![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
Provides the latest information on nearly all of the phytoalexins of crop plants studied worldwide over the past 50 years-describing experimental approaches to the research of specific plants and offering detailed explanations on methods of isolation and characterization. Supplies in-depth coverage of cotton, soybean, groundnut, citrus, mustard, grapevine, potato, pepper, sweet potato, yam, sesame, tea, tobacco, pea, pigeon pea, and many more.
These exciting new companion handbooks are the only ones of their kind devoted solely to the effects of environmental variables on the physiology of the world's major fruit and nut crops. Their cosmopolitan scope includes chapters on tropical and temperate zone species written by scientists from several continents. The influence of environmental factors, such as irradiance, temperature, water and salinity on plant physiology and on vegetative and reproductive growth, is comprehensively discussed for each crop. In addition to being a thorough and up-to-date set of textbooks, the organzation of the two volumes makes them an excellent reference tool. Each chapter focuses on a single crop, or a group of genetically or horticulturally related crop, and is appropriately divided into subsections that address individual environmental factors. Some chapters emphasize whole-plant physiology and plant growth and development, while other chapters feature theoretical aspects of plant physiology. Several chapters provide botanical background discussions to enhance understanding of the crop's response to its environment.
Plant Genome Analysis presents outstanding analyses of
technologies, as well as explanations of molecular technology as it
pertains to agriculture. Advances in genome analysis, including DNA
amplification (DAF and RAPD) markers, RFLPs, and microsatellites
are reviewed by accomplished scientists, many of whom are the
developers of the technique. Articles by patent lawyers experienced
in plant biotechnology present the legal viewpoint.
Rice is the staple food for half of the world's population. Consumption of rice is the major exposure route globally to the class one, non-threshold carcinogen inorganic arsenic. This book explains the sources of arsenic to paddy soils and the biogeochemical processes and plant physiological attributes of paddy soil-rice ecosystems that lead to high concentrations of arsenic in rice grain. It presents the global pattern of arsenic concentration and speciation in rice, discusses human exposures to inorganic arsenic from rice and the resulting health risks. It also highlights particular populations that have the highest rice consumptions, which include Southern and South East Asians, weaning babies, gluten intolerance sufferers and those consuming rice milk. The book also presents the information of arsenic concentration and speciation in other major crops and outlines approaches for lowering arsenic in rice grain and in the human diet through agronomic management.
Apomixis in Plants presents a comprehensive review of different aspects of asexual seed formation in plants. This is important in plant research since apomixis could greatly facilitate breeding in important crops. It is also interesting theoretically because it carries problems related to genetic variation and evolution to its extreme. The book features a broad selection of topics, including a historical review of ideas and landmarks in the field; comparisons with other types of asexual reproduction in higher plants and with related phenomena in animals and related plants; a presentation of cytology and embryology of apomicts and the diversified terminology in the field; views on the genetic background of apomixis and environmental effects on its expression; and the interrelation between apomixis and other traits. Additional topics covered include classical and modern theories of sexual versus asexual reproduction; geographical and taxonomical trends in apomicts; ecological implications of apomixis, and a review of future possibilities for using apomixis in plant breeding. Apomixis in Plants is an important reference volume for researchers and students in all areas of botany, ecology, and plant breeding.
Ecophysiology of Vascular Halophytes provides a useful update to existing literature describing the ecophysiological responses of vascular halophytes to environmental stresses present in saline habitats. The success of species growing in these extreme environments is related to a number of adaptations, including the timing of phenological events, phenotypic plasticity and genetic selection for specific ecophysiological responses at different stages of development. Factors discussed that influence the growth and distribution of halophytes include seed germination, salinity stress, salt stimulation, flooding, ion content, nitrogen, plant water status, growth regulators, photosynthesis, and genecology. The book also discusses the effects of both interspecific and intraspecific competition on the growth and survival of halophytes. Researchers and students of stress ecology, as well as agricultural research organizations, will find a tremendous store of information in this volume.
A textbook for a graduate or advanced undergraduate course in biotechnology in a wide range of fields concerned with plants. Describes the use of both endogenous and introduced biochemical regulators to manipulate plant responses. Annotation copyright Book News, Inc. Portland, Or.
This specially curated collection features four reviews of current and key research on improving crop nutrient use efficiency. The first chapter explores the relationship between rhizobacteria and plant roots, looking primarily at the recruitment of rhizobacteria by the plant to carry out particular functions, such as nutrient acquisition. The chapter highlights our current understanding of the molecular determinants of legume nodulation as well as challenges for improvements of biological nitrogen fixation in legumes and non-legumes. The second chapter considers the rising use of nitrogen (N) fertilizer in agriculture and its role in the shrinking contribution of soil organic N. The chapter explores the impact of the inefficient management of N (low nitrogen-use efficiency) and the consequent developments of major environmental issues, such as pollution to groundwater, oceans and the atmosphere. The third chapter addresses key issues in using N fertilizers in wheat production, such as product cost and environmental impact. The chapter summarises the development of N-efficient cultivars and their economic benefits, as well as their role in reducing the environmental impact of excessive N fertilizer inputs, whilst maintaining respectable yields. The final chapter considers the use of breeding techniques, including genetic variability, to develop more efficient wheat varieties with improved traits related to nitrogen capture, nitrogen assimilation and nitrogen remobilization.
Endocytosis is a fundamental cellular process by means of which cells internalize extracellular and plasma membrane cargos for recycling or degradation. It is important for the establishment and maintenance of cell polarity, subcellular signaling and uptake of nutrients into specialized cells, but also for plant cell interactions with pathogenic and symbiotic microbes. Endocytosis starts by vesicle formation at the plasma membrane and progresses through early and late endosomal compartments. In these endosomes cargo is sorted and it is either recycled back to the plasma membrane, or degraded in the lytic vacuole. This book presents an overview of our current knowledge of endocytosis in plants with a main focus on the key molecules undergoing and regulating endocytosis. It also provides up to date methodological approaches as well as principles of protein, structural lipid, sugar and microbe internalization in plant cells. The individual chapters describe clathrin-mediated and fluid-phase endocytosis, as well as flotillin-mediated endocytosis and internalization of microbes. The book was written for a broad spectrum of readers including students, teachers and researchers.
The cropping system is one of the important components of sustainable agriculture, since it provides more efficient nutrient cycling. As such, balanced fertilization must be based on the concept of sustainable crop production. Feeding the rapidly growing world population using environmentally sustainable production systems is a major challenge, especially in developing countries. A number of studies have highlighted the fact that degradation of the world's cultivated soils is largely responsible for low and plateauing yields. Soil is lost rapidly but only formed over millennia, and this represents the greatest global threat to nutrient dynamics in agriculture. This means that nutrient management is essential to provide food and nutritional security for current and future generations. Nutrient dynamics and soil sustainability imply the maintenance of the desired ecological balance, the enhancement and preservation of soil functions, and the protection of biodiversity above and below ground. Understanding the role of nutrient management as a tool for soil sustainability and nutritional security requires a holistic approach to a wide range of soil parameters (biological, physical, and chemical) to assess the soil functions and nutrient dynamics of a crop management system within the desired timescale. Further, best nutrient management approaches are important to advance soil sustainability and food and nutritional security without compromising the soil quality and productive potential. Sustainable management practices must allow environmentally and economically sustainable yields and restore soil health and sustainability. This book presents soil management approaches that can provide a wide range of benefits, including improved fertility, with a focus on the importance of nutrient dynamics. Discussing the broad impacts of nutrients cycling on the sustainability of soil and the cropping systems that it supports, it also addresses nutrient application to allow environmentally and economically sustainable agroecosystems that restore soil health. Arguing that balanced fertilization must be based on the concept of INM for a cropping system rather than a crop, it provides a roadmap to nutrient management for sustainability. This richly illustrated book features tables, figures and photographs and includes extensive up-to-date references, making it a valuable resource for policymakers and researchers, as well as undergraduate and graduate students of Soil Science, Agronomy, Ecology and Environmental Sciences.
This volume contains the proceedings of the 3rd Tannin Conference, held in July 1998, with the objective of promoting collaboration between chemists and biologists to improve our understanding of the biological significance of plant polyphenols and to expand possibilities for their use. Special efforts were made to summarize late-1990s research on the influence of these compounds on human health. Some of the topics included are: hydrolyzable tannins; condensed tannins and related compounds; biotechnology; antioxidant properties and heart disease; conformation, complexation, and antimicrobial properties; polyphenols and cancer; polyphenols in commerce; polyphenols and ecology. A comparison of the contributions to the proceedings of the first, second, and third of these conferences shows important growth in the recognition of the significance of these compounds on the part of biologists and biochemists and increasing relevance in medically-oriented disciplines.
A Personal Note I decided to initiate Orchid Biology: Reviews and Perspectives in about 1972 and (alone or with co-authors) started to write some of the chapters and the appendix for the volume in 1974 during a visit to the Bogor Botanical Gardens in Indonesia. Professor H. C. D. de Wit of Holland was also in Bogor at that time and when we discovered a joint interest in Rumphius he agreed to write a chapter about him. I visited Bangkok on my way home from Bogor and while there spent time with Professor Thavorn Vajrabhaya. He readily agreed to write a chapter. The rest of the chapters were solicited by mail and I had the complete manuscript on my desk in 1975. With that in hand I started to look for a publisher. Most of the publishers I contacted were not interested. Fortunately Mr James Twiggs, at that time editor of Cornell University Press, grew orchids and liked the idea. He decided to publish Orchid Biology: Reviews and Per spectives, and volume I saw the light of day in 1977. I did not know if there would be a volume II but collected manuscripts for it anyway. Fortunately volume I did well enough to justify a second book, and the series was born. It is still alive at present - 20 years, seven volumes and three publishers later. I was in the first third of my career when volume I was published."
Molecular Genetics of Colorectal Neoplasia A Primer for the Clinician provides the latest information on the genetics of colorectal cancer within a context of basic genetics, describing the subject in understandable language and making it clinically relevant. In this way, clinicians can become familiar with genetic terms and techniques related to colorectal neoplasia, providing a background upon which to build an appreciation of future advances and an ability to include them in the practicalities of patient care. This edition is intended for the healthcare provider or industry concerned with colorectal neoplasia: including general and colorectal surgeons, pathologists, oncologists, gastroenterologists, internal medicine and family practice physicians, nurses, geneticists, counsellors, registry co-ordinators, epidemiologists, and statisticians.
The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.
This title includes a number of Open Access chapters. This volume includes the latest research into the diseases that affect non-vascular plants. The chapters bring to light the most recent studies of pathogen identification, disease etiology, disease cycles, economic impact, plant disease epidemiology, plant disease resistance, how plant diseases affect humans and animals, pathosystem genetics, and management of plant diseases. The information provided here helps readers to stay current with this field's ongoing research and ever-developing knowledge base.
Terricolous lichens, a habitat specialist group of lichens play a vital role in maintenance and ecological stability of soil crusts with reference to their physical stability, hydrology and growth of soil microflora. Terricolous lichens in Indian lichenological studies haven t been taken up as a functional group. "Terricolous Lichens in India, Volume 1: Diversity Patterns and Distribution Ecology "is the first ever publication dealing with soil lichens of India. Divided into five chapters, this volume discusses the lichenological researches in India with reference to terricolous lichens, the altitudinal distribution patterns of terricolous lichens, comparative assessment of distribution with global patterns, and the photobiont diversity and influence of novel molecular clades of photobiont in determining ecological preferences of soil lichens in India. Written by experts in the field and supplemented with numerous photographs, "Terricolous Lichens in India, Volume 1: Diversity Patterns and Distribution Ecology "is a comprehensive resource that addresses the major drivers of terricolous lichens distribution in India."
Advancement in Crop Improvement Techniques presents updates on biotechnology and molecular biological approaches which have contributed significantly to crop improvement. The book discusses the emerging importance of bioinformatics in analyzing the vast resources of information regarding crop improvement and its practical application and utilization. Throughout this comprehensive resource, emphasis is placed on various techniques used to improve agricultural crops, providing a common platform for the utility of these techniques and their combinations. Written by an international team of contributors, this book provides an in-depth analysis of existing tools and a framework for new research.
This book focuses on the effects of genotoxic agents causing oxidative stress in plants. The book explores different kind of chemicals which induces genotoxicity, their mechanism of action and effects on plant health. Impacts at the physiological and molecular levels are discussed. The book is of interest to teachers, researchers and plant scientists. Also the book serves as additional reading material for undergraduate and graduate students of agriculture, forestry, ecology, soil science, and environmental sciences. National and international agricultural scientists will also find this to be a useful read.
The entire range of the developmental processes in plants is regulated by the shift in the hormonal concentration, tissue sensitivity and their interaction with the factors operating around the plants. Out of the recognized hormones, attention has largely been focused on five (Auxins, Gibberellins, Cytokinin, Abscisic acid and Ethylene). However, in this book, the information about the most recent group of phytohormones (Brassinosteroids) has been compiled by us. It is a class of over 40 polyhydroxylated sterol derivatives, ubiquitously distributed throughout the plant kingdom. A large portion of these steroids is restricted to the reproductive organs (pollens and immature seeds). Moreover, their strong growth-inducing capacity, recognized as early as prior to their identification in 1979, tempted the scientists to visualize the practical importance of this group of phytohormones. The brassin solution, from rape pollen, was used in a collaborative project by the scientists of Brazil and U. S. A. in a p- sowing seed treatment to augment the yield. This was followed by large-scale scientific programmes in U. S. , Japan, China, Germany and erstwhile U. S. S. R. , after the isolation of the brassinosteroids. This approach suits best in today's context where plants are targeted only as producers and hormones are employed to get desired results. Chapter 1 of this book (which embodies a total of 10 chapters), gives a comprehensive survey of the hitherto known brassinosteroids, isolated from lower and higher plants.
Carbon stabilization involves to capturing carbon from the atmosphere and fix it in the forms soil organic carbon stock for a long period of time, it will be present to escape as a greenhouse gas in the form of carbon dioxide. Soil carbon storage is an important ecosystem service, resulting from interactions of several ecological processes. This process is primarily mediated by plants through photosynthesis, with carbon stored in the form of soil organic carbon. Soil carbon levels have reduced over decades of conversion of pristine ecosystems into agriculture landscape, which now offers the opportunity to store carbon from air into the soil. Carbon stabilization into the agricultural soils is a novel approach of research and offers promising reduction in the atmospheric carbon dioxide levels. This book brings together all aspects of soil carbon sequestration and stabilization, with a special focus on diversity of microorganisms and management practices of soil in agricultural systems. It discusses the role of ecosystem functioning, recent and future prospects, soil microbial ecological studies, rhizosphere microflora, and organic matter in soil carbon stabilization. It also explores carbon transformation in soil, biological management and its genetics, microbial transformation of soil carbon, plant growth promoting rhizobacteria (PGPRs), and their role in sustainable agriculture. The book offers a spectrum of ideas of new technological inventions and fundamentals of soil sustainability. It will be suitable for teachers, researchers, and policymakers, undergraduate and graduate students of soil science, soil microbiology, agronomy, ecology, and environmental sciences
Wood Microbiology, Second Edition, presents the latest advances in wood decay and its prevention. Coverage includes classification of fungi and bacteria, factors affecting growth and survival, fungal metabolism, and wood chemistry. There are also chapters that focus on the anatomical aspects, chemical changes, and ultrastructural effects of wood decay. Additionally, this book discusses major issues associated with wood decay, detecting decay, and how to take protective action against it. This is a one-stop reference resource for wood scientists, wood processing and preserving professionals, foresters and forest pathologists, as well as students of forestry, and wood science and technology courses. It is authored by two leading experts with over 80 years of experience working with timber durability.
This edited book brings out a comprehensive collection of information on the modern omics-based research. The main focus of this book is to educate researchers about utility of omics-based technologies in rapid crop improvement. In last two decades, omics technologies have been utilized significantly in the area of plant sciences and has shown promising results. Omics technology has potential to address the challenge of food security in the near future. The comprehensive use of omics technology occurred in last two decades and helped greatly in the understanding of complex biological problems, improve crop productivity and ensure sustainable use of ecosystem services. This book is of interest to researchers and students of life sciences, biotechnology, plant biotechnology, agriculture, forestry, and environmental sciences. It is also a useful knowledge resource for national and international agricultural scientists.
Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants provides the latest, in-depth understanding of the molecular mechanisms associated with the development of stress and cross-stress tolerance in plants. Plants growing under field conditions are constantly exposed, either sequentially or simultaneously, to many abiotic or biotic stress factors. As a result, many plants have developed unique strategies to respond to ever-changing environmental conditions, enabling them to monitor their surroundings and adjust their metabolic systems to maintain homeostasis. Recently, priming mediated stress and cross-stress tolerance (i.e., greater tolerance to a second, stronger stress after exposure to a different, milder primary stress) have attracted considerable interest within the scientific community as potential means of stress management and for producing stress-resistant crops to aid global food security. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants comprehensively reviews the physiological, biochemical, and molecular basis of cross-tolerance phenomena, allowing researchers to develop strategies to enhance crop productivity under stressful conditions and to utilize natural resources more efficiently. The book is a valuable asset for plant and agricultural scientists in corporate or government environments, as well as educators and advanced students looking to promote future research into plant stress tolerance.
Analogous to genomics, which defines all genes in a genome irrespective of their functionality, metabolomics seeks to profile all metabolites in a biological sample irrespective of the chemical and physical properties of these molecules. Metabolomics has the potential of defining cellular processes as it provides a measure of the ultimate phenotype of an organism, as defined by the collage of small molecules, whose levels of accumulation is altered in response to genetic and environmentally induced changes in gene expression.This book presents a guide for new practitioners of metabolomics, providing insights as to the current use and applications of metabolomics.
Changes in atmospheric carbon dioxide concentrations and global climate conditions have altered photosynthesis and plant respiration across both geologic and contemporary time scales. Understanding climate change effects on plant carbon dynamics is critical for predicting plant responses to future growing conditions. Furthermore, demand for biofuel, fibre and food production is rapidly increasing with the ever-expanding global human population, and our ability to meet these demands is exacerbated by climate change. This volume integrates physiological, ecological, and evolutionary perspectives on photosynthesis and respiration responses to climate change. We explore this topic in the context of modeling plant responses to climate, including physiological mechanisms that constrain carbon assimilation and the potential for plants to acclimate to rising carbon dioxide concentration, warming temperatures and drought. Additional chapters contrast climate change responses in natural and agricultural ecosystems, where differences in climate sensitivity between different photosynthetic pathways can influence community and ecosystem processes. Evolutionary studies over past and current time scales provide further insight into evolutionary changes in photosynthetic traits, the emergence of novel plant strategies, and the potential for rapid evolutionary responses to future climate conditions. Finally, we discuss novel approaches to engineering photosynthesis and photorespiration to improve plant productivity for the future. The overall goals for this volume are to highlight recent advances in photosynthesis and respiration research, and to identify key challenges to understanding and scaling plant physiological responses to climate change. The integrated perspectives and broad scope of research make this volume an excellent resource for both students and researchers in many areas of plant science, including plant physiology, ecology, evolution, climate change, and biotechnology. For this volume, 37 experts contributed chapters that span modeling, empirical, and applied research on photosynthesis and respiration responses to climate change. Authors represent the following seven countries: Australia (6); Canada (9), England (5), Germany (2), Spain (3), and the United States (12). |
![]() ![]() You may like...
Recent Advances in Embedded Computing…
Jorge Portilla, Andres Otero, …
Hardcover
Vortex Rings and Jets - Recent…
Daniel T H New, Simon C M Yu
Hardcover
R2,909
Discovery Miles 29 090
Turbulent Combustion Modeling…
Tarek Echekki, Epaminondas Mastorakos
Hardcover
R5,875
Discovery Miles 58 750
Big Data: Conceptual Analysis and…
Michael Z. Zgurovsky, Yuriy P. Zaychenko
Hardcover
R3,644
Discovery Miles 36 440
Securing the Internet of Things…
Information Reso Management Association
Hardcover
R11,203
Discovery Miles 112 030
|