![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
This is the first of two volumes on Gentianaceae. Comprising twelve chapters, it centres upon the characterization and ecology of Gentianaceae worldwide, with emphasis on the application of molecular and cytological approaches in relation to taxonomy. The first three chapters consider the classification of the family and review the advances in research since the earlier revision published in 2002, which resulted in the reclassification of some plants and the naming of new genera. The next chapter provides the most comprehensive report to date of the systematics of South American Neotropical woody Gentians. Other reviews include details of the Gentianaceae in Eastern Europe. The key biochemical steps that result in the diversity of Gentian flower colors, the cytology of European species and an historical account of the importance of Gentians in herbal medicines are also covered. Furthermore, an analysis of gene expression in overwintering buds is presented, discussing several aspects of plant taxonomy, phenotypic characteristics, phylogeography and pedigree. Two contributions highlight the importance of Gentians in India, and the last chapter presents evidence for the importance of Glomeromycota in developing arbuscular mycorrhizal associations with the roots of Gentians. This volume provides the basis for the biotechnological approaches that are considered in the companion book The Gentianaceae - Volume 2: Biotechnology and Applications.
This book is devoted to the fascinating superfamily of plant ATP-binding cassette (ABC) transporters and their variety of transported substrates. It highlights their exciting biological functions, covering aspects ranging from cellular detoxification, through development, to symbiosis and defense. Moreover, it also includes a number of chapters that center on ABC transporters from non-Arabidopsis species. ABC proteins are ubiquitous, membrane-intrinsic transporters that catalyze the primary (ATP-dependent) movement of their substrates through biological membranes. Initially identified as an essential aspect of a vacuolar detoxification process, genetic work in the last decade has revealed an unexpectedly diverse variety of ABC transporter substrates, which include not only xenobiotic conjugates, but also heavy metals, lipids, terpenoids, lignols, alkaloids and organic acids. The discovery that members of the ABCB and ABCG family are involved in the movement of phytohormones has further sparked their exploration and provided a new understanding of the whole family. Accordingly, the trafficking, regulation and structure-function of ABCB-type auxin transporters are especially emphasized in this book.
Terricolous lichens, a habitat specialist group of lichens play a vital role in maintenance and ecological stability of soil crusts with reference to their physical stability, hydrology and growth of soil microflora. Terricolous lichens in Indian lichenological studies haven't been taken up as a functional group. Terricolous Lichens in India, Volume 1: Diversity Patterns and Distribution Ecology is the first ever publication dealing with soil lichens of India. Divided into five chapters, this volume discusses the lichenological researches in India with reference to terricolous lichens, the altitudinal distribution patterns of terricolous lichens, comparative assessment of distribution with global patterns, and the photobiont diversity and influence of novel molecular clades of photobiont in determining ecological preferences of soil lichens in India. Written by experts in the field and supplemented with numerous photographs, Terricolous Lichens in India, Volume 1: Diversity Patterns and Distribution Ecology is a comprehensive resource that addresses the major drivers of terricolous lichens distribution in India.
During the last ten years, knowledge about the multitude of adaptive responses of plants to low oxygen stress has grown immensely. The oxygen sensor mechanism has been discovered, the knowledge about the interaction network of gene expression is expanding and metabolic adaptations have been described in detail. Furthermore, morphological changes were investigated and the regulative mechanisms triggered by plant hormones or reactive oxygen species have been revealed. This book provides a broad overview of all these aspects of low oxygen stress in plants. It integrates knowledge from different disciplines such as molecular biology, biochemistry, ecophysiology and agricultural / horticultural sciences to comprehensively describe how plants cope with low oxygen stress and discuss its ecological and agronomical consequences. This book is written for plant scientists, biochemists and scientists in agriculture and ecophysiology.
Chloroplast development is a key feature of leaf developmental program. Recent advances in plant biology reveal that chloroplasts also determine the development, the structure and the physiology of the entire plant. The books, published thus far, have emphasized the biogenesis of the organelle, but not the events associated with the transformation of the mature chloroplast to the gerontoplast during senescence. This book, with 28 chapters, is unique because it describes how the chloroplast matures and how it is subsequently transformed to become the gerontoplast during senescence, a process required for nutrient recycling in plants. This book includes a state-of-the-art survey of the current knowledge on the regulation and the mechanisms of chloroplast development. Some of the chapters critically discuss the signaling process, the expression potential of plastid DNA, the interaction of cellular organelles, and the molecular mechanisms associated with the assembly and the disassembly of organellar complexes and finally the modulation of chloroplast development by environmental signals.
This book reviews the current state of information on reactive oxygen and nitrogen species and their role in cell communication during plant growth, development and adaptation to stress conditions. It addresses current research advances made in the area of reactive oxygen and nitrogen species (ROS and RNS) signaling. These free radical molecules are important in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. Due to their short half-life, high diffusion capability and ability to react with different components in the cell, ROS and RNS participate in various processes connected with signaling and communication in plants. The book's respective chapters address the latest advances made in the niche area of ROS and RNS in plants. It offers a valuable guide for researchers and students alike, providing insights into cutting-edge free radical research. The information on specialized topics presented is also highly relevant for applied fields such as food security, agricultural practices and medicinal use of plants.
Nutrient Use Efficiency in Plants: Concepts and Approaches is the ninth volume in the Plant Ecophysiology series. It presents a broad overview of topics related to improvement of nutrient use efficiency of crops. Nutrient use efficiency (NUE) is a measure of how well plants use the available mineral nutrients. It can be defined as yield (biomass) per unit input (fertilizer, nutrient content). NUE is a complex trait: it depends on the ability to take up the nutrients from the soil, but also on transport, storage, mobilization, usage within the plant, and even on the environment. NUE is of particular interest as a major target for crop improvement. Improvement of NUE is an essential pre-requisite for expansion of crop production into marginal lands with low nutrient availability but also a way to reduce use of inorganic fertilizer.
Plant Cell Morphogenesis: Methods and Protocols provides a collection of experimental techniques used in current research on the cellular aspects of plant morphogenesis. Methods and techniques include contemporary takes on classical light microscopy and histochemistry through automated microscopy applications, use of advanced optical tools, quantitative image analysis, study of cellular dynamics of apical meristems, specialized electron microscopy techniques, and methods used to study specific model plant cell types and protocols for using heterologous expression in yeast to study cell morphogenesis genes. Individual chapters in the highly successful Methods in Molecular Biology series format are written by expert researchers in the field and include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.
Bryophytes, which are important constituents of ecosystems globally and often dominate carbon and water dynamics at high latitudes and elevations, were also among the pioneers of terrestrial photosynthesis. Consequently, in addition to their present day ecological value, modern representatives of these groups contain the legacy of adaptations that led to the greening of Earth. This volume brings together experts on bryophyte photosynthesis whose research spans the genome and cell through whole plant and ecosystem function and combines that with historical perspectives on the role of algal, bryophyte and vascular plant ancestors on terrestrialization of the Earth. The eighteen well-illustrated chapters reveal unique physiological approaches to achieving carbon balance and dealing with environmental limitations and stresses that present an alternative, yet successful strategy for land plants.
Plant Endosomes: Methods and Protocols explores a collection of protocols and techniques to analyze in vivo trafficking of endocytic/endosomal cargo, including lipids, fluids, proteins and ligands, ultrastructural features of endosomes by high-pressure freezing/freeze-substitution and electron tomography, as well as protein-protein interactions in the endosomal and endomembrane system. The volume continues with coverage of the sorting defects in the transport of vacuolar storage proteins, function conservation of plant endosomal proteins, endosomal trafficking during plant responses to pathogens, protein composition of endosomes and endocytic vesicles, ubiquitination of endosomal cargo proteins and the identification of novel endosomal components by chemical genomics and proteomics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Detailed and practical, Plant Endosomes: Methods and Protocols gathers contributions from many leading and emerging plant membrane trafficking researchers in order to promote and facilitate novel studies and ideas in this vital field.
This book delivers current state-of-the-science knowledge of tree ecophysiology, with particular emphasis on adaptation to a novel future physical and chemical environment. Unlike the focus of most books on the topic, this considers air chemistry changes (O3, NOx, and N deposition) in addition to elevated CO2 effects and its secondary effects of elevated temperature. The authors have addressed two systems essential for plant life: water handling capacity from the perspective of water transport; the coupling of xylem and phloem water potential and flow; water and nutrition uptake via likely changes in mycorrhizal relationships; control of water loss via stomata and its retention via cellular regulation; and within plant carbon dynamics from the perspective of environmental limitations to growth, allocation to defences, and changes in partitioning to respiration. The authors offer expert knowledge and insight to develop likely outcomes within the context of many unknowns. We offer this comprehensive analysis of tree responses and their capacity to respond to environmental changes to provide a better insight in understanding likelihood for survival, as well as planning for the future with long-lived, stationary organisms adapted to the past: trees.
Plant innate immunity is a potential surveillance system of plants and is the first line of defense against invading pathogens. The immune system is a sleeping system in unstressed healthy plants and is activated on perception of the pathogen-associated molecular patterns (PAMP; the pathogen’s signature) of invading pathogens. The PAMP alarm/danger signals are perceived by plant pattern-recognition receptors (PRRs). The plant immune system uses several second messengers to encode information generated by the PAMPs and deliver the information downstream of PRRs to proteins which decode/interpret signals and initiate defense gene expression. This book describes the most fascinating PAMP-PRR signaling complex and signal transduction systems. It also discusses the highly complex networks of signaling pathways involved in transmission of the signals to induce distinctly different defense-related genes to mount offence against pathogens.
The functional characterization of a key enzyme in the phosphatidylinositol (PI) signaling pathway in the model plant Arabidopsis thaliana is the focus of the research summarised in this thesis. Moreover, a particular focus is the exploration of the biological functions of Arabidopsis phophatidylinositol monophosphate 5-kinase 2 (PIP5K2) which catalyzes the synthesis of phophatidylinositol (4,5) bisphosphate, the precursor of two important second messengers (inositol 1,4,5-trisphosphate and diacylglycerol). Through molecular and genetic approaches, the author isolated and characterized the expression pattern, physiological functions and the underlying mechanism of Arabidopsis PIP5K2. It is found that PIP5K2 is involved in regulating lateral root formation and root gravity response through modulating auxin accumulation and polar auxin transport and also plays a critical role in salt tolerance. These findings shed new light on the crosstalk between PI signaling and auxin response, both of which have crucial regulatory roles in plant development.
This brief describes various methods of chitosan nano-materials synthesis, with detailed discussion of various factors effecting its synthesis process, stability and physicochemical properties. Chitosan is naturally occurring biopolymer derived from chitin. Due to the unique biological properties of chitosan nano-materials such as antimicrobial, plant growth inducer, plant defense modulator, chitosan has gained attention in fields of plant sciences. Book further extended the details of different types of chitosan nano-materials specially for plant applications along with its future prospects in plant protection and growth. Bioactivities of chitosan nano-materials and its mechanism have also been covered. This book aims to widening the understanding of the synthesis, characterization and use of chitosan based nano-materials in plant system.
This volume focuses on recent advances in the biochemical and molecular analysis of different families of phospholipases in plants and their roles in signaling plant growth, development and responses to abiotic and biotic cues. The hydrolysis of membrane lipids by phospholipases produces different classes of lipid mediators, including phosphatidic acid, diacylglycerol, lysophospholipids, free fatty acids and oxylipins. Phospholipases are grouped into different families and subfamilies according to their site of hydrolysis, substrate usage and sequence similarities. Activating one or more of these enzymes often constitutes an early, critical step in many regulatory processes, such as signal transduction, vesicular trafficking, secretion and cytoskeletal rearrangements. Lipid-based signaling plays pivotal roles in plant stress responses, cell size, shape, growth, apoptosis, proliferation, and reproduction.
Estimation of the metabolite complement of plant material involves a wide range of techniques and technologies and that breadth continues to increase. Metabolomics research typically involves multiple sites for material preparation and analysis and most investigations are "high throughput", meaning that chemical analysis of sample sets are inevitably carried out over an extended period of time. In, Plant Metabolomics: Methods and Protocols expert researchers in the field detail many of the stages which are now commonly used to study plant metabolomics workflow. Stages of this workflow, up to and including the statistical analysis, accurate and detailed collection of meta-data are also essential for good process management, to satisfy reporting requirements and to ensure wider interpretability and reuse results.Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Through and intuitive Plant Metabolomics: Methods and Protocols, seeks to aid scientists in the further study of the methods for all the stages of the plant metabolomics workflow.
This proceedings volume contains a selection of invited and contributed papers of the 9th International Workshop on Sulfur Metabolism in Plants, which was hosted by Heinz Rennenberg, Albert-Ludwigs-University Freiburg and was held at Schloss Reinach, Freiburg-Munzigen, Germany from April 14-17, 2014. The focus of this workshop was on molecular physiology and ecophysiology of sulfur in plants and the content of this volume presents an overview on the current research developments in this field.
Plants are endowed with innate immune system, which acts as a surveillance system against possible attack by pathogens. Plant innate immune systems have high potential to fight against viral, bacterial, oomycete and fungal pathogens and protect the crop plants against wide range of diseases. However, the innate immune system is a sleeping system in unstressed healthy plants. Fast and strong activation of the plant immune responses aids the host plants to win the war against the pathogens. Plant hormone signaling systems including salicylate (SA), jasmonate (JA), ethylene (ET), abscisic acid (ABA), auxins, cytokinins, gibberellins and brassinosteroids signaling systems play a key role in activation of the sleeping immune systems. Suppression or induction of specific hormone signaling systems may result in disease development or disease resistance. Specific signaling pathway has to be activated to confer resistance against specific pathogen in a particular host. Two forms of induced resistance, systemic acquired resistance (SAR) and induced systemic resistance (ISR), have been recognized based on the induction of specific hormone signaling systems. Specific hormone signaling system determines the outcome of plant-pathogen interactions, culminating in disease development or disease resistance. Susceptibility or resistance against a particular pathogen is determined by the action of the signaling network. The disease outcome is often determined by complex network of interactions among multiple hormone signaling pathways. Manipulation of the complex hormone signaling systems and fine tuning the hormone signaling events would help in management of various crop diseases. The purpose of the book is to critically examine the potential methods to manipulate the multiple plant hormone signaling systems to aid the host plants to win the battle against pathogens.
This book describes the unique characean experimental system, which provides a simplified model for many aspects of the physiology, transport and electrophysiology of higher plants. The first chapter offers a thorough grounding in the morphology, taxonomy and ecology of Characeae plants. Research on characean detached cells in steady state is summarised in Chapter 2, and Chapter 3 covers characean detached cells subjected to calibrated and mostly abiotic types of stress: touch, wounding, voltage clamp to depolarised and hyperpolarised potential difference levels, osmotic and saline stress. Chapter 4 highlights cytoplasmic streaming, cell-to-cell transport, gravitropism, cell walls and the role of Characeae in phytoremediation. The book is intended for researchers and students using the characean system and will also serve as an invaluable reference resource for electrophysiologists working on higher plants.
The book is a fundamental reference source on reaction wood for wood scientists and technologists, plant biologists, silviculturists, forest ecologists, and anyone involved in the growing of trees and the processing of wood. It brings together our current understanding of all aspects of reaction wood, and is the first book to discuss both compression wood and tension wood. Trees produce reaction wood to maintain the vertical orientation of their stems and the optimum angle of each branch. They achieve this by laying down fibre cell walls in which differences in physical and chemical structure from those of normal fibres are expressed as differential stresses across the stem or branch. This process, while of obvious value for the survival of the tree, causes serious problems for the utilisation of timber. Timber derived from trees containing significant amounts of reaction wood is subject to dimensional instability on drying, causing twisting, bending and splitting. It is also difficult to work as timber, and for the pulp and paper industry the cost of removing the increased amount of lignin in compression wood is substantial. This has both practical and economic consequences for industry. Understanding the factors controlling reaction wood formation and its effect on wood structure is therefore fundamental to our understanding of the adaptation of trees to their environment and to the sustainable use of wood. The topics covered include: -Morphology, anatomy and ultrastructure of reaction wood -Cell-wall polymers in reaction wood and their biosynthesis -Changes in tree proteomes during reaction wood formation -The biomechanical action and biological functions of reaction wood - Physical and mechanical properties of reaction wood from the scale of cell walls to planks -The detection and characterisation of compression wood -Effects of reaction wood on the performance of wood and wood-based products - Commercial implications of reaction wood and the influence of forest management on its formation
The first part of the book presents the evolution of plants starting from photosynthetic cells to topics like Gymnosperms and Angiosperms, including the evolution of the breeding system. Geological and molecular data were used, helping us to show with more details each of the phases presented. Also, specialization of the reproductive systems such as evolution of unissexuality (dioecy and monoecy), evolution of self-incompatibility, selfing fertilization and mixed mating systems were considered. The last part discusses the biology and genetics of the reproductive systems and shows the strategies that modern plants use in asexual reproduction (vegetative and apomictic reproduction) and sexual reproduction. In addition, the sexual reproduction topics such as gametogenesis, the genetic control of reproductive organs, systems that promote outcrossing, selfing and mixed mating systems were also included.
The Himalayan region is among the largest mountains systems of the world with uncounted unique medicinal plants resources. The lesser Himalayas ranges are the extension of Greater Himalayas. They have unique ecology, vegetation and diversity of medicinal flora due to tremendous variation in the altitude, climate and associated wildlife. The utilization of medicinal plants in medicine suffers from the fact that although plants are used to treat diseases, scientific evidence is lacking in many cases. Different societies of the world use the plants according to their own beliefs and knowledge and previous experiences. Their knowledge about the use of the plants is usually not known to the other world or science. This book provides a brief introduction of Lesser Himalayas, ethnobotanical aspects, marketing and anthropogenic pressure on medicinal flora. It comprises one hundred medicinal plant species including Pteridophytes, Gymnosperms and Angiosperms (Monocots and Dicots) along with their scientific description and traditional uses.
This book covers the key features of nitric oxide (NO) in plants. Comprising nine chapters, Part I highlights its metabolism and identification in plants. Part II, which consists of eight chapters, focuses on the chemical, physical and biochemical properties of the NO molecule and its derivatives; on its functional role and mode of action; and on its signaling and interaction with phytohormones, mineral nutrients, biomolecules, ions and ion channels in plants under abiotic stresses. Combining the expertise of leading researchers in the field, the book provides a concise overview of plant NO biology and offers a valuable reference work.
This book provides detailed and comprehensive information on oxidative damage caused by stresses in plants with especial reference to the metabolism of reactive oxygen species (ROS). In plants, as in all aerobic organisms, ROS are common by-products formed by the inevitable leakage of electrons onto O2 from the electron transport activities located in chloroplasts, mitochondria, peroxisomes and in plasma membranes or as a consequence of various metabolic pathways confined in different cellular loci. Environmental stresses such as heat, cold, drought, salinity, heavy-metal toxicity, ozone and ultraviolet radiation as well as pathogens/contagion attack lead to enhanced generation of ROS in plants due to disruption of cellular homeostasis. ROS play a dual role in plants; at low concentrations they act as signaling molecules that facilitate several responses in plant cells, including those promoted by biotic and abiotic agents. In divergence, at high levels they cause damage to cellular constituents triggering oxidative stress. In either case, small antioxidant molecules and enzymes modulate the action of these ambivalent species.
This book provides extensive and comprehensive information to researchers and academicians who are interested in radionuclide contamination, its sources and environmental impact. It is also useful for graduate and undergraduate students specializing in radioactive-waste disposal and its impact on natural as well as manmade environments. A number of sites are affected by large legacies of waste from the mining and processing of radioactive minerals. Over recent decades, several hundred radioactive isotopes (radioisotopes) of natural elements have been produced artificially, including 90Sr, 137Cs and 131I. Several other anthropogenic radioactive elements have also been produced in large quantities, for example technetium, neptunium, plutonium and americium, although plutonium does occur naturally in trace amounts in uranium ores. The deposition of radionuclides on vegetation and soil, as well as the uptake from polluted aquifers (root uptake or irrigation) are the initial point for their transfer into the terrestrial environment and into food chains. There are two principal deposition processes for the removal of pollutants from the atmosphere: dry deposition is the direct transfer through absorption of gases and particles by natural surfaces, such as vegetation, whereas showery or wet deposition is the transport of a substance from the atmosphere to the ground by snow, hail or rain. Once deposited on any vegetation, radionuclides are removed from plants by the airstre am and rain, either through percolation or by cuticular scratch. The increase in biomass during plant growth does not cause a loss of activity, but it does lead to a decrease in activity concentration due to effective dilution. There is also systemic transport (translocation) of radionuclides within the plant subsequent to foliar uptake, leading the transfer of chemical components to other parts of the plant that have not been contaminated directly. |
![]() ![]() You may like...
Networks in the Global World V…
Artem Antonyuk, Nikita Basov
Hardcover
R4,404
Discovery Miles 44 040
|