![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
In a world of increasing atmospheric CO2, there is intensified
interest in the ecophysiology of photosynthesis and increasing
attention is being given to carbon exchange and storage in natural
ecosystems. We need to know how much photosynthesis of terrestrial
and aquatic vegetation will change as global CO2 increases. Are
there major ecosystems, such as the boreal forests, which may
become important sinks of CO2 and slow down the effects of
anthropogenic CO2 emissions on climate? Will the composition of the
vegetation change as a result of CO2 increase?
Plants are forced to adapt for a variety of reasons protection, reproductive viability, and environmental and climatic changes. Computational tools and molecular advances have provided researchers with significant new insights into the molecular basis of plant adaptation. Molecular Mechanisms in Plant Adaptation provides a comprehensive overview of a wide variety of these different mechanisms underlying adaptation to these challenges to plant survival. Molecular Mechanisms in Plant Adaptation opens with a chapter that explores the latest technological advances used in plant adaptation research, providing readers with an overview of high-throughput technologies and their applications. The chapters that follow cover the latest developments on using natural variation to dissect genetic, epigenetic and metabolic responses of plant adaptation. Subsequent chapters describe plant responses to biotic and abiotic stressors and adaptive reproductive strategies. Emerging topics such as secondary metabolism, small RNA mediated regulation as well as cell type specific responses to stresses are given special precedence. The book ends with chapters introducing computational approaches to study adaptation and focusing on how to apply laboratory findings to field studies and breeding programs. Molecular Mechanisms in Plant Adaptation interest plant molecular biologists and physiologists, plant stress biologists, plant geneticists and advanced plant biology students.
This book is the first comprehensive volume on the computer simulation of plant development. It contains a full account of the algorithms used to model plant shapes and developmental processes, Lindenmayer systems in particular. With nearly 50 color plates, the spectacular results of the modelling are vividly illustrated. "This marvelous book will occupy an important place in the scientific literature." #Professor Heinz-Otto Peitgen# "The Algorithmic Beauty of Plants will perform a valuable service by popularizing this enlightening and bewitching form of mathematics." #Steven Levy# " ... the garden here is full of delights and an excellent introduction to L-systems, ..." #Alvy Ray Smith, IEEE Computer Graphics and its Applications#
A summary of the ecology of the world's vegetation. The introductory chapters provide a basic back-drop to the subject. The subsequent chapters examine sequentially the form and function of each major biome throughout the world.This book should be of interest to ecologists; biogeographers; botanists; environmental scientists; land managers; conservation biologists and natural resource managers.
Analogous to genomics, which defines all genes in a genome irrespective of their functionality, metabolomics seeks to profile all metabolites in a biological sample irrespective of the chemical and physical properties of these molecules. Metabolomics has the potential of defining cellular processes as it provides a measure of the ultimate phenotype of an organism, as defined by the collage of small molecules, whose levels of accumulation is altered in response to genetic and environmentally induced changes in gene expression.This book presents a guide for new practitioners of metabolomics, providing insights as to the current use and applications of metabolomics.
Post-translational modifications are now known to play a fundamental role in regulating the activity, location and function of a wide range of proteins. In plant cells work on different types of post-translational modifications has progressed largely along independent lines. This book brings research workers together to allow an exchange of ideas, and reflects a diversity of interest whilst also revealing common ground. An introductory chapter reviewing recent progress in the field is followed by reviews of protein phosphorylation in bacteria and animals which provide a useful perspective on this subject in plants. Consideration is then given to plant protein kinases and the processes they control. Acylation and glycosylation, and their functions in protein targeting and folding are reviewed, along with the roles of glycoproteins in plant development and of ubiquitination in plant senescence.
The application of molecular techniques is rapidly transforming the study of plant systematics. The precision they offer enables researchers to classify plants that have not been subject to rigorous classification before and thus allows them to obtain a clearer picture of evolutionary relationships. Plant Molecular Systematics is arranged both conceptually and phylogenetically to accommodate the interests not only of general systematists, but also those of people interested in a particular plant family. The first part discusses molecular sequencing; the second reviews restriction site analysis and the sequencing of mitochondrial DNA. A third section details the analysis of ribosomal DNA and chloroplast DNA. The following section introduces model studies involving well-studied families such as the Onagraceae, Compositae and Leguminosae. The book concludes with a section addressing theoretical topics such as data analysis and the question of morphological vs. molecular data.
This volume addresses recent developments in weed science. These developments include conservation agriculture and conservation tillage, climate change, environmental concerns about the runoff of agrochemicals, resistance of weeds and crops to herbicides, and the need for a vastly improved understanding of weed ecology and herbicide use. The book provides details on harnessing knowledge of weed ecology to improve weed management in different crops and presents information on opportunities in weed management in different crops. Current management practices are also covered, along with guidance for selecting herbicides and using them effectively. Written by experts in the field and supplemented with instructive illustrations and tables, "Recent Advances in Weed Management "is an essential reference for agricultural specialists and researchers, government agents, extension specialists, and professionals throughout the agrochemical industry, as well as a foundation for advanced students taking courses in weed science.
The study of solute transport in plants dates back to the beginnings of experimental plant physiology, but has its origins in the much earlier interests of humankind in agriculture. Given this lineage, it is not surprising that there have been many books on the transport of solutes in plants; texts on the closely related subject of mineral nutrition also commonly address the topic of ion transport. Why another book? Well, physiologists continue to make new discoveries. Particularly pertinent is the characterisation of enzymes that are able to transport protons across membranes during the hydrolysis of energy-rich bonds. These enzymes, which include the H + -A TPases, are now known to be crucial for solute transport in plants and we have given them due emphasis. From an academic point of view, the transport systems in plants are now appreciated as worthy of study in their own right-not just as an extension of those systems already much more widely investigated in animals. From a wider perspective, understanding solute transport in plants is fundamental to understanding plants and the extent to which they can be manipulated for agricultural purposes. As physiologists interested in the mechanisms of transport, we first set out in this book to examine the solutes in plants and where are they located. Our next consideration was to provide the tools by which solute movement can be understood: a vital part of this was to describe membranes and those enzymes catalysing transport.
In the preface to the first edition ofthis book, we expressed a conviction that there was a need for a short book that highlighted important advances in the new discipline of plant molecular biology. The rapid development of this topic has been brought about by the recognition of the unique properties of plants in the study of growth and development together with the application of recombinant DNA techniques to tackle these problems. Plant cells contain DNA in nuclei, plastids and mitochondria, and so ofTer the unique challenge of studying the interaction of three separate genetic systems in a single organism. The molecular approach has provided, in recent years, a wealth of important information about how plants function, and how they interact with bacteria, fungi and viruses. Furthermore, plant development involves the regulation of gene expression in response to internal and external signals, and plant molecular biology has provided a fundamental insight into how this development is regulated. This is not only of considerable scientific interest, but also has important implications for the production of plants and plant products in agriculture, horticulture and the food industries.
For the past twenty years I have worked as an applied plant virologist, attempting to identify and control virus diseases in field crops. During the last ten years it has been my privilege to present short courses in plant virology to final-year students studying plant pathology, micro biology and general botany. Throughout the period I have been lecturing, it has been possible to recommend several excellent 'library' books for further reading in plant virology, but there has been no publication covering applied plant virology that a student might consider purchasing. With teaching requirements in mind this book has been written to provide a concise introduction to applied plant virology based on the experiences I have gained working on virus diseases, both in an applied laboratory and in the field. The text concentrates on introducing the reader to aspects of plant virology that would be encountered every day by an applied virologist trying to identify viruses and develop control measures for virus diseases of crop plants. Although a brief introduction to virus structure and its terminology is given in the opening chapter of the book, no attempt is made to cover in detail the more fundamental aspects of virus structure, biochemistry and replication. Similarly, the symptoms caused by individual viruses are not described, although the various types of symptoms that plant viruses cause and which might be encountered by a student or research worker are described."
This supplement, containing six chapters, is the first in a series of important works designed to be integrated into the text of the Plant Tissue Culture Manual to maintain it as a valuable source of laboratory methodology
capable of providing at least a relative measure of stomatal aperture were first used shortly thereafter (Darwin and Pertz, 1911). The Carnegie Institution of Washington's Desert Research Laboratory in Tucson from 1905 to 1927 was the first effort by plant physiologists and ecologists to conduct team research on the water relations of desert plants. Measurements by Stocker in the North African deserts and Indonesia (Stocker, 1928, 1935) and by Lundegardh (1922) in forest understories were pioneering attempts to understand the environmental controls on photosynthesis in the field. While these early physiological ecologists were keen observers and often posed hypotheses still relevant today they were strongly limited by the methods and technologies available to them. Their measurements provided only rough approximations of the actual plant responses. The available laboratory equip ment was either unsuited or much more difficult to operate under field than laboratory conditions. Laboratory physiologists distrusted the results and ecologists were largely not persuaded of its relevance. Consequently, it was not until the 1950s and 1960s that physiological ecology began its current resurgence. While the reasons for this are complicated, the development and application of more sophisticated instruments such as the infrared gas analyzer played a major role. In addition, the development of micrometeorology led to new methods of characterizing the plant environments."
Plant molecular biology is rapidly becoming an important and successful component of the worldwide research challenge to apply basic biochemical, physiological and genetic techniques for the improvement of agricultural crops. This book shows how the study of fundamental plant physiological processes is being advanced through the science of genetics. The author has adopted a case study approach to illustrate how defined genetic materials in mutants and plant variants are being productively used to explore photosynthesis, stress tolerance, seed physiology, and flowering and reproductive morphology. This approach also helps avoid overwhelming readers who might be unfamiliar with the enormous detail now available in this burgeoning field. The case studies cover all major fields of plant physiology and are grouped in a format familiar to students of the discipline. Most take the form of a brief introduction followed by a discussion of the isolation and characterization of the mutants in question, and then by examples of how these mutants have been used to provide physiological insights. The aim is to make the information accessible to students with an elementary knowledge of plant physiology, genetics, and molecular biology, as well as other scientists and students who wish to know more about the application of the powerful tools provided by genetics.
The beauty of a knotty oak tree is different from that of a lovely flower. It is the rough beauty of an old soldier's face showing the traces of wind and sun, of harm and of victory, bearing the scars of bygone battles. It is different from the fragile, delicate beauty of a young girl which is evident to anyone at first sight. The beauty of an old and crippled tree is hidden unless perceived by the alert eye which is able to fancy or rather discern the hard trials of life the tree has ex perienced. Contemplating trees in this way is not much different from busying oneself with physiognomies, i.e. with the art of judging character from the features of the human face. Physiognomies is often considered a dubious science, but is prac ticed every day in human communication by everybody from early childhood to old age. Although we all are able to discern the angrily furrowed brow, the laughing crow's-feet below the eyes, the arrogant harsh lines around the nose, the hard narrow mouth, the gluttonous lip, and the secret eye of the silent ob server, we would never admit to rely on such seemingly doubtful methods."
This handbook is intended as an introductory guide to students at all levels on the principles and practice of plant growth analysis. Many have found this quantitative approach to be useful in the description and interpretation of the performance of whole plant systems grown under natural, semi-natural or controlled conditions. Most of the methods described require only simple experimental data and facilities. For the classical approach, GCSE biology and mathematics (or their equivalents) are the only theoretical backgrounds required. For the functional approach, a little calculus and statistical theory is needed. All of the topics regarding the quantitative basis of productivity recently introduced to the Biology A-level syllabus by the Joint Matriculation Board are covered. The booklet replaces my elementary Plant Growth Analysis (1978, London: Edward Arnold) which is now out of print. The presentation is very basic indeed; the opening pages give only essential outlines of the main issues. They are followed by brief, standardized accounts of each growth-analytical concept taken in turn. The illustrations deal more with the properties of well-grown material than with the effects of specific environmental changes, even though that is where much of the subject's interest lies. However, detailed references to the relevant parts of more com prehensive works appear throughout, and a later section on 'Inter relations' adds perspective. Some 'Questions and answers' may also help to show what topics will arise if the subject is pursued further."
Plant cell and tissue culture comprises a broad range of techniques of great value to research workers in the fields of cell and molecular biology, physiology, biochemistry, plant breeding and propagation and genetic engineering. This manual provides protocols for the major techniques in such a format that they can be followed step-by-step at the bench. Both applied and more fundamental uses of cell, tissue and organ culture are covered, and the ring-binder design allows the manual to be updated regularly with supplementary chapters. Each chapter, discussing a single technique or protocol, provides background information, references to the relevant literature and a guide to troubleshooting in addition to a thorough methodology. This second Supplement to the core text of the "Manual" provides important techniques to be added to the Sections on "Basic Techniques, Tissue Culture & Transformation of Crop Species and Reproductive Tissues".
The first edition of The Science of Photobiology was published in 1977, and was the first textbook to cover all of the major areas of photobiology. The science of photobiology is currently divided into 14 subspecialty areas by the American Society for Photobiology. In this edition, however, the topics of phototechnology and spectroscopy have been com bined in a new chapter entitled "Photophysics." The other subspecialty areas remain the same, i.e., Photochemistry, Photosensitization, UV Radiation Effects, Environmental Photobiology, Photomedicine, Circadian Rhythms, Extraretinal Photoreception, Vision, Photomorphogenesis, Photomovement, Photosynthesis, and Bioluminescence. This book has been written as a textbook to introduce the science of photobiology to advanced undergraduate and graduate students. The chapters are written to provide a broad overview of each topic. They are designed to contain the amount of information that might be presented in a one-to two-hour general lecture. The references are not meant to be exhaustive, but key references are included to give students an entry into the literature. Frequently a more recent reference that reviews the literature will be cited rather than the first paper by the author making the original discovery. The chapters are not meant to be a repository of facts for research workers in the field, but rather are concerned with demon strating the importance of each specialty area of photobiology, and documenting its relevance to current and/or future problems of man."
This book presents edited and revised papers from the seventh International Workshop on Seeds, held in Salamanca, Spain, in May 2002. The key topics addressed include seed development, germination and dormancy, as well as desiccation, seed ecology and seed biotechnology.
The germination of seeds is a magical event, in which a pinch of dust-like material may give rise to all the power and the beauty of the growing plant. The mechanisms of seed dormancy, of the breaking of seed dormancy and of germination itself continue to remain shrouded in mystery, despite the best efforts of plant scientists. Perhaps we are getting there, but very slowly. This book considers germination and dormancy from the point of view of plant physiology. Plant physiologists attempt to understand the relation ship between plant form and function and to explain, in physical and chemical terms, plant growth and development. The place of germination and dormancy in plant ecophysiology is taken into account with attempts to understand the seed in its .environment, whether the environment be natural, semi-natural or wholly artificial. In due course plant scientists hope to develop a precise understanding of germination and dormancy in cellular and molecular terms, and therefore there is some biochemistry in this book. Biochemists who wish to learn something about seeds should find this book useful."
This edited book brings out a comprehensive collection of information on the modern omics-based research. The main focus of this book is to educate researchers about utility of omics-based technologies in rapid crop improvement. In last two decades, omics technologies have been utilized significantly in the area of plant sciences and has shown promising results. Omics technology has potential to address the challenge of food security in the near future. The comprehensive use of omics technology occurred in last two decades and helped greatly in the understanding of complex biological problems, improve crop productivity and ensure sustainable use of ecosystem services. This book is of interest to researchers and students of life sciences, biotechnology, plant biotechnology, agriculture, forestry, and environmental sciences. It is also a useful knowledge resource for national and international agricultural scientists.
How do plants make a living? Some plants are gamblers, others are swindlers. Some plants are habitual spenders while others are strugglers and miserly savers. Plants have evolved a spectacular array of solutions to the existential problems of survival and reproduction in a world where resources are scarce, disturbances can be deadly, and competition is cut-throat. Few topics have both captured the imagination and furrowed the brows of plant ecologists, yet no topic is more important for understanding the assembly of plant communities, predicting plant responses to global change, and enhancing the restoration of our rapidly degrading biosphere. The vast array of plant strategy models that characterize the discipline now require synthesis. These models tend to emphasize either life history strategies based on demography, or functional strategies based on ecophysiology. Indeed, this disciplinary divide between demography and physiology runs deep and continues to this today. The goal of this accessible book is to articulate a coherent framework that unifies life history theory with comparative functional ecology to advance prediction in plant ecology. Armed with a deeper understanding of the dimensionality of life history and functional traits, we are now equipped to quantitively link phenotypes to population growth rates across gradients of resource availability and disturbance regimes. Predicting how species respond to global change is perhaps the most important challenge of our time. A robust framework for plant strategy theory will advance this research agenda by testing the generality of traits for predicting population dynamics.
It is perhaps not surprising that plants have evolved with a mechanism to sense the light environment around them and modify growth for optimal use of the available 'life-giving' light. Green plants and ultimately all forms of life depend on the energy of sunlight, fixed in the process of photosynthesis. By appreciating the quality, quantity, direction and duration of light, plants are able to optimize growth and control such complex processes as germination and flowering. To perceive the light environment a number of receptors have evolved, including the red/far-red light-absorbing phytochrome, the blue/UV-A light-absorbing cryptochrome and a UV-B light-absorbing pigment. The isolation and charac terization of phytochrome is a classic example of how use of photobiological techniques can predict the nature of an unknown photoreceptor. The current knowledge of phytochrome is found in Part 2 and that of cryptochrome and other blue/UV absorbing receptors in Part 3. Part 4 concerns the light environ ment and its perception. Part 5 consists of selected physiological responses: photomodulation of growth, phototropism, photobiology of stomatal move ments, photomovement, photocontrol of seed germination and photocontrol of flavonoid biosyntheses. Further topics in Part 6 are the photobiology of fungi, a genetic approach to photomorphogenesis and coaction between pigment systems. Our plan was to produce an advanced textbook which took a broad inter disciplinary approach to this field of photomorphogenesis."
There are many recent works on the topic of light and plant growth. These have not only been written by experts, but are also, in the main, written for experts (or, at least, for those who already have a fair understanding of the subject). This book has its origins in a six-week course in plant photophysiology, and its aim is to provide an introduction to the subject at an advanced undergraduate level. The imagined audience is simply a student who has asked the questions: In what ways does light affect plant growth, and how does it do it? The book is limited to aspects of photomorphogenesis. Photo synthesis is only considered where its pigments impinge on photo morphogenic investigations, or where its processes provide illustrative examples of particular interactions between light and biological material. Chapter 1 gives a general account of the various ways in which light affects plant development, and introduces topics which are subsequently covered in greater detail. In all the chapters, are special topic 'boxes', consisting of squared-off sections of text. These are simply devices for presenting explanatory background material, or material that I myself find particularly intriguing. |
You may like...
Toxicity of Nanoparticles in Plants - An…
Vishnu D. Rajput, Tatiana Minkina, …
Paperback
R3,925
Discovery Miles 39 250
The Chemical Dialogue Between Plants and…
Vivek Sharma, Richa Salwan, …
Paperback
R3,943
Discovery Miles 39 430
Wild Germplasm for Genetic Improvement…
Muhammad Tehseen Azhar, Shabir Hussain Wani
Paperback
R3,947
Discovery Miles 39 470
The Chlamydomonas Sourcebook - Volume 2…
Arthur Grossman, Francis-Andre Wollman
Hardcover
R4,967
Discovery Miles 49 670
Forest Microbiology Vol.3_Tree Diseases…
Fred O. Asiegbu, Andriy Kovalchuk
Paperback
R3,925
Discovery Miles 39 250
The Impact of Nanoparticles on…
Nar Singh Chauhan, Sarvajeet Singh Gill
Paperback
R3,927
Discovery Miles 39 270
Secondary Xylem Biology - Origins…
YoonSoo Kim, Ryo Funada, …
Paperback
R2,068
Discovery Miles 20 680
|