables readers to understand the integration of basic physiological functions, and developmental programs. Also, the establishment of tight relationships between genomics, and genetics and plant breeding reveals synergies for exploiting molecular markers, for analysing genetic variation, or for studying quantitative traits. The integration that is now feasible by these new approaches also effects ecophysiology, and opens up new perspectives for the us
This book offers an up-to-date review of the regulatory role of nitric oxide (NO) changes in the morphological, physio-biochemical as well as molecular characteristics of plants under abiotic stress. The first of two parts comprises four chapters and focuses on the properties, chemical reactions involving NO and reactive nitrogen species in plants. The second part, consisting of eleven chapters, describes the current understanding of the role of NO in the regulation of gene expression, NO signaling pathways and its role in the up-regulation of the endogenous defense system and programmed cell death. Furthermore, its interactions with other signaling molecules and plant hemoglobins under environmental and soil related abiotic stresses, including post-harvest stress in fruits, vegetables and ornamentals and wounding are discussed in detail. Together with the companion book Nitric Oxide in Plants: Metabolism and Role in Stress Physiology, this volume provides a concise overview of the field and offers a valuable reference work for teachers and researchers in the fields of plant physiology, biochemistry and agronomy.
Molecular Physiology and Biotechnology of Trees, Volume 89 in the Advances in Botanical Research series, highlights new advances in the field, with this new volume presenting interesting chapters on such topics as the Activity of the shoot apical and cambial meristems: Coordination and responses to environmental signals, Conifer functional genomics, Nitrogen storage and cycling, Tree defense against pests and pathogens, The ectomycorrhizal contribution to tree nutrition, Phytoremediation with trees, Transcriptional regulation of wood formation, Transgenic poplars, the Genomics of forest trees, and much more.
The problems engendered by the conflicting imperatives of development and ecology show no sign of ending, and every day more locations are added to the list of landscapes poisoned by human activity. This vital book, featuring an international set of authors, is a key reference for researchers and environmental managers, as well as anyone involved in the mining industry or landscape remediation. The comprehensive coverage of current approaches to phytoremediation begins by examining the problem. It looks at natural and human-induced toxins, and their effects on natural vegetation as well as agricultural crops. Particular attention is paid to the two largest challenges to remediation -- heavy metals, and the salt stress that is impeding agricultural productivity worldwide. The text moves on to focus on the efficacy of different plant species in removing toxic pollutants from the environment. Along with analysis of a number of case studies, this section includes new and updated information on the mechanism of toxin-tolerance in plants.
A thorough understanding of the mechanisms of photosynthesis, regulation of structure and function and the adaptive strategies of oxygenic photosynthetic organisms is central to any effort directed at improving crop productivity and providing sustainable agriculture. Photosynthesis is the most widely researched topic in plant science. Further probing of its mechanisms, regulation and adaptation, employing a variety of modern tools and techniques, is imperative to gain a better insight of this very intricate process. Unravelling the cause of stress impairments and stress tolerance in plants would help in ensuring the optimum production of food, fibres and fuels. This book presents a study of photosynthesis and provides details of experimental approaches that have been adopted to understand the complex regulatory and adaptive processes. Its 27 chapters have been divided into four sections: "Evolution, Structure and Function"; "Biodiversity, Metabolism and Regulation"; "Stress and Adaptations"; and "Techniques". With contributions from leading subject experts from Australia, Canada, France, Germany, India, Israel, Japan, Sweden, Switzerland, the UK and USA, this comprehensive treatise
In this translation of the French edition (L'U. de Saint-'etienne, 1999), the author treats the interrelated factors that inform plants' adaptations to their environments. Applying ecophysiological principles to identify mechanisms of dysfunction in ecosystems, he presents data-based cases for: less stressful growing methods (e.g., using cultivars that require less water and polluting fertilizers); confining genetically modified organisms to the lab; and reality-based holistic studies.
The book examines the functions of the neurotransmitters acetylcholine and biogenic amines dopamine, noradrenaline, serotonin, and histamine in plant organisms. Also addressed are how many plant reactions are sensitive to neurotransmitters and their significance in the field of medicine. Papers in the collecting describe participation of the components of animal cholinergic and aminergic regulatory systems in the functioning of many plant processes within and outside the cell, from changes in ion permeability of membranes, energetics, and metabolism to complex processes such as fertilization, motility, and finally germination, growth, and morphogenesis.
Now in its third edition, this book describes photosynthesis by considering the partial processes involved throughout the various level of plant (cell, organelle and molecule), and their contributions to the complete process. It also considers the molecular and biochemical events which take place in the photosynthetic system. Finally it explains how these determine the physiological characteristics of plant productivity. The new edition has been extensively revised with comprehensively updated references and many new figures. It includes a new chapter on the applications of genetic modification of photosynthesis systems.
Primary Active Transporters: A Plethora of Plant Plasmalemma Proton Pumps (M.R. Sussman). Studies on the Higher Plant CalmodulinStimulated ATPase (D.E. Evans et al.). Secondary Ion and Metabolite Transporters: ProtonSugar Cotransporters in Plants (N. Sauer). Insights into the Structure of the Chloroplast Phosphate Translocator Protein (H. Wallmeier et al.). Channel Proteins: Soybean Nodulin26 (D.P.S. Verma). Putative LType Calcium Channels in Plants (R. Ranjeva et al.). Receptor Proteins: Hormone Perception and Signal Transduction in Aleurone (R. Hooley et al.). The Auxin Receptor (R.M. Napier, M.A. Venis). Protein Targeting and Assembly in Membranes: Sequence Determinants for Protein Import into Chloroplasts and Thylakoid Membrane Protein Assembly (G. von Heijne). 11 additional articles. Index.
Plants are sessile organisms that live under a constant barrage of biotic and abiotic insults. Both biotic and abiotic stress factors have been shown to affect various aspects of plant system including the acceleration in the formation of reactive oxygen species (ROS). The ascorbate (AsA)-glutathione (GSH) pathway is a key part of the network of reactions involving enzymes and metabolites with redox properties for the detoxification of ROS, and thus to avert the ROS-accrued oxidative damage in plants. The present book mainly deals with the information gained through the cross-talks and inter-relationship studies on the physiological, biochemical and molecular aspects of the cumulative response of various components of AsA-GSH pathway to stress factors and their significance in plant stress tolerance.
Abiotic stresses such as high temperature, low-temperature, drought, and salinity limit crop productivity worldwide. Understanding plant responses to these stresses is essential for rational engineering of crop plants. In Arabidopsis, the signal transduction pathways for abiotic stresses, light, several phytohormones and pathogenesis have been elucidated. A significant portion of plant genomes (most studies are Arabidopsis and rice genome) encodes for proteins involves in signaling such as receptor, sensors, kinases, phosphatases, transcription factors and transporters/channels. Despite decades of physiological and molecular effort, knowledge pertaining to how plants sense and transduce low and high temperature, low-water availability (drought), water-submergence and salinity signals is still a major question before plant biologists. One major constraint hampering our understanding of these signal transduction processes in plants has been the lack or slow pace of application of molecular genomic and genetics knowledge in the form of gene function. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving not only one gene family but multiple genes or gene families, plant biologists can lay a foundation for designing and generating future crops that can withstand the higher degree of environmental stresses (especially abiotic stresses, which are the major cause of crop loss throughout the world) without losing crop yield and productivity.
This volume brings together all aspects of TAXOLA(R) research, development, and clinical use. It provides comprehensive knowledge of the compound and a perspective of the complex interrelationships needed for its development and production. Each chapter is written by an authority in the field. Chapters are carefully coordinated to maximize information on key topics while avoiding overlap and duplication. Previously unpublished material is presented along with thorough reviews of each topic.
This book presents a holistic view of the complex and dynamic responses of plants to nanoparticles, the signal transduction mechanisms involved, and the regulation of gene expression. Further, it addresses the phytosynthesis of nanoparticles, the role of nanoparticles in the antioxidant systems of plants and agriculture, the beneficial and harmful effects of nanoparticles on plants, and the application of nanoparticles and nanotubes to mass spectrometry, aiming ultimately at an analysis of the metabolomics of plants. The growing numbers of inventions in the field of nanotechnology are producing novel applications in the fields of biotechnology and agriculture. Nanoparticles have received much attention because of the unique physico-chemical properties of these compounds. In the life sciences, nanoparticles are used as "smart" delivery systems, prompting the Nobel Prize winner P. Ehrlich to refer to these compounds as "magic bullets." Nanoparticles also play an important role in agriculture as compound fertilizers and nano-pesticides, acting as chemical delivery agents that target molecules to specific cellular organelles in plants. The influence of nanoparticles on plant growth and development, however, remains to be investigated. Lastly, this book reveals the research gaps that must be bridged in the years to come in order to achieve larger goals concerning the applications of nanotechnology in the plants sciences. In the 21st century, nanotechnology has become a rapidly emerging branch of science. In the world of physical sciences, nanotechnological tools have been exploited for a broad range of applications. In recent years, nanoparticles have also proven useful in several branches of the life sciences. In particular, nanotechnology has been employed in drug delivery and related applications in medicine.
The adaptation of desirable agricultural plants to infertile and problem soils is an increasingly important strategy for improving food supplies in many parts of the world. The plant breeding approach complements, and in some cases may replace agronomic practices such as the use of fertilizers and soil amendments to provide solutions which are economically and environmentally sustainable. The Symposium at which the papers in this volume were presented drew together workers in plant breeding, plant nutrition, physiology, biochemistry and molecular biology to discuss research on gene systems which affect the mineral nutrition of plants. Papers describe successes in plant breeding for problem soils as well as advances in understanding of mechanisms at the whole plant and cellular levels. Papers in the "molecular" area point the way to the contribution which the new biology will make to this field in the future. The reviews and research papers are grouped under five topics: better plants for acid soils; salinity tolerance; efficiency of uptake and use of macronutrients; efficiency for iron and micronutrients; and tolerance of heavy metals and boron.
Various plant metabolites are useful for human life, and the induction and reduction of these metabolites using modern biotechnical technique is of enormous potential important especially in the fields of agriculture and health. Plant Metabolism and Biotechnology describes the biosynthetic pathways of plant metabolites, their function in plants, and some applications for biotechnology. Topics covered include: * biosynthesis and metabolism of starch and sugars * lipid biosynthesis * symbiotic nitrogen fixation * sulfur metabolism * nucleotide metabolism * purine alkaloid metabolism * nicotine biosynthesis * terpenoid biosynthesis * benzylisoquinoline alkaloid biosynthesis * monoterpenoid indole alkaloid biosynthesis * flavonoid biosynthesis * pigment biosynthesis: anthocyanins, betacyanins and carotenoids * metabolomics in biotechnology Plant Metabolism and Biotechnology is an essential guide to this important field for researchers and students of biochemistry, plant biology, metabolic engineering, biotechnology, food science, agriculture, and medicine.
This book provides a comprehensive and systematic overview of the recent developments in cotton production and processing, including a number of genetic approaches, such as GM cotton for pest resistance, which have been hotly debated in recent decades. In the era of climate change, cotton is facing diverse abiotic stresses such as salinity, drought, toxic metals and environmental pollutants. As such, scientists are developing stress-tolerant cultivars using agronomic, genetic and molecular approaches. Gathering papers on these developments, this timely book is a valuable resource for a wide audience, including plant scientists, agronomists, soil scientists, botanists, environmental scientists and extention workers.
This book deals with an array of topics in the broad area of abiotic stress responses in plants focusing "problems and their management" by selecting some of the widely investigated themes. Such as, Cell signalling in Plants during abiotic and biotic stress, Salinity stress induced metabolic changes and its management, High temperature stress: responses, mechanism and management, Low temperature stress induced changes in plants and their management, Biotechnological approaches to improve abiotic stress tolerance, Nutritional poverty in wheat under abiotic stress scenario, Strategies for improving soil health under current climate change scenario, Abiotic stress management in Pulse crops, Mitigation strategies of abiotic stress in fruit crops, Impacts of abiotic stress and possible management option in vegetable crops, and Abiotic stress: impact and management in ornamental crops. This book is useful for under-graduate and post-graduate students in Plant Physiology, Biochemistry, agronomy, horticulture, Botany, Environmental sciences and other cognate disciplines of agriculture and allied sciences and other research workers. We fervently believe that this book will provide good information and understanding of abiotic stress problems and their management in plants. Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. This title is co-published with NIPA.
Over recent years, progress in micropropagation has not been as rapid as many expected and, even now, relatively few crops are produced commercially. One reason for this is that the biology of material growing in vitro has been insufficiently understood for modifications to standard methods to be made based on sound physiological principles. However, since 1984, tissue culture companies and others have invested considerable effort to reduce the empirical nature of the production process. The idea of the conference "Physiology, Growth and Development of Plants and Cells in Culture"(Lancaster, 1992) was to introduce specialists in different areas of plant physiology to micropropagators, with the express aims of disseminating as wide a range of information to as large a number of participants as possible, and beginning new discussions on the constraints and potentials affecting the development of in vitro plant production methods. This book is based on presentations from the conference and has been divided into two main sections, dealing with aspects of the in vitro environment - light, nutrients, water, gas - and with applied aspects of the culture process - morphogenesis, acclimation, rejuvenation, contamination.
The global population is growing at an alarming rate and is anticipated to reach about9.6billion bythe endof 2050. Addressing the problem of food scarcity for budding population vis-a-vis environmental changes is the main challenge plant biologists face in the contemporary era. Plant growth and productivity are scarce in many areas of the world due to a wide range of environmental stresses. The productive land is dwindling progressively by various natural and anthropogenic means that lead to enormous crop losses worldwide. Plants often experience these stresses and have the ability to withstand them. However, when the stress exceeds the normal tolerance level, plants accumulate organic osmolytes, osmoprotectants, cryoprotectants and antioxidant enzymes, which helps them tolerate these stresses and assist in their acclimatization towards the particular ambiance needed for maintaining their growth and development. "" "Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment, Volume 1" discuss drought and temperature stresses and their mitigation through different means. This volume illuminates how plants that are bombarded by diverse and changing environmental stimuli, undergo appropriate physiological alterations that enable their survival. The information covered in the book is also useful in building apposite strategies to counter abiotic and biotic stresses inplants. Written by a diverse group of internationally renowned scholars, "Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment, Volume 1 "is a concise yet comprehensive resource that will be beneficial for the researchers, students, environmentalists and soil scientists of this field. "
This book delivers current state-of-the-science knowledge of tree ecophysiology, with particular emphasis on adaptation to a novel future physical and chemical environment. Unlike the focus of most books on the topic, this considers air chemistry changes (O3, NOx, and N deposition) in addition to elevated CO2 effects and its secondary effects of elevated temperature. The authors have addressed two systems essential for plant life: water handling capacity from the perspective of water transport; the coupling of xylem and phloem water potential and flow; water and nutrition uptake via likely changes in mycorrhizal relationships; control of water loss via stomata and its retention via cellular regulation; and within plant carbon dynamics from the perspective of environmental limitations to growth, allocation to defences, and changes in partitioning to respiration. The authors offer expert knowledge and insight to develop likely outcomes within the context of many unknowns. We offer this comprehensive analysis of tree responses and their capacity to respond to environmental changes to provide a better insight in understanding likelihood for survival, as well as planning for the future with long-lived, stationary organisms adapted to the past: trees.
Until very recently genetic maps of higher plants were based almost entirely on morphological and biochemical traits. These maps are rapidly being replaced and/or supplemented with DNA-based marker maps based on the use of powerful new molecular techniques. The new high precision maps can be developed with comparative ease and rapidity. They have a much higher density of markers, which allows revelation of more and more restricted segments of the genome. One of the many revolutionary aspects of this technology is that linkage between molecular markers and traits of interest often can be detected in a single cross. The ability to hybridize probe after probe to the DNA of the same individuals of a segregating population allows one to pursue the analysis until linkage becomes evident. With morphological and biochemical markers used previously, a separate cross was required to test linkage with each new marker. It was seldom that more than three markers could be tested for linkage with the trait of interest in a single cross because of viability problems. With the new techniques described in this volume, a new gene could be placed on the linkage map within a few days instead of the much longer time required with the previous techniques. In this book, a group of leading researchers provide background information and the latest versions of DNA-based marker maps for a variety of important crops. These maps illustrate the state of the art today. The progress made during the past five years has been truly phenomenal.
This advanced undergraduate textbook examines major aspects of fungal physiology in relation to fungal behavior in natural habitats and, in so doing, provides a firm link between the divergent disciplines of fungal physiology and fungal ecology. A largely mechanistic approach is made within selected areas of fundamental importance. The themes are the functional interaction of the fungus with its abiotic and biotic environment and the reconciliation of laboratory studies with observations made under natural conditions. |
You may like...
Phytochemistry of Fruits and Vegetables
F.A.Tomas- Barberan, R.J. Robins
Hardcover
R6,392
Discovery Miles 63 920
Biostimulants in Alleviation of Metal…
Sarvajeet Singh Gill, Narendra Tuteja, …
Paperback
R4,189
Discovery Miles 41 890
Sustainable Plant Nutrition - Molecular…
Tariq Aftab, Khalid Hakeem
Paperback
R3,925
Discovery Miles 39 250
Secondary Xylem Biology - Origins…
YoonSoo Kim, Ryo Funada, …
Paperback
R2,068
Discovery Miles 20 680
Toxicity of Nanoparticles in Plants - An…
Vishnu D. Rajput, Tatiana Minkina, …
Paperback
R3,925
Discovery Miles 39 250
Transporters and Plant Osmotic Stress
Aryadeep Roychoudhury, Durgesh Kunar Kumar Tripathi, …
Paperback
R4,475
Discovery Miles 44 750
The Chlamydomonas Sourcebook - Volume 2…
Arthur Grossman, Francis-Andre Wollman
Hardcover
R4,967
Discovery Miles 49 670
|